Titre : | Asymptotic behavior of absorbing Markov chains conditional on nonabsorption for applications in conservation biology |
Auteurs : | F. Gosselin ; CEMAGREF NOGENT SUR VERNISSON EFNO |
Type de document : | article/chapitre/communication |
Année de publication : | 2001 |
Format : | p. 261-284 |
Note générale : |
Sigle : EFNO Sigle : CEMAGREF Diffusion tous publics |
Langues: | = Anglais |
Mots-clés: | DYNAMIQUE DE POPULATION ; MATHEMATIQUES ; MODELE MATHEMATIQUE ; CALCUL DE PROBABILITE |
Résumé : | We find a Lyapunov-type sufficient condition for discrete-time Markov chains on a countable state space including an absorbing set to almost surely reach this absorbing set and to asymptotically stabilize conditional on non-absorption. This result is applied to Bienaymé-Galton-Watson-like branching processes in which the offspring distribution depends on the current population size. This yields a generalization of the Yaglom limit. The techniques used mainly rely on the spectral theory of linear operators on Banach spaces, and especially on the notion of quasi-compact linear operator. |
Source : | Annals of applied probability, vol. 11, n°1 |
Exemplaires (1)
Centre | Localisation | Section | Cote | Statut | Disponibilité | Département |
---|---|---|---|---|---|---|
Val de Loire | Nogent | Articles/chapitres/communications | D 4635 | Empruntable | Disponible pour le prêt |