Titre : | Probabilistic machine learning : an introduction |
Auteurs : | K. Murphy |
Type de document : | ouvrage |
Année de publication : | 2022 |
ISBN/ISSN/EAN : | 978-0-262-04682-4 |
Format : | XXV ; 826 pages |
Langues: | = Anglais |
Mots-clés: | APPRENTISSAGE PROFOND ; MODELE STATISTIQUE ; RESEAU DE NEURONE ; RESEAU DE DIMENSION ; AGREGATION ; CLASSIFICATION ; GRAPHE ; ENTROPIE ; OPTIMISATION ; MODELE A NOYAU ; VARIETE NEURONALE |
Résumé : | "This book provides a detailed and up-to-date coverage of machine learning. It is unique in that it unifies approaches based on deep learning with approaches based on probabilistic modeling and inference. It provides mathematical background (e.g. linear algebra, optimization), basic topics (e.g., linear and logistic regression, deep neural networks), as well as more advanced topics (e.g., Gaussian processes). It provides a perfect introduction for people who want to understand cutting edge work in top machine learning conferences such as NeurIPS, ICML and ICLR"-- |
Exemplaires (1)
Centre | Localisation | Section | Cote | Statut | Disponibilité |
---|---|---|---|---|---|
PACA | Biostatistique et Processus Spatiaux | Ouvrages | BM-AV IA036 | Consultable sur place | Exclu du prêt |