Résumé :
|
The contribution of pre-defoliation reserves and current assimilates to leaf and root growth was examined in Lolium perenne L, during regrowth after defoliation, Differential steady-state labelling with C-13 (CO2 With delta(13)C=-0.0281 and -0.0088) and N-15 (NO3- with 1.0 and 0.368 atom percentage, i,e, delta(15)N = 1.742 and 0.0052, respectively) was applied for 2 weeks after defoliation, Rapidly growing tissues were isolated, i,e, the basal elongation and maturation zones of the most rapidly expanding leaves and young root tips, with a biomass turnover rate > 1 d(-1). C and N weights of the elongation zone showed a transient decline, The dry matter and C concentration in fresh biomass of leaf growth zones transiently decreased by up to 25% 2 d after defoliation, while the N concentration remained constant, This 'dilution' of growth zone C indicates a decreased net influx of carbohydrates relative to growth-related influx of water and N in expanding cells, immediately after defoliation, Recovery of the fetal C and N weights of the leaf elongation zone coincided with net incorporation of currently absorbed C and N, as shown by the kinetics of delta(13)C and atom percentage N-15 in the growth zones after defoliation, C isotope discrimination (Delta(13)C) i, leaf growth zones was about 23 parts per thousand, 1-2 parts per thousand higher than the d in root tips, Delta(15)N in the leaf and root growth zones was 10 +/- 3 parts per thousand, The leaf elongation zones (at 0-0.03 m from the tiller base) and the distant root tips (about 0.2 m from the base) exhibited similar kinetics of current C and N incorporation, The amount of pre-defoliation C and N in the growth zones, expressed as a fraction of total C and N, decreased from 1.0 to 0.5 at 3 (C) and 5 (N) d after defoliation, and to 0.1 at 5 (C) and 14 (N) d after defoliation, Thus, the dependence of growth zones on current assimilate supply was significant, and stronger for C than for N, The important roles of current assimilates (as regrowth after defoliation are discussed in relation to the method of labelling and the functional and morphological heterogeneity of shoot tissues.
|