|
Résumé :
|
Typically, the migration of multiple fluids in the subsurface is modeled as if it were independent of aqueous phase composition. However, solution conditions including pH, concentration of surface-active solutes, and ionic strength may impact the interfacial tension and the wettability of a system, which in turn may markedly affect subsurface transport. This study, presented in two parts, investigates the effects of solution chemistry upon surface tension, interfacial tension, wettability, and the subsurface transport property of capillary pressure versus saturation. In this part, the changes in air-water surface tension and o-xylene-water interfacial tension due to the presence of the surface-active solute octanoic acid were measured as a function of pH, concentration, and ionic strength. The interfacial tension depended only on the concentration and speciation of the octanoic acid and the aqueous phase, which displayed a strong dependence on pH.
|