Résumé :
|
This book brings together the mathematical and numerical frameworks needed for developing digital twins. Starting from the basics—probability, statistics, numerical methods, optimization, and machine learning—and moving on to data assimilation, inverse problems, and Bayesian uncertainty quantification, the book provides a comprehensive toolbox for digital twins. Emphasis is also placed on the design process, denoted as the “inference cycle,” the aim of which is to propose a global methodology for complex problems.
|