Nous avons appliqué la formule suivante pour déterminer la perméabilité de ces matériaux limoneux :

$$Q = \frac{K (2H - \Delta) \Delta}{3}$$
 ou $K = \frac{3 Q}{(2 H - \Delta) \Delta}$ dans laquelle :

Q = débit du pompage en m³/h ici <math>10 m³/h

H = hauteur de la colonned'eau en mètres; ici 5,43 m

Δ = rabattement en mètres,ici 2,64 m

$$K = \frac{10^{\circ} \text{m}^3/\text{h}}{(2 \times 5, 43 - 2, 64)} = 5,04 \cdot 10^{-3} \text{ m/s}$$

Pour une épaisseur d'aquifère de 5 mètres la transmissivité sera :

$$T = KH = 5,04 \cdot 10^{-3} \text{ m/s} \times 5 \text{ m} = 2,5 \cdot 10^{-4} \text{ n}^2/\text{s}$$

3.5 - RESUME ET CONCLUSION

L'étude de l'hydrologie souterraine montre que les nappes du secteur ne sont pas influencées par l'Aude. Elle permet de mieux comprendre le rôle déterminant des facteurs d'alimentation des nappes. Les essais de débits, bien que de courte durée, ont permis de connaître certaines caractéristiques hydrodynamiques des nappes. Ces essais peuvent être considérés comme des essais préliminaires, et il est intéressant d'envisager un certain nombre d'essais de longue durée pour mieux suivre l'évolution de la nappe au pompage et de déterminer d'autres caractéristiques des nappes.

Le tableau suivant récapitule les résultats des essais de débit.

	Transmissivité m²/	s Perméabilité m/s
Boulandière	5 × 10 ⁻²	2 × 10 ⁻²
Bastide	2 × 10 ⁻³	10
Escales	3 × 10	10 3
Montbrun-les-Corbières	2 × 10 ⁻⁴	5 × 10

 $N_{\rm b}$. La quancité d'eau pouvant être contenue dans la nappe de graviers peut être estimée à 3 x 10^6 m 3 , en tenant compte des données approximatives suivantes

- superficie de la nappe : 10 m²;
- épaisseur : 3 mètres ;
- porosité : 10 %.

Chapitre trois Hydrochimie

1 - GENERALITES

Les études hydrochimiques présentent une importance particulière en hydrogéologie, elles permettent par exemple de mettre en évidence les modes d'alimentation d'une nappe, de suivre la structure minérale des eaux souterraines dans le temps et dans l'espace, d'étudier la potabilité des eaux etc.

La nature et l'importance des sels contenus dans les eaux souterraines différent selon les terrains qu'elles traversent:

Au sein d'une même nappe, les effets de phénomènes différents peuvent modifier partiellement ou même totalement l'aspect chimique de l'eau.

On peut par exemple observer l'augmentation de la concentration totale de l'eau de la nappe depuis l'amont vers l'aval ; la diminution de la valeur de SO₄/Cl ; l'accroissement de la valeur de Mg/Ca ; le changement de signe de l'indice de déséquilibre chloro-alcalin etc...

Nous avons effectué nous même, le 17/8/70, une quarantaine de prélèvements pour l'ensemble des points d'eaux du secteur, pour mieux préciser les modes d'alimentation de la nappe, et aussi suivre les phénomènes cidessus sur les eaux souterraines du périmètre.

Ces eaux sont placées immédiatement dans des flacons fermés hermétiquement et qu'elles remplissent sans que subsiste la moindre bulle d'air.

Les analyses ont été effectuées au laboratoire de chimie du Service Etude des Sols de la B.Rh.L., les résultats sont présentés en annexe IV.

Les caractéristiques d'une eau sont données par les ions dominants : anions : C1, S0 $\frac{1}{4}$ et HCO_3 et cations : Ca $^{++}$, Mg $^{++}$, Na $^+$, K $^+$.

Pour chaque eau nous avons calculé les valeurs suivantes :

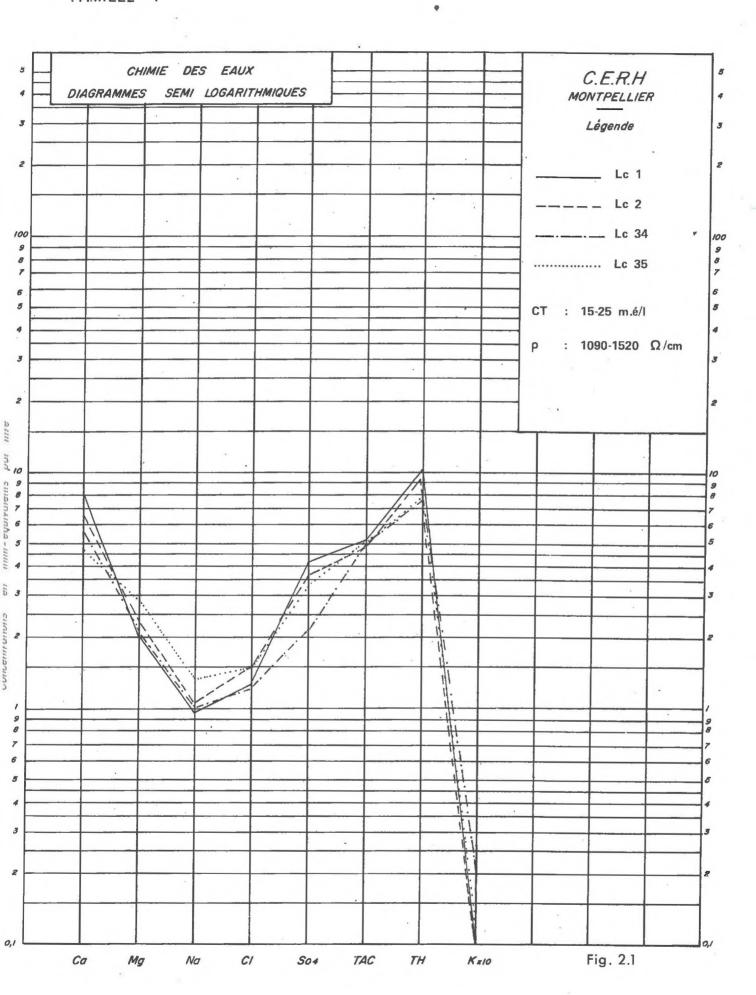
TH = titre hydrotimétrique = teneur en Ca⁺⁺ + Mg⁺⁺

TAC = Titre Alcalimétrique complet : teneur en OH , CO et H CO

 $\frac{rMg}{rCa} = \frac{rNa}{rMg} = \frac{rC1}{rNa} = \frac{RsO_4}{rC1} = \frac{rC1 - r (Na + K)}{rC1}$ (indice de déséquilibre chloro-alcalin = i d), la concentration totale. Les valeurs de la résitivité ont étéportées à 20 degrés Celsius et celles de la conductivité à 25 degrés Celsius.

Trois prélèvements ont été effectués dans la rivière de l'Aude à St Couat d'Aude, au voisinage de la terrasse de la Gaudière et à Sérame,

Un prélèvement a été fait également dans le ruisseau de la Jourre (près de Sérame).


Nous avons exprimé les résultats en milliéquivalents désignés par la lettre r ; (pour mettre sous la forme d'équivalents les résultats d'analyse de l'eau exprimés en ions, il faut diviser la quantité de chaque élément en mg/l par son poids équivalent ; le poids équivalent est le poids atomique de l'élément divisé par se Valence).

La classification des eaux a été effectuée suivant l'importance des anions et des cations ; suivant l'importance d'abord des anions ensuite des cations, on obtient les classes suivantes :

Et pour chacunes d'elles :

Nous considérons, par exemple, qu'une eau est sulfatée calcique, chlorurée magnésienne si les résultats d'analyse répondent à la formule suivante :

$$SO_4 > C1 > CO_3H$$
 et $Ca > Mg > (Na + K)$

2 - FAMILLES D'EAUX

Nous avons représenté les résultats des analyses par le diagramme semi-logagithmique de Schoeller sur un papier calque afin de faciliter la comparaison des eaux par la superposition et classer les eaux en familles. Ainsi nous avons déterminé les familles d'eaux suivantes :

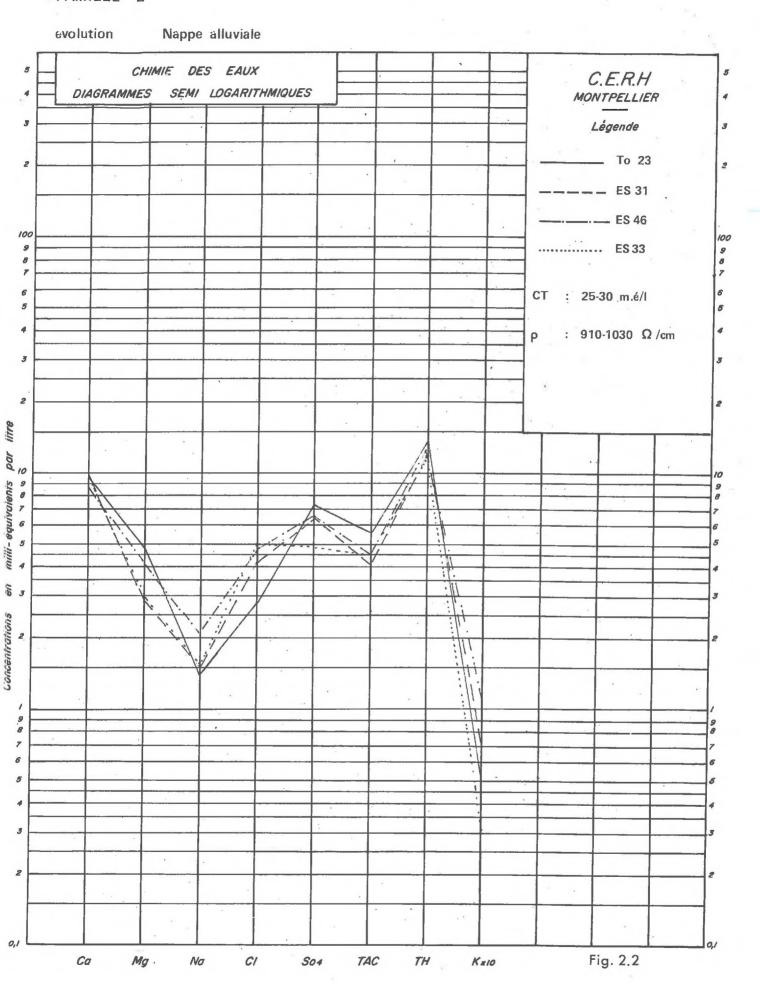
2.1 - FAMILLE 1

Elle intéresse les puits : Lc1, Lc2, Lc34, Lc35, Cas52, Lc38, Cas51, Es41, Lc40, Es43.

Les puits Lc38 et Es43 répondent à la formule suivante : $\rm CO_3H > C1 > SO_4$ et Ca > Mg $_2$ Na ; ce sont donc des eaux bicarbonatées - calciques chlorurées - magnésiennes .

Tous les autres puits correspondent à la formule suivante : CO3H >SO > Cl et Ca > Mg > Na ; c'est à dire des eaux bicarbonatées-calciques, sulfatées-magnésiennes.

La concentration totale de toutes ces eaux varie entre 15 - 25 mil-liéquivalents ; et leurs résistivité entre 1 090 - 1 520 $\,\Omega/cm$.


Ca sont les eaux les moins chargées de la plaine alluviale d' Escales. La plupart de ces puits se trouvent au voisinage des coteaux ; leur faible concentration est donc due à la briéveté de leur cheminement.

les profils chimiques de ces eaux restent parfaitement semblables (voir figure 2-1 ci-contre)

2-2 - FAMILLE 2

Elle intéresse les puits TO23, ES 31, ES46, ES33. Leurs concentrations totales varient entre 25 - 30 méq. et leurs résistivités entre 910 - 1 030 Ω/cm .

Les puits ES31 et ES46, répondent à la formule suivante : $SO_4 > C1 > CO_3H$; Ca > Mg > Na ; ce sont donc des eaux sulfatées - calciques, chlorurées - magnésiennes.

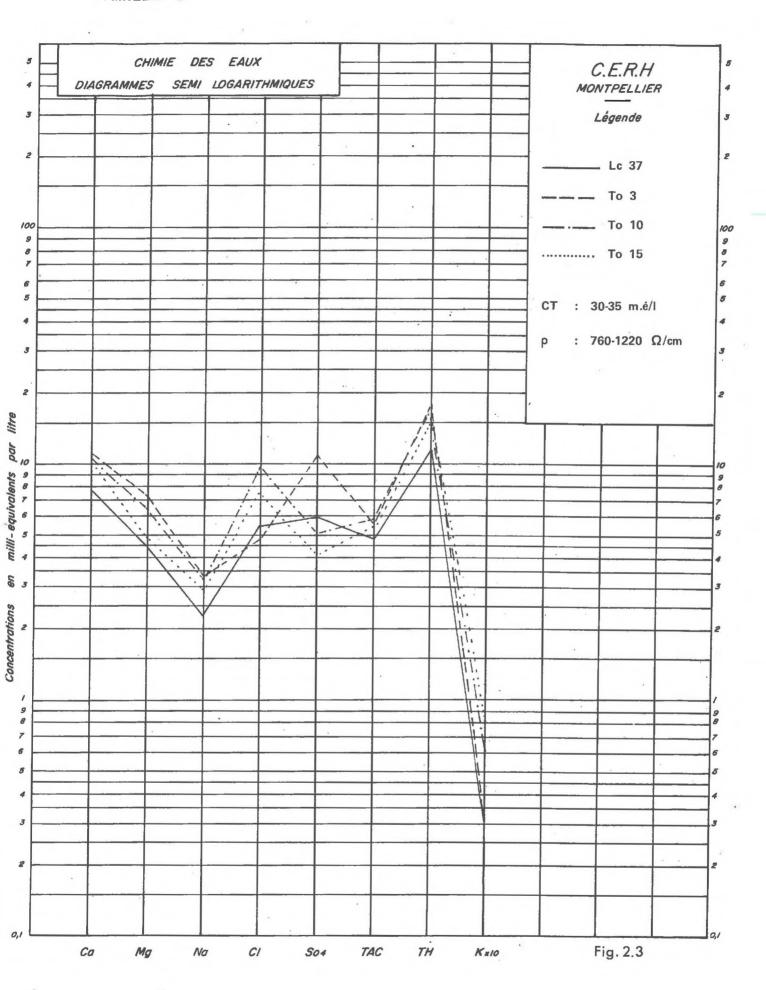
Le puits T023 répond à la formule : $SO_4 > CO_3H > C1$ et Ca > Mg > Na; c'est une eau sulfatée - calcique, bicarbonatée - magnésienne.

Dans le puits ES33 enfin les chlorures dominent les sulfates : C1 > S04 > C03H et Ca > Mg > Na ; l'eau est chlorurée-calcique, sulfatée-magnésienne.

Tous ces puits se trouvent dans la zone intermédiaire entre les coteaux et le centre de la plaine alluviale. Le cheminement des eaux est plus long par rapport à celles de la famille 1; et c'est pour cette raison que heurs concentrations totales augmentent. Schématiquement, on peut dire qu'il y a une évolution de la concentration totale des eaux depuis les coteaux vers la nappe alluviale (voir figure 2.2 ci-contre).

2.3 - FAMILLE 3

Cette famille intéresse un grand nombre de puits : Es44, Es29, Lc37, Cas 59, Es39, MtC66, Mx75, MtC68, Cas58, To17, Cas48, MtC70.


La concentration totale des eaux varie entre 30-45 meq et la résistivité de 760 - 1220 Ω/cm .

La plupart de ces puits se trouvent au centre de la plaine alluviale d'Escales. En examinant les résultats des mesures, on remarque d'une façon certaine que la concentration globale des eaux augmente depuis l'amont vers l'aval de la nappe à l'intérieur de la plaine d'Escales. Néanmoins, certains puits intéressant la nappe de limons (MtC66, MtC68, MtC70) possèdent la même concentration que les eaux de la nappe de graviers.

Toutes les eaux de ces puits répondent, au point de vue cation, à la formule suivante : Ca >Mg > Na ; parmi les anions, les sulfates dominent souvent :

Les résultats observés sont les suivants :

Puits Es44, Lc37, Es29; SO4 > C1 > CO3H et Ca > Mg > Na

Puits Cas 60, Es42, To3, Cas 59, Es 39, MtC60, Mx75 : SO4 > CO3H > C1 et Ca > Mg > Na

Puits To15, To10 : C1 > CO $_3$ H > SO $_4$ et Ca > Mg > Na Puits MtC68, Cas58, To17, Cas48, MtC70 : CO $_3$ H > SO $_4$ >Cl et Ca > Mg > Na

Les profils chimiques de ces eaux restent semblables, (figure 2.3 cicontre).

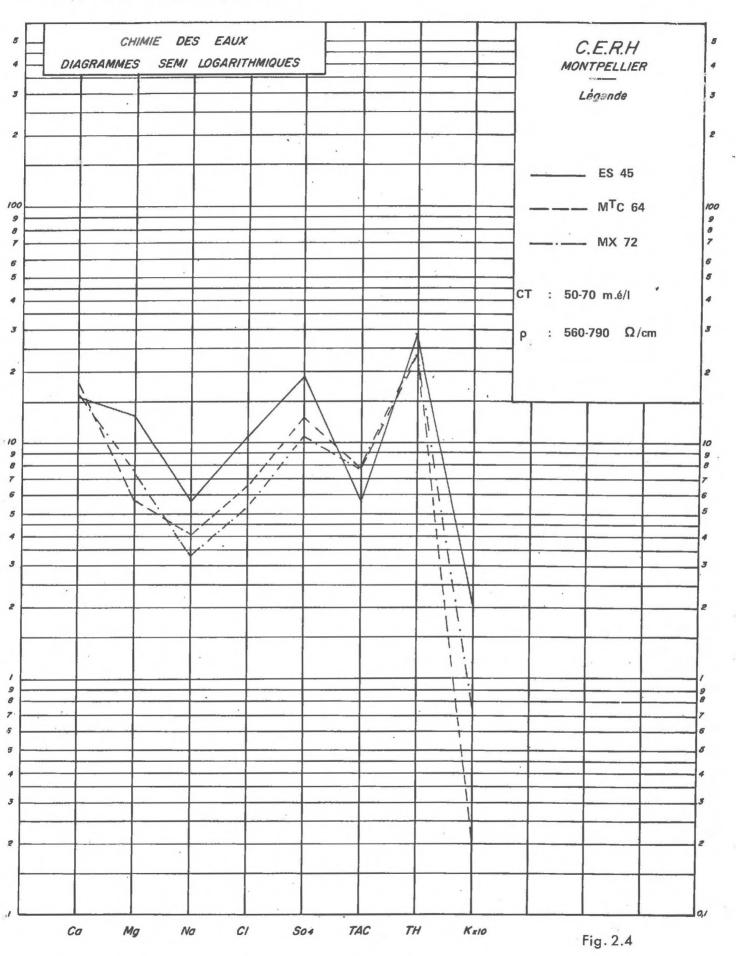
2.4 - FAMILLE 4

Les eaux des puits Es45, MtC64 et Mx72 montrent une concentration très élevée (50 - 70 m é) et une résistivité qui varie entre 560 - 790 Ω /cm. Elles répondent aux formules suivantes :

Puits Es45 : SO₄ > Cl > CO₃H et Ca> Mg > Na ;

Puits MtC64 et MtC72 : So₄ > CO₃H $^{\circ}$ C1 et Ca> Mg $^{\circ}$ Na

Ce sont donc des eaux sulfatées - calciques, bicarbonatées - magnésiennes ou sulfatées - calciques, chlorurées - magnésiennes; les profils chimiques de ces eaux sont semblables (voir figure 2.4 au verso).


Ces trois puits se trouvent au voisinage immédiat des marnes de l'Eocène inférieur et moyen dont nous avons parlé précédemment.

Les eaux sont très chargées en sulfates (19,43 méq dans le puits Es45, 13,47 dans le puits MtC64, 11,1 méq dans le puits Mx72). Ce qui met en évidence la présence des marnes gypsifères aux environs des communes d'Escales, Montbrun les Corbières, et de la commune de Moux.

Dans ces mêmes gisements, la quantité des sels solubles est considérable; ces sels après la mise en solution sont entrainés par les eaux de ruissellement de surface et hypodermique vers les dépressions ainsi ce sont justement ces mêmes gisements salins qui sont responsables de la génèse des taches de salure continentale dans les bas-fonds de la plaine d'Escales.

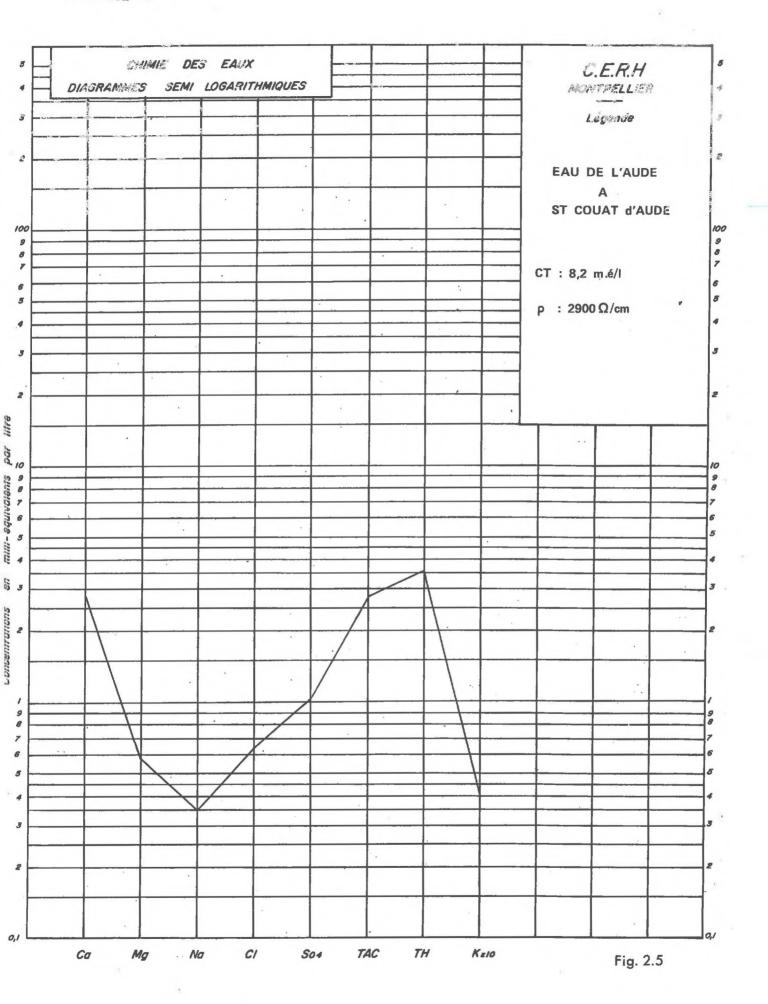
FAMILLE 4

Nappe influencée par le gisement salin

2.5 - FAMILLE 5

Elle intéresse l'eau de l'Aude qui répond à la formule suivant : $CO_3H > SO_4 \geq C1$ et $Ca \geq Mg \geq Na$

C'est à dire une eau bicarbonatée - calcique, sulfatée- magnésienne; la concentration de l'eau de l'Aude et sa résistivité restent constantes dans les trois prélèvements effectués : concentration totale 8,3 mé/l ; résistvité 2 800 Ω/cm .


Le profil chîmique de l'eau de l'Aude est présenté sur la figure 2.5 au verso.

L'eau du ruisseau de la Jourreprésente les mêmes profils chimiques que celle de la famille 1. Sa concentration totale est de 24,73 méq/1.

L'analyse chimique nous donne la formule suivante : ${\rm CO_3H} > {\rm SO_4} > {\rm C1}$ et Ca > Mg > Na

C'est donc une eau bicarbonatée -calcique, sulfatée- magnésienne.

La composition des eaux de la famille | et de celle du ruisseau de la Jourre montre que les eaux de la nappe de graviers à la sortie et vers le Chateau de Sérame et après avoir effectué un long cheminement dans le caillutis continental reprennent les caractères des eaux de cette nappe au voisinage des coteaux.

3 - CARTE DE RESISTIVITE

Les résultats desmesures de la résistivité nous ont permis de dresser une carte de courbes d'égale résistivité.

La valeur de résistivité est exprimée en Ohm.cm à 20 degrés Celsius. Sur les mêmes échantillons nous avons effectué les mesures de la conductivité à 25° Celsius exprimé en mmhos/cm.

La carte de résistivité met en évidence la présence de quatre zones dont les résistivités, les concentrations totales (mé/1), et les conductivités sont les suivantes :

Zone	Résistivité en Ω•cm	Conductivité en mmhos/cm	Concentration totale en mé/l
1	500 - 800	3,4 - 2,2	70 - 50
2	800 - 1 100	2,2 - 1,5	50 - 25
3	1 100 - 1 400	1,5 - 1,2	25 - 20
4	> 1 400	÷ 1,2	20 - 15

La première zone se trouve justement à proximité des marnes gypsifères déjà citées; elle est définie par l'influence du gisement salin. Son étendue n'est pas considérable.

- La deuxième zone intéresse d'une part une très grande partie de la nappe de graviers dans la plaine d'Escales, d'autre part la nappe de limons vers le Sud-Ouest du secteur étudié.
- La troisième zone intéresse également la nappe de graviers vers son aval où les eaux reprennent de nouveau les mêmes caractères que les eaux de la nappe au voisinage des coteaux.
- La quatrième zone intéresse une petite surface aux environs des puits Lc34 et Lc38 où les eaux de la nappe sont les moins chargées. On peut penser que les terrains calcaires des coteaux qui se trouvent au Sud de cette zone contiennent moins de sels solubles que les formations calcaires des autres endroits du secteur.

4 - EVOLUTION DE LA COMPOSITION CHIMIQUE DE L'EAU DANS LA PLAINE ALLUVIALE D'ESCALES

Pour étudier l'évolution des eaux de la nappe de graviers depuis l'amont vers l'aval, nous avons calculé plusieurs rapports intéressants qui permettent de mieux saisir le problème.

4.1 - LE RAPPORT DE SOL/CI

Les valeurs extrêmes de ce rapport pour l'esemble des points d'eau est de 0,41 dans le puits Es43 et de 3,4903 dans le puits Cas59. Les valeurs vont fréquemment de 1,5 à 2.

Partant de la ligne de crête (dans la nappe de graviers) et allant vers l'Est c'est à dire en direction principale de l'écoulement, on remarque que la valeur du rapport SO₄/ Cl qui est, au début, de 1,85 diminue très nettement et atteint 0,48 aux environs du puits Es31. On observe ensuite une augmentation plus ou moins régulière de la valeur de ce rapport jusqu'à l'extrémité orientale de la nappe où, de nouveau, on observe une valeur identique à celle du point du départ. La diminution de la valeur de SO₄/Cl est due à l'augmentation de la teneur en chlorures qui n'est au début que de 1,58 meq/l et atteint 6,23 meq aux environs du puits Es31. A partir de ce puits et en allant vers l'aval de la nappe, on observe ensuite une diminution de la teneur des chlorures et une augmentation de la teneur de l'aquifère en sulfate ; c'est pour cette raison que le SO₄/Cl augmente de nouveau vers l'aval de la nappe.

4.2 - RAPPORT Mg/Ca

Les valeurs extrêmes sont de 0,2335 (puits Es43) et 0,768 (puits Es42); il est assez difficile de constater une augmentation de la valeur du rapport Mg/Ca de l'amont à l'aval; habituellement la teneur en Mg des eaux souterraines prend des valeurs de plus en plus élevées de l'amont à l'aval, ce qui est dû à la dissolubilité plus importante des sels de magnésium, tandis que la teneur en Ca reste assez constante; la valeur de Mg est assez variable; ainsi l'évolution du rapport Mg/Ca n'est pas régulière dans la direction de l'écoulement.

4.3 - Rapport
$$\frac{C1 - (Na + K)}{C1}$$
 ou indice de déséquilibre chloro-alcalin (i.d.)

Dans la plaine d'Escales, la valeur de i.d. est le plus souvent positive ; elle n'est négative qu'aux environs des puits To17, Lc40 Cas52.

Dans le cas des puits Tol7 et Lc40 la prédominance de sels de sodium autres que des chlorures est due essentiellement à ce que leurs eaux ont cheminé à travers des coteaux de l'Eccène; dans le cas du puits Cas52, ce sont les égouts de la commune d'Escales qui en sont responsables.

5 - UTILISATION DES EAUX POUR L'IRRIGATION

L'aptitude d'une eau à être utilisée pour l'irrigation dépend comme nous le verrons non seulement de ses qualités intrinsèques mais aussi du type de sol, des cultures pratiquées etc...

Après avoir rappelé le critère de classification des eaux d'irrigation en fonction de leur influence sur le sol et la végétation, nous appliquerons ces données théoriques aux eaux de la nappe de graviers qui sont généralement assez chargées en sels.

5.1 - CRITERES DE LA CLASSIFICATION DE LA QUALITE DES EAUX EN IRRIGATION :

A l'expérience, il apparait que deux caractéristiques : la conductivité électrique et la proportion relative de Na par rapport aux autres éléments, permettent déjà une bonne classification et ce sont elles que nous avons retenues.

5.1.1 - Conductivité électrique

La conductivité électrique qui est liée à la concentration totale de sels solubles, peut être déterminée avec précision Ona constaté que à peu près toutes les eaux d'irrigation qui ont été utilisées avec succès possèdaient une conductivité inférieure à 2,250 mmhos/cm; des eaux de conductivité supérieure, ont été utilisées occasionnellement mais les récoltes obtenues, n'ont pas été satisfaisantes, sauf dans des situations exceptionnelles. Le laboratoire de Riverside (U.S.A.) a adopté l'échelle de classification suivante pour la qualité des eaux d'irrigation.

Qualité de 1'eau	Conductivité en mmhos/cm	Estimation du poids de sels solubles correspondant (mg/1)
Excellente	< 0,25	< 160
Faible salinité	0,25 - 0,75	. 160 - 500
Forte salinité	0,75 - 2,25	500 - 1 500
Très forte salinité	2,25	< 1 500

Le développement de la salinité dans le sol, pour une qualité donnée, est fonction, évidemment, des conditions locales de drainage du sol, des caractères int insèques du sol et des techniques culturales adoptées.

5.1.2 - La proportion relative du Na par rapport aux autres éléments

La qualité des eaux en ce qui concerne la proportion relative du Na[†] par rapport aux autres cations est appréciée en fonction du rapport :

$$SAR = \frac{Na}{\sqrt{\frac{Ca + Mg}{2}}}$$

5.1.3 - Risque d'alcalinisation du sol

A la lumière de ces deux critères, on peut estimer en fonction du S.A.R. des eaux d'irrigation pour des conductivité réparties en 3 classes, le risque d'alcalinisation du sol.

Conduc- tivité mmhos/cm		S.A.R. 4 6,1 8,2 9 12,2 14 15,4 18,3 22,6											
0,25	Fa	aible		Moye	nne	E	Très élevée						
0,75	Faib	Le	Мо	yenne	Ele	vée	Trè	s élevée					
2,25	Faible Moyenne			Elev	ée	Très élevée							

L'eau d'irrigation peut également être néfaste à la végétation ; les ions Cl et Na sont en général les plus dangereux ; on a des accidents de tcxicité à partir d'un taux de ClNa de 10 à 40 me/l dans la solution du sol. On estime que ces seuils peuvent être rapidement atteints avec des concentrations de ClNa dans l'eau d'irrigation de 3 à 6 me/l (10 me/l dans un sol particulièrement bien drainé).

Ajoutons qu'on peut avoir des effets de toxicité directe en cas d'irrigation par aspersion.

Il est évident que les possibilités d'utilisation des eaux dépendent de nombreux facteurs parmi lesquels on peut citer les conditions climatiques, la nature des cultures, la nature du sol et même le système de distribution des apports; mais on peut toutefois, en se basant sur de nombreuses études déjà effectuées définir de façon approchée les concentrations limites en ClNa risquant de provoquer l'apparition d'incidents à l'égard de la plupart des cultures irriguées.

On estime ces concentrations limites de la façon suivante :

3 me/1 : irrigation par aspersion des arbres fruitiers à noyaux.

5 me/1 : irrigation des cultures sous-abri

7 me/1 : irrigation de la majeure partie des cultures.

5.2 - APPLICATION AUX CONDITIONS LOCALES

5.2.1. D'après les résultats de l'analyse chimique effectués au mois d'Août 1970 nous pouvons appliquer les données générales précédentes dans le cas des eaux de la nappe de graviers de la plaine d'Escales.

Nous avons déjà parlé des emplacements où l'on serait amené, à cause de l'abondance de l'eau, à implanter des stations de pompage en vue de l'irrigation des cultures de la plaine alluviale : puits Es29, To10, Es39.

L'analyse chimique des eaux de la nappe aux environs de ces puits donne les résultats suivants :

Puits	Conductivité en mmohs/cm à 25°c	$SAR = \frac{Na}{\sqrt{Ca + Mg}}$	ClNa en m.é/l
Es 29	1,882	1,00	2,68
To 10	2,17	1,09	3,27
Es 39	2,12	1,07	3,10

La conductivité parait assez élevée, le coefficient de S.A.R. montre qu'avec de telles eaux les risques d'alcalinisation du sol sont très faibles, mais la présence des ions Na et Cl semble être le facteur limitant pour l'emploi de ces eaux en irrigation.

Nous pensons que l'on peut aplanir la difficulté en diluant les eaux de la nappe avec des eaux qui doivent être apportées dans le cadre des projets d'irrigation à l'étude.

5.2.2. - Eau de l'Aude (°)

L'analyse de l'eau de l'Aude prélevée le 17.08.70, a donné les résultats suivants :

- . Teneur en ions Cl et Na faible (inférieure à 1 meq/l);
- . Conductivité : 0,64 mmhos/cm ("faible salinité") ;
- . S.A.R.: 9,2 ("Risque d'alcalinisation du sol: moyen").

(°) à l'étiage

6 - CONCLUSION A L'ETUDE HYDROGEOLOGIQUE

Nous avons vu, au début de cette étude, que la plaine d'Escale, disséquée puis remblayée par l'Aude, comporte une couche aquifère considérable constituée de galets siliceux et calcaires, d'éléments schisteux et de graviers, le tout emballé dans une matrice sableuse grossière.

Cette couche aquifère, il était intéressant d'en préciser la richesse en débit et en qualité.

On a étudié successivement :

- . le bilan hydrologique du bassin versant,
- . la forme et les mouvements de la nappe,
- la composition chimique des eaux de la nappe.

۰

En l'absence de relevés limnigraphiques, - il nous a malheureusement été impossible d'en réaliser dans la Jourre qui évacue toutes les eaux du bassin par un seuil bien défini, près de Sérame -, nous avons appliqué la méthode de Thornthwaite qui permet d'estimer l'ordre de grandeur des éléments inconnus de l'équation du bilan hydrologique.

Compte tenu des facteurs d'alimentation et de drainage, il est permis de conclure que la nappe peut supporter un débit de pompage, durant la saison d'irrigation de 50 à $100 \text{ m}^3/\text{h}$.

Q

L'hydrologie souterraine semble confirmer ce premier résultat théorique.

Les cartes piézométriques établies à partir de 84 points d'observation relevés 3 fois, ont mis en évidence que la nappe de la plaine d'Escales ne reçoit pas d'eau de l'Aude et n'est alimentée que par les précipitations at mosphériques que reçoit son bassin versant, à quelques très faibles apports latéraux près.

Par ailleurs, on constate que la nappe s'écoule selon deux directions opposées à partir d'une ligne de crête décalée vers l'Est par rapport à la topographie de surface.

Enfin ces cartes ont permis de sélectionner les zones les plus favorables au pompage des eaux.

Des essais de débit ont été réalisés, aux puits 10 (Tounonzelles), 29 (Escales) et dans un fossé à la Bastide ; ils ont confirmé, surtout pour les deux premiers, les observations initiales.

En outre, même si on n'a pas pu pomper jusqu'à l'obtention de valeurslimites, les débits obtenus, de l'ordre de 120 m³/heure pour To 10 et 90 m³/h pour Es 29, peuvent être considérés comme une bonne approximation, surtout étant donné que nous avons opéré aux basses eaux, en pleine période d'irrigation de la vigne.

.

L'étude de la composition chimique des eaux apporte, au plan théorique, la confirmation de l'isolement de la nappe de la plaine d'Escales : ses eaux appartiennent toujours à des familles différentes de celle de l'Aude.

Au plan pratique, on est conduit à conclure que si ces eaux n'entrainent pas de risques d'alcalinisation des sols, elles ont néanmoins une teneur en ions Cl et Na qui les fait classer comme pouvant être dangereuses pour les cultures irriguées et, particulièrement, irriguées par aspersion.

Cette appréciation, qui devra être confirmée, devra, le cas échéant, être portée à la connaissance des irrigants le jour où l'on pourra leur offrir - lorsque les projets d'irrigation à partir des eaux de l'Aude se seront concrétisés - la possibilité de mélanger l'eau de leurs puits avec des eaux moins chargées.

•

En marge de ces applications pratiques on peut remarquer que la nappe de la plaine d'Escales, par son isolement et la précision de ses limites, pourrait être un bon exemple pour l'étude des eaux souterraines par les méthodes des analogies électriques et des modèles hydrauliques ... On ne saurait terminer ce chapitre sans évoquer l'influence qu'auront des eaux d'irrigation pompées dans l'Aude sur le comportement de la nappe de graviers. A notre avis, elle ne risque de remonter de façon marquée que
dans les dépressions fermées - dont le drainage est de toute façon nécessaire
dès maintenant - car, ailleurs, le drainage naturel est convenablement assuré
par la jourre.

0

9

 $Q\quad U\quad A\quad T\quad R\quad I\quad E\quad M\quad E\qquad \quad P\quad A\quad R\quad T\quad I\quad E$

quatrième partie

A M E N A G E M E N T H Y D R A U L I Q U E

(Calculs théoriques des réseaux d'irrigation)

chapitre premier

Evaluation des besoins en eau

1	- PREAMBULE		146
2	- LES METHODES PRATIQUES DE CALCULS DE L'EVAPOTRANSPIRATION		
	2-1 - FORMULE DE BLANEY ET CRIDDLE		147
	2-2 - FORMULE DE TURC		148
	2-3 - FORMULE DE BOUCHET		150
	2-4 - FORMULE DE THORNTHWAITE		152
3	- DETERMINATION DES BESOINS EN EAU DES CULTURES - DESOIN DE POINTE		
	3-1 - PLAN D'ORIENTATION AGRICOLE		152
	3-2 - BESOINS MENSUELS DE POINTE		153
	3-3 - BESOINS ANNUELS		158
	chapitre deux		
Ca	alculs théoriques des réseaux d'irriq	j a t	ion
1 -	- SITUATION DU SECTEUR ETUDIE ET LIMITES DE SA ZONE IRRIGABLE		162
2 -	- SCHEMA GENERAL		162
3 -	BESOINS EN EAU ET DEBITS DE POINTE DU MOIS LE PLUS CHARGE		162
4 -	- CALCULS THEORIQUES DES RESEAUX		
	4-1 - CARACTERISTIQUES DU RESEAU		163
	4-2 - CALCUL DU DEBIT DANS LES CONDUITES		163
	4-3 - CALCUL OPTIMISE DU RESEAU DE CONDUITES ALIMENTE PAR LA STATION	DE PO	MPAGE
	DEPUIS LE RESERVOIR		165
	4-3-1 - par comparaison des charges annuelles		166
	4-3-2 - par comparaison des valeurs capitalisées des dépenses		169
	4-3-3 - détermination de la hauteur de refoulement pour une dép minimale du réseau et de la station de pompage	ense	totale 169
5 -	CALCUL DE LA STATION DE POMPAGE		173
6 -	ESTIMATION		174
7 -	RESUME ET CONCLUSION		175

quatrième partie

A M E N A G E M E N T H Y D R A U L I Q U E (Calculs théoriques des réseaux d'irrigation)

chapitre premier Evaluation des besoins en eau

1 - PREAMBULE

Les différents facteurs qui interviennent dans le calcul des besoins en eau des plantes sont le climat, le sol, l'espèce végétale.

Pour une plante donnée, le besoin en eau varie en fonction de son stade végétatif. Sous un climat donné et pour une plante donnée le besoin varie avec le facteur sol.

On voit donc que pour déterminer les besoins exacts des plantes dans le temps et dans l'espace, il faut tenir compte de nombreux paramètres.

Les méthodes modernes de calcul des besoins sont basées sur les formules qui permettent de déterminer non pas séparément l'évaporation du sol d'une part, et la consommation des plantes d'autre part, mais l'ensemble de ces pertes appelé évapotranspiration.

L'évapotranspiration potentielle (E.T.P.) correspond à la quantité d'eau restituée à l'atmosphère par le sol et la plante dans des conditions données : couverture végétale quasi-continue et maintien de l'humidité du sol à sa capacité de rétention.

L'évapotranspiration réelle (ETR) représente la quantité d'eau restituée à l'atmosphère par des surfaces placées dans les conditions normales de cultures, c'est-à-dire bénéficiant d'une alimentation en eau peut-être économiquement optimale, mais plus ou moins régulière et supportant un couvert végétal imparfait.

L'évapotranspiration maximale (ETM) correspond à la quantité maximale d'eau restituée à l'atmosphère dans les cases lysimétriques pour différentes espèces végétales.

2 - METHODES PRATIQUES DE CALCULS DE L'EVAPOTRANSPIRATION

Il existe de nombreuses formules pour déterminer l'ETP. Citons les formules de Blaney et Criddle, Turc, Bouchet, Thornthwaite, Hargreaves, Penman, Olivier, et Prescotte.

Les quatre premières formules ont été utilisées pour le calcul des besoins en eau du secteur, nous allons les examiner ci-dessous.

2-1 - FORMULE DE BLANEY ET CRIDDLE

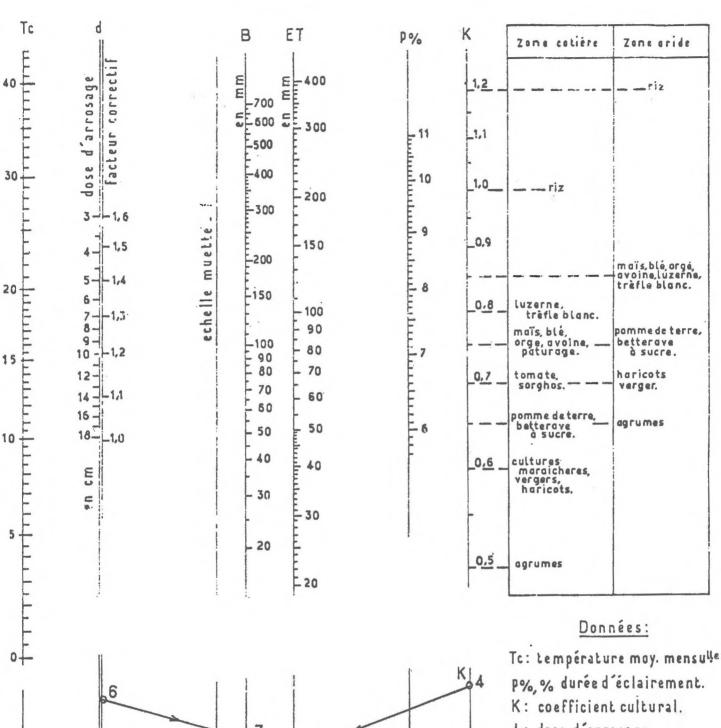
Cette formule a été mise au point par Blaney et Criddle, ingénieurs du "Soil Conservation Service" et a été publiée par le Ministère de l'Agriculture des Etats-Unis en 1950.

Le calcul de l'évapotranspiration par cette formule fait intervenir la température, la nature de la culture, le type de sol et le pourcentage d'heures diurnes de la période considérée par rapport au total annuel des heures diurnes.

Elle s'exprime en unités anglo-saxonnes de la manière suivante :

E (pouces) =
$$\frac{K}{100}$$
 x T (degré Farenheit) x P (%)

Dans le système métrique :


$$E = 0.254 (1.8 T + 32) \times P \times K$$

avec

- E = évapotranspiration en mm
- K = coefficient variable englobant divers facteurs non analysés et définis par statistiques et variant de 0,5 à 0,85.
- T = température moyenne mensuelle en degrés centigrades.
- P = pourcentage d'heures diurnes pendant le mois considéré par rapport au nombre d'heures diurnes annuelles

Les températures sont données par les stations météorologiques, le coefficient cultural (K) peut être tiré du tableau suivant :

BESOINS EN EAU DES CULTURES (Méthode de Blaney et Criddle)

5 = Evapo transpiration

2

P

Schéma d'utilisation

M

3

1

T

d : dose d'arrosage.

Resultats:

ET: évapo_transpiration mensuelle

B: besoins en eau d'irrigation mensuels.

ABAQUE DRESSE PAR G. GUYON Ing! du G.R.

	Zone atlantique	zone moyenne	zone aride
Pommes de terre	0,60	0,65	0,75
Betteraves	0,60	0,65	0,75
Mais		0,75	0,85
Blé-Orge	0,50	0,75	0,85
Luzerne	0,70	0,80	0,85
Arbres fruitiers	0,50	0,60	0,70
Cultures maraichères	0,50	0,60	

La difficulté d'emploi de la méthode de Blaney a été résolue par l'utilisation d'un abaque à points alignés dans le système métrique. (abaque ci-contre)

Le pourcentage de la durée d'éclairement, fonction de la latitude du lieu, est donné, pour chaque mois de l'année, dans le tableau au verso.

Le mode d'utilisation est expliqué au bas de l'abaque. La valeur observée au point (5) correspond à l'évapotranspiration non corrigée.

Dans le calcul du débit de pointe on doit faire intervenir le facteur correctif de Criddle donné en fonction de la dose maximale d'arrosage (D.M.D.). Ce facteur de Criddle n'intervient pas dans le calcul des besoins totaux.

On conçoit donc que pour évaluer le débit de pointe à véhiculer dans le réseau il faut connaître la dose maxima d'arrosage. Pour un secteur donné on doit prendre une valeur moyenne pondérée.

Il faut enfin soustraire de ces évapotranspirations les quantités de pluie utiles des mois considérés et la réserve facilement utilisable pour obtenir la valeur nette des besoins en eau d'irrigation. Cette valeur doit être ensuite majorée en fonction du coefficient d'efficacité ou efficience d'irrigation.

2-2 - LA FORMULE DE TURC

La formule de Turc (1953) fait intervenir à la fois les facteurs climatiques (précipitation, radiation globale, température, vents) et les facteurs sols et plantes.

BLANEY - CRIDDLE

% DE LA DUREE D'ECLA!REMENT POUR CHAQUE MOIS DE L'ANNEE

I - LATITUDE NORD

	0.	2,	4'	6.	8.	10 -	12:	14°	16°	18°	20-	22°	24
Janvier	8,49	8,42	8, 35	8, 27	8,21	4.13	8.05	7.98	7, 90	7.83	7, 75	7,66	7,57
Février	7,73	7,69	7.65	7.61	7.57	7. 53	7,49	7.44	7.40	7, 35	7.31	7. 26	7,21
Mars	8,49	8.48	8,47	8,47	8.46	8, 15	8.44	8,43	8,43	8.42	8.41	8,40	8.39
Avril	8,21	8.24	8, 27	8.30	8.33	8, 36	8.39	8,42	8,45	8.48	8.52	8, 55	8,59
Mai	8,49	8,55	8,61	8,67	8.74	8.81	8.88	8.95	9,02	9,09	9,16	9.24	9.32
fuin	8.21	8,28	8.36	8,44	8.52	8.60	8.68	8.76	8, 84	8,92	9.01	9, 10	9,19
Juillet	8.49	8.56	R. 63	8.70	8.77	8.85	8,93	9,01	9.09	9.17	9, 25	9,33	9.41
Août	8.49	8,53	8.57	8.61	8,66	8.71	8.75	8.79	8,84	8.89	8.94	8.99	9.04
Septembre	8,21	8.21	8,22	8.23	8.24	8, 25	8, 25	8, 26	8, 27	8, 28	8, 29	8, 30	8,31
Octobre	8,49	8,46	8.43	8.40	8.37	8.33	8.30	8, 27.	8. 24	8.21	8.17	8, 14	8.11
Novembre	8,21	8, 16	8.10	8,04	7.98	7,92	7.85	7,78	7, 71	7,64	7,57	7.50	7,43
Décembre	8,49	8.41	8.33	8.24	8, 15	8, 06	7.98	7.89	7, 80	7. 71	7,62	7,53.	7,43
	26*	28°	301 *	32	34 °	36 .	38	40	42 -	44'	46	48 '	50 -
Janvier	7, 48	7.38	7, 29	7, 18	7, 08	6.97	6,86	6,76	6,60	6,43	6.27	6, 10	5.94
Février	7.15	7, 10	7, 05	6,99	6.73	6, 57	6.81	6.75	6,67	6,59	6,51	6,43	6,35
Mars	8.39	8, 38	8,37	8, 36	8, 35	8.34	8,33	8, 32	8, 31	8.29	8, 27	8, 25	8,23
Avril	8,63	8.67	8.71	8.75	8,79	8.83	8,88	8.93	8.98	9.04	9, 10	9,16	9,22
Mai	9,40	9.48	9.56	9.65	9,74	9.81	9, 92	10.01	10.14	10,28	10,42	10,56	10,70
Juin	9.29	9, 39	9, 44	9,60	9.71	9.83	9.95	10.07	10, 24	10.41	10,58	10,75	10,93
Juillet	9.49	9.57	9.66	9,77	9,88	9,99	10,10	10,21	10,36	10,51	10,66	10,81	10.97
Août	9.09	9, 15	9, 21	9.27	-9, 33	9,40	9,47	9,54	9,63	9.7,3	9,83	9.93	10,03
Septembre	8,32	8. 33	8. 34	8.35	8.36	8, 37	8, 38	8, 39	8,40	8.41	8,42	8.44	8.46
Octobre	8,07	8,03	7.99	7, 95	7.91	7, 86	7,81	7, 76	7,70	7.64	7.58	7,52	7,45
Novembre	7, 36	7, 28	7, 20	7, 11	7.02	6,93	6,83	6.73	6,60	6,47	6.34	6.21	6,08
Décembre	7,33	7.23	7, 13	7.01	6,89	6.77	6.65	6,53	6,36	6, 18	6,00	5,82	5,64

II - LATITUDE SUD

	0.4	2"	4	6"	8 -	10"	12°	14"	16'	18	20°	22°	24°	261	28 -	30°
Janvier .	8.49	8.50	8.63	8.70	8. 78	8.86	8. 94	9.02	9, 10	9.19	9. 28	9, 36	9.44	9.52	9,61	9.70
Février	7,73	7.76	7,80	7.84	7.88	7,92	7.96	8.00	8.04	8.08	8.13	8.18	8,23	8, 28	8.33	8,39
Mars	8,49	8, 49	8,50	8.50	8.51	8.52	8,53	8.54	8.55	8.56	8.57	8,57	8,58	8,58	8,59	8,59
Avril	8,21	8, 19	8.16	8.13	8.10	8.07	8,04	8,01	7,97	7.93	7,89	7.85	7.81	7,77	7,73	7,69
Mai	8,49	8,43	8.37	8.31	8, 25	8, 19	8, 12	8,05	7,98	7.91	7.84	7,77	7.69	7,61	7,53	7,45
Juin	8,21	8, 13	8,05	7,97	7.89	7,81	7,73	7,65	7,57	7, 49	7,40	7,31	7, 22	7, 13	7,04	6,95
Juillet	8,49	8,42	8, 35	8, 28	8,21	8, 13	8,06	7,99	7,91	7,83	7, 75	7.66	7,57	7, 48	7, 39	7, 29
Août	8,49	8,49	8,41	8,37	8.32	8,27	8, 23	8, 19	8.14	8,09	8,04	7,99	7,94	7,88	7,82	7,76
Septembre	8,21	8,21	8.20	8.20	8, 19	8, 18	8, 17	8, 16	8,15	8, 14	8, 13	8, 12	8,11	8,10	8,09	8,08
Octobre	8,49	8,51	8,53	8,56	8,59	8,62	8,65	8,68	8,71	8, 74	8,78	8.82	8,86	8,90	8,94	8,99
Novembre	8.21	8,27	8,33	8,39	8,46	8,53	8,59	8,66	8,73	8,80	8,87	8,94	9,01	9.09	9, 17	9,25
Décembre	8,49	8,57	8,65	8.73	8,81	8,90	8,98	9,06	9.14	9,23	9.32	9,42	9,53	9,64	9,75	9,86

L'ajustement de la formule de Turc est fondée sur des études en cases lysimétriques à Versailles et sur l'analyse des bilans hydrologiques de 254 bassins versants dans le monde entier.

Turc a établi plusieurs formules, en 1960 il a donné une formule améliorée et simplifiée que l'on utilise pour la détermination des besoins en eau d'irrigation.

Cette formule s'écrit de la manière suivante :

ETP = K (Ig + 50)
$$\frac{t}{t + 15}$$

avec

ETP = évapotranspiration potentielle en mm/mois.

- Ig = valeur moyenne mensuelle de la radiation solaire globale exprimée en petites calories par cm² de surface horizontale et par jour.
- t = température moyenne mensuelle en degrés centigrades (quand t $\leq 0^{\circ}$, ETP est considérée comme nulle).
- K = coefficient variable ; pour le mois de Février il est égal à 0,37, pour les autres mois de l'année ils est de 0,40.

Cette formule donne également l'ETP décadaire, il suffit alors d'une part, de prendre K = 0,13, et d'autre part, de considérer les valeurs de Ig et de t décadaires.

Le facteur Ig n'est mesuré que dans certaines stations particulières (Versailles, St Maur, Nice) et nécessite le plus souvent un calcul préalable.

Turc a établi la relation:

$$Ig = IgA (0,18 + 0,62 - h)$$

avec

- IgA = énergie de la radiation maximale qui atteindrait le sol (Transparence de l'atmosphère égale à 1). Elle est exprimée en petites calories par cm² et par jour.
- h = durée d'insolation en heures.
- H = durée astronomique du jour en heures. (h/H = insolation relative).

Pour utiliser la formule de Turc dans une station climatologique donnée il faut avoir en possession la température moyenne décadaire ou mensuelle, et la durée de l'insolation.

FORMULE DE TURC

Valeurs moyennes mensuelles de Ig_{A} en petite calorie par cm2 et par jour

LATITUDE NORD

	0 *	2.	4.	6.	8.	10*	12°	14*	16*	18*	20 *	22*	24 *
Janvier	858	839	819	799	779	759	736	713	690	666	642	616	589
Février	888	875	862	849	835	821	804	786	768	750	732	71-1	690
Mars	890	887	884	881	877	873	866	858	850	842	834	820	806
Avril	862	869	876	882	888	894	896	898	900	901	902	898	894
Mai	816	830	844	858	872	885	894	903	912	921	930	934	938
Juin	790	807	824	841	857	873	886	898	910	922	934	942	950
Juillet	804	819	.834	849	864	879	890	900	910	920	930	935	940
Août	833	843	853	862	871	880	885	890	894	898	902	900	898
Septembre	875	875	874	874	873	872	867	861	855	849	843	832	821
Octobre	880	870	860	850	840	830	815	800	785	770	755	736	717
Novembre	860	842	824	805	786	767	645	623.	601	579	656	631	606
Décembre	842	821	800	779	757	735	710	685	660	635	610	581	553
	26°	28*	30°	32*	34°	36°	38 °	40 °	42°	44 °	46 °	48"	50°
Janvier	562	537	508	480	451	422	393	364	335	306	278	250	222
Février	668	646	624	599	573	547	521	495	468	441	414	287	360
Mars	792	778	764	746	728	710	692	673	651	629	607	585	562
Avril	890	885	880	871	862	853	743	833	820	806	792	778	764
Mai	942	946	950	949	948	947	946	944	940	935	930	925	920
Juin	958	965	972	975	978	981	983	985	985	984	984	983	983
Juillet	945	950	955	956	957	957	958	958	954	950	946	942	938
Août	896	894	891	885	879	872	865	858	847	836	824	812	800
Septembre	810	799	788	773	758	742	726	710	690	670	649	628	607
Octobre	698	6.78	658	634	610	586	561	536	510	484	458	431	404
Novembre	580	554	528	501	474	446	418	390	362	333	304	275	246
Décembre	525	497	469	439	410	381	352	323	294	265	236	208	180

LATITUDE SUD

	0.	2.	4.	6.	8°	10°	12*	14*	16°	18°	20°	22.	24°	26°	28 *	30°
Janvier	858	865	872	879	886	893	911	930	949	968	986	991	996	1001	1005	1009
Février	888	888	888	888	888	888	898	908	918	928	937	935	932	929	926	923
Mars	890	887	884	880	876	872	867	862	857	851	845	833	821	809	796	783
Avril	862	854	846	838	829	820	802	783	764	745	726	807	686	669	649	629
Mai	816	804	792	780	767	754	727	700	672	644	616	591	567	543	519	495
Juin	790	777	764	751	738	724	693	662	631	601	571	544	517	491	465	439
Juillet	804	794	782	771	760	748	717	687	657	627	597	572	547	522	497	473
Août	833	828	822	816	810	804	781	758	735	713	691	670	649	628	607	586
Septembre	875	875	874	873	872	871	858	845	832	820	808	793	778	763	748	734
Octobre	880	884	887	890	893	896	898	900	902	904	905	900	895	890	885	880
Novembre	860	868	876	884	892.	900	915	929	943	957	971	975	978	981	984	987
Décembre	842	851	861	871	891	891	912	932	952	972	992	1000	1008	1016	1024	1031

IgA et H dépendent uniquement de la latitude et sont donnés par les tableaux discontre et au verse.

La formule de Turc présentée ci-dessus est valable si l'humidité relative est > 50 %, dans le cas contraire il faut utiliser la formule suivante :

ETP =
$$K + \frac{t}{t + 15}$$
 (Ig + 50) (1 + $\frac{50 - \text{humidité relative}}{70}$)

Il existe un abaque établi par M. HLAVEK ingénieur du Génie Rural permettant le calcul rapide de l'ETP si l'on connait IgA et h/H.

Pour calculer les besoins en eau, il faut soustraire de ces ETP la pluviométrie utile du mois considéré et la fraction K de la R.F.U. encore disponible.

avec

Bm = Besoin brut mensuel (ou décadaire)

ETP = Evapotranspiration potentielle mensuelle (ou décadaire)

P = Pluviométrie utile mensuelle (ou décaire)

Ba = Besoin brut annuel

RFU = Réserve facilement utilisable

Les besoins bruts doivent ensuite être majorés en fonction de l'efficience de l'irrigation.

La formule de Turc a été utilisée pour déterminer systématiquement les besoins fréquentiels en eau d'irrigation de 150 stations météorologiques françaises dont une vingtaine sont dans la zone méditerranéenne.

On constate que dans le climat méditerranéen, l'étude fréquentielle conduit à des besoins de pointe plus valables que ceux obtenus avec le facteur correctif de Criddle.

2-3 - LA FORMULE DE BOUCHET

Bouchet compare le mécanisme de l'évaporation dans le piche placé sous un abri et l'évapotranspiration dans les conditions naturel-les et propose un facteur correctif à la mesure expérimentale.

FORMULE DE TURC

Durée mensuelle du jour "H" en heures par meis

LATITUDE NORD

		-	THE RESERVE TO SHARE THE PARTY OF THE PARTY	The same of the sa	the same of the same of the same of					The second second		-	
1	0.	2*	4".	6.	8.	10 *	12°	14.	16*	18*	20 °	22°	24°
Janvier	375	372	369.	366	363	360	357	354	351	348	344	1 340	336
Février	342	341	339	337-	335	333	331	330	328	327	325	323	321
Mars	375	375	375	374	374	374	374	374	373	373	373	373	373
Avril	363	. 364	366	367	369	370	371	373	374	376	378	379	381
Mai	375	378	381	384	387	390	393	396	399	402	406	410	418
Juin	363	. 366	369	373	377	381	384	383	392	396	400	408	412
Juille:	375	378	381	384	387	391	394	398	402	406	410	413	417
Août	375	377	379	381	383	386	388	390	392	394	397	399	402
Septembre	363	363	364	364	365	365	366	366	367	367	368	368	369
Octobre	375	374	373	372	370	369	368	367	366	364	363	361	360
Novembre	363	361	359	357	354	351	348	345	342	339	336	333	330
Décembre	375	372	369	365	361	357	354	350	346	342	338	334	330
	26°	281	30°	32°	34°	36*	38*	40°	42°	44 °	46 °	48 *	50°
Janvier	332	328	524	320	316	311	306	301	294	287	280	273	266
Février	319	316	313	311	309	307	304	301	298	295	292	288	284
Marc	372	372	372	372	372	371	371	371	370	370	370	369	369
Avril	384	385	387	389	391	393	395	398	401	404	407	410	413
Mai	421	421	A25	429	433	437	441	446	452.	458	465	472	479
Juin	317	417	422	427	432	437	443	449	457	465	473	481	490
Juillet	431	425	429	434	439	444	449	455	462	469	476	484	492
Août	404	407	410	413	416	419	422.	425	429	434	439	444	449
Septembre	369	370	577	371	372	373	373	374	375	376	377.	378	379
Octobre	359	357	355	354	352	350	348	346	344	342	340	337	334
Novembre	327	324	320	316	312	308	304	300	295	290	284	278	272
Décembre	326	322	317	312	307	302	297	291	283	276	269	261	253

LATITUDE SUL

	0.	2"	4.	6"	8°	10 "	12°	14"	16°	18*	20°	22.	24"	26.	28*	30°
Janvier	375	378	381	385	389	392	395	399	403	406	410	413	417	421	425	429
Février	342	343	345	346	348	350	352	354	356	358	360	362	364	366	368	371
Marc	375	375	376	375	377	377	378	378	379	379	379	379	380	. 380	380	380
A 17	363	362	361	359	358	. 357	355	353	352	351	349	348	347	346	342	340
Avril	375	373	371	368	365	362	359	356	353	350	347	344	340	336	333	329
Mai Juin	363	359	355	351	348	345	341	337	334	331	327	323	319	315	312	308
Juillet	375	372	369	366	363	360	357	354	351	347	343	339	335	331	327	322
Août	375	374	372	370	368	366	364	362	360	358	356	354	352	349	346	343
Septembre	363	363	362	362	362	362	361	361	361	360	360	360	359	358	358	357
	375	376	377	378	379	381	381	383	385	387	388	390	392	394	396	398
Octobre	363	365	368	371	374	377	380	383	386	389	392	395	398	401	405	409
Novembre Décembre	375	378	382	386	390	394	397	400	404	408	412	416	421	426	431	436

Sa formule utilise les données de l'évaporomètre piche la température de l'air et celle du point de rosée, ainsi qu'un coefficient lié à l'appareillage et au climat.

Elle a l'avantage de donner l'ETP journalière et de ne demander qu'un appareillage très simple. Elle s'exprime :

ETP =
$$\propto x E_p x \lambda(\theta)$$

= coefficient susceptible de varier dont la valeur moyenne a été fixée à 0,37 à Versailles (France).

E_p = évaporation de piche en cm

$$\theta = \frac{\frac{t + T}{2} + \overline{\theta}r}{2}$$

êr = température du point de rosée (souvent légèrement inférieure ou égale à t).

t = température minimale de la journée

T = température maximale de la journée

en posant $t = \theta r$:

$$ETP = \propto E_p \times \frac{3t + T}{4}$$

Il existe des abaques, des cercles à calcul, et des tableaux pour l'utilisation rapide de la formule de Bouchet.

Sur le tableau 2.3, on a représenté un tableau qui donne la valeur du coefficient correctif K=0,37 F $(\frac{3t+T}{4})$, en fonction de la température minimale (t) et de la température maximale (T). Il suffit de multiplier la valeur obtenue par celle donnée par l'évaporation du piche (en cm) pour avoir l'ETP en mm.

Le tableau 2.3 a montre comment les valeurs exprimées sur le tableau 2.3 ont été obtenues. (Voir page 155).

La formule de Bouchet est utilisée à la B.Rh.L. pour le calcul des besoins en eau à l'échelle parcellaire : on compare l'évapotranspiration réelle maximale des cultures observées dans les cases lysimétriques avec l'ETP calculée par la formule et on en définit ainsi un coefficient cultural (c) propre à chaque culture :

$$c = \frac{ETRM}{ETP} \times 100$$

^{*} au verso

20 20 20 20 20 20 20 20	courses.	Kena		≾0s		_		-		5	Grant 1		6								nder in no			8																		-		
	ar's	टार	EL	oth	89	4 59	ES	1 19	1 85	1 95	1 05	1 15	64	109	57	£p'	11/1	68	35,	554	EES	154	621	LZ	921	124	SZ	1,20	81,1	1113	sťı	PIL	Sil	oti	601	90'	501	ויטיו	500	1 50	00	660		17
Part	45	544	715	699	1 19	1 29	25	/1 09	1 09	1 55	1 cs	1 15	1 97	951	ושם	24,	071	854	1 154	PE	1,32	סביו	924	124	1,25	C5/1	15,1	024	81,1	914	21,8	51,7	zı'ı	ait	80/1	101	ros	104	SO,	r no,	1 00,	_	-	1-1
	924	724	149	699	95	1 09	1 15	/L 65	1 15	i ss	1 25	i os	800	9∀1	144	101	601	00	901	PE	154	σεί	924	1,26	sz1	224	ızı	614	114	914	21,1	1,12	114	or!	90%	901	PO'1	101	ZD4	10	660	9 <i>6</i> t	-	107
Part	5Z i	67,8	OL'	89	59	1 59	1 15	1 95	1 99	1 25	1 15	1 60	1 24	1 541	E41	1¥	ÉE'I	TE	961	EE	LE'L	624	1,27	52,1	124	1,22	os,r	Dit	114	Sit	\$1°1	Stit	1,10	60%	80,1	20,1	\$0°L	EDI	ZO'					1 3 0
Part	SL'I	ZĽ1	694	199	19	\ Z9	1 05	1 25	1 55	t ES	1 15	1 25	1 90	ו'סט	20%	מ'שם	961	964	134	ZE	וישם	821	1,27	SZÍ	pzi	ızı	ו'צם ו	ยเว	911	Sti	EÇt	SI,	01'1	6Q.1	70%	50%	DO,	SC.	10	001	650			100
19 19 19 19 19 19 19 19	124	124	699	994	19	1 19	1 65	1 25	1 55	25	i os	1 95	1 90	1001	11/1	6ET	BE'	55	DE'I	16,	ספיו	9Z'I	921	1,24	1,23	1,21	6tı	Til	314	DIG.	SIL	114	ort	80,1	90%	101	101	zoś	101	660	196	166	560	1 0
1	tLi	olí	891	1991	€9	1 19	1 69	1 99	1 175	i is	1 60	1 70	L SP	EPI	101	661	75,1	SC	EE'I	LE	1,29	121	1,25	124	SZL	ozt	81,1	Lit	514	Pt't	1,12	ort	604			1	Eat	sati	001					00
A Companies	STI	694	291	1 791	29	1 09	1 89	1 55	1 82	1 15	1 87	1 90	ישם ו	1 201	ושם	ac1	961	254	1,32	081	82,1	TS	521	1,23	fSt	1,20	01,1	914	51%	Etil	1,12	014	201	TOr	50%	ויסע	201	tair	can	860	16t	965	560	5,78
9 Review of the control of the contr	17.2	691	994	199	19	1 65	1 25	1 55	25	i os	1 87	1 90	1 00	iri	6E'I	8E1	SE'S	1.54	154	OC'I	924	924	PZ41	224	124	6tı	419	214	119	Sid	114	o ť i	60,1	90'1	100	104	zďı	101	660	860	1.6t	1 9 <i>6</i> b	760	37
1	OLS	89%	59'1	£9/1	19	1 85	1 95	1 15	1 15	1 60	1 17	1 50	1 67	1111	664	LE1	SEL	133	LE9	621	15/1	221	154	224	oz4	BIL	214	514	114	214	014	60'i	108	504	:c1	103	201	001	680	066	160	seb	760	96,5
2 mass deep de la collection de la colle	691	191	P9'	291	09	1 85	1 55	1 65	1 15	1 91	1 90	1 00	ZV4	00%	86,1	961	PE1	261	00	824	1,27	524	EZÍ	151	1,20	81,1	911	SIL	E I's	zı'ı	014	00%	204	so's	ro'ı	zo'ı	101	001	860	Lep	960	seto	v60	98
The property of the property	691	99'1	791	191	65'	LE	1 55	25	20 2	1 97	1 97	יסט ני	1 121	6E1	921	SE'I	PE'L	15,	30	921	1,26	124	221	1Z'L	611	211	SIL	PIL	Sta	111	011	dos	90%	ובע	1:01	201	iai	660	060	260	SEU	1760	660	5'9
9 (20) (20) (20) (20) (20) (20) (20) (20)	81	1,65	c9%	191	85	95	1 75	1 15	1 60	1 74	1 50	1 601	111	661	LEI	SE'	EE'L	154	621	121	152	124	155	DZ'	81,1	111	514	711	115	011	601	ยบใ	901	rdi	EO1	201	001	660	860	160	560	260	Eefa	32
2	191	191	29'1	091	85	55	l ES	1 15	1 00	1 91	1 20	1 201	ו'שם ו	138	951	134	SEL	σε'n	1,28	LZT	sz'ı	1,23	121	ויצם	BIL	914	511	211	211	214	00/1	<i>ب</i> 01	sot	10°L	201	101	00%	860	460	960	seto	760	£60	9'78
200 200	991	791	191	651	15	1 55	1 25	1 05	1 80	1 90	1 20,	1 101	629	86,1	SE1	ÞE1	161	05,1	821	156	1,24	224	121	613	LIL	511	111	1,12	111	014	801	901	ތ'I	201	201	101	660	860	165	560	180	E60	260	78
2 Rough and an all and a service of the service of	591	E91	191	891	951	1 75	1 15	1 60	1 20	1 50	I EA	1 17	661	ZEL	SEL	CEL	153	621	151	521	1,24	1,22	1,20	81,1	Lit	511	114	zı'ı	011	604	804	50%	101	001	201	1,00	66b	860	L60	565	V60	E60	260	33'22
2	P9'L	29%	09%	851	551	53	ils	1 80	1 91	1 00	1 20	1 01/1	863	961	ÞEL	25,1	001	921	TS	SZ1	EZ1	123	oz1	BIL	91'1	รเว	E14	1,12	011	901	101	501	Þ01	1,02	10/1	200	860	L6b	960	560	780	€80	160	33
The color	191	191	651	151	551	254	os	1 87	1 97	1 20	1 10	661	921	561	134	151	130	921	92%	121	224	121	611	211	514	111	211	111	oı'ı	901	90%	⊅0 ⁴ i	104	so'i	101	665	960	2.66	560	100	560	cap	160	35'2
Registration Regi	1,63	151	951	951	751	15	60	1 4	1 57	1 58	1 10	661	1254	132	1,33	161	624	LZS	szí	724	224	021	914	215	514	214	1,12	ai1	601	80%	so:	70 ¹	coi	204	100	66b	860	2.6b	560	760	£60	200	060	35
Company Comp	9	_	1					-		-			_						-	-	-	1	-	-	_														1			1		31,5
2	19'	551	151	ssí	254	051	84	198	100	1 14	1 6E'		_	-	_							_																	rc6	€ <i>C</i> b	ZGD			31
	191	35{	951	pg't	ısı	601	TA	1 50	i Ep								<u></u>								71/1	215											_			L.,				30'2
2 2 2 2 2 2 2 2 2 2	3		_	-	١.,	1	1	-	-	-		-	-		-		-		-	1	-		-												-			_						30
	-	-	-	-			-	1		1	-	-	-	-	-			-	-	-	-	-		-			-	_												_		-		30'82
Part			-	-			1	+	-	-	-	-	+-	-	-	-	-	-	-	-		-	-	-	-	-	-	-			-	-	_	-	-			_						8
A			_							+	+-	 	-	-	-	-		-	-		-	-	-		-	-	-					-			_	_		_			_	-	-	58
	-	-	_	-		-	-	-	-	-	-	-	-	-	_	_	-	_	-	-	81,1		-	_							-		-	-		-								58'2
Sec. Control	-			-		-	-	-	1	-	-	-	-						-		256										_	-												28
2 de participa de la companya de la				671		-	-	-	1 60	-	-	-	-	-		-	-			-	-	-	-	_				-			-	-	-	-		-		-					_	2,75
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			-		-			1	1			_				-	123		-		_	511	1,13	-			-		-		-	-	-	-	-			-		-	-			27
2	551 2	51	-	-	91/1	-	-	+	864		-	+	-		-	-	152	121	611	212	-	-		111	011	901	904	70°t	PO'L	zoʻi	ומיו	-		-	-	-	-		160	-		-		5'97
2		-					-	-	-	+-	EET	-		LZ1	521	-	221	1,20	81,1	211	51%	114	219	ויום	601	60,7	501		-	201	_		-		560	p66	E60	Sep	060		-	T80	986	97
**************************************	ES1 1	12	814	90%	ppl	-	רעם ו	8E1	961	45	1,32	oct	_		SZ1	rz1	121	1,20	841	971	SLI	513	รเร	011	80 _J r	TOI	501	ויטק	201	101	001	860	260	960	560	P60	€6D	rep	060	680	800	TBD	Sep	s'sz
	251 0	51	81/1	901	144	INI	6E1	95,1	sc1	1 961	151	DE	1,28	921	124	122	121	611	111	511	111	1,12	112	ort	1,08	90%	1004	101	201	101	666	160	L60	560	P 60	560	Sep	ıक	060	800	780	960	280	25
2. See with the class does does does does does does does do	-	-	-				-	-	+	-	-	-		-	124	-	-				111	ZĽ	014	60%	80,1			_	201	100	66b 1			_			_				-	-		5'72
3. (a) the first one that the fi	151 8	17/1	971	PPI	1,42	041	86,1	961	45,	132	06,1	921	TZI	521	£Z1	121	021	811	911	sit	EN	1,12	011	1,08	101	1,05	204	201	101	1,000	860 1	L60 5	960	sou	760	තෙ	សេ	ogo	680	900	T80	sob	460	77
2. dots dots dots dots dots dots dots dots	ost a	102 5	914	701	111	664	964	sci	PET	161	ושם	921	924	1/54	221	121	612	212	รเร	111	21,7	114	011	108	901	201	104	zoʻı	101	660	860 1	L6b !	560	1 494	:60	266	166	060	980	Гар	986	seb	P8Ó	23,5
1/2 1/2	81/1 2	1/1	Spil	143	10/1	661	127	564	EE1	16,1	6Z'1	LZI	1752	72'l	1,22	rso	814	111	511	pii	211	014	601	1,08	102	rot	F04	ros	001	660	860 1	60	560	160	66	266	oop.	680	880	780	980	560	p80	23
17	81/1 9	p1 1	DD'L	142	01/3	861	981	PEL	735	001	1,28	L21	szi	rz1	124	150	813	914	514	EIL	211	011	1,09	Tot	sot	104	sol	101	001	860	7ep 2	db 9	seb 1	100	60	106	060	686	choa	4.0fc	Sep	486	200	22,5
10 2 424 data from that the data data data data data data data dat	9	P'1 1	po'i	141	664	961	551	ז'מל	161	00	1,28	1,26	1,24	1,22	121	611	111	514	1114	115	111	011	1,08	901	501	104	201	ល់ខ	6 <i>6</i> b	96b	L66 9	60 I	76b	2 db	රෝ	100	060	000	186	980	cos	P00	690	22
3 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)		1	143	101	661	LE1	SEL	CEL	IE1	621	121	\$21	1,24	325	r'so	811	211	511	111	115	014	60'i	901	501	100	1,03	1,02	001	66b	96b /	160 5	66 1	765	66 2	:65	060	60'0	oot .	1.eto	900	506	p86	фээ	512
3 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)				071	8E'L	961	PET	1,32	סכיו	1,28	121	1,25	EZ'1	121	CZ'i	911	911	112	213	115	011	80,1	Lot	20,1	201	20%	101	301	966	165	96b S	cb t	do 6	:sto	80 0	000	600	99b .	780	sơo	1961	pg6	Свр	12
10°2 (24.5) (24.					138	sc'l	PC'I	15,1	021	821	92%	154	1,22	121	611	111	51'1	b เรี	1,12	114	od	901	901	100	104	20%	ros	660	860	165	s60 0	60 8	60 a	6t) I	60 (366	eap .	LBD 9	906	Sub	ched	E80	des	50'2
3 du		T				se1	653	121	621	LZ'L	rszi	pzi	221	021	914	Lit	sı'ı	111	115	011	601	901	soi	104	£0%	20%	004	665	960 A	160 5	60 p	ot E	et la	66 0	60	506	egt)	Leb s	980	cue	790	ces i	280	50
3 dt dvs							1,32	DE1	821	121	521	EZ'I	121	1,20	811	911	sii	e11	211	011	108	TOJ	sot	701	ros	101	001	060	1.65 9	960 9	GO P	65 E	:60 I	රෙ 0	60	68Ú	080	Leb s	586	1984	рво	cob	co	9'6L
10. 27 (24) 27	Т	Т						מפו	1,28	921	rst	122	121	611	LII	811	P11	1,12	111	011	1,08	901	201	po1																		1	гар	61
10 2 424 121 12 12 12 12 12 12 12 12 12 12 12 12										$\overline{}$				-	\neg			$\overline{}$				\rightarrow	-	\rightarrow	\rightarrow	-	-	-	-		_	-	_	-	-	-+	-	-	\rightarrow	\rightarrow	-	-	\rightarrow	18'2
10 2 1/12 1/12 1/12 1/12 1/12 1/12 1/12	T	\top								-	+-	-	-	-	_	_		_		_	_	_	_	_							- }			- 1		- 1	L							18
10.5 Are dry three first one											-	-	-	-		-	-	_		_			_				_												- 1			. 1	- 1	5'LL
10: 2. 17. 2. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17		1										_	-	_	\rightarrow		_	_	_	_			_			_ {										- 1		1	_ 1		_		8_	
10.5 77.5 97.7 97.7 97.7 97.7 97.7 97.7 97		1	1	\exists															- 1						1		- 4					1	- 6		- 1	- 1		,	- 1	coti	180 (300		B,81
20's 40's 40's 40's 40's 40's 40's 40's 4	1	1											-	-	_	_		-	_		_	_			_						1_	- 1		- 1										
10 c) 1/12 c)	1	+	1	1										-	-	-	-	-	- 1	-	-	-	-	-	_	-	-	_	_	-	-	_	<u> </u>		_	_	-	-		-		_	-	-
10.5 (27.6 47.7 (27.6 47.7 (27.6 47.7 (27.6 47.7 (27.6 47.6 47.6 47.6 47.6 47.6 47.6 47.6 4	1	1	1	7			П							-	-	_	-	-	-	-	-	-	-	\rightarrow	-	-			-		-	-	+	-	-	-	+	-	-	-	-+	-	_	
10 1,774 qray qray qray qray qray qray qray qray	+	+	+	1	-		\exists					Н	-	-	-																													
10 1/12 dyn	+	+	+							-			-	-	-	-																												
10.5 (27) 47 (-	+	ə.	10	귀	5	Ш	w	uə	VI	X	K	=	7		-	+	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	\rightarrow	\rightarrow	\rightarrow	_	\rightarrow	_
10 1/12 and	+	+	+	- 1	-	*	-	,		-3	-	/1	\vdash	7	~	-	+	-	-	7		\neg	_		_	$\overline{}$	_	\neg				_	$\overline{}$	\rightarrow	\rightarrow	-	_	$\overline{}$		-	-			_
10.5 (277 (276 (279 (270 (270 (270 (270 (270 (270 (270 (270	-	+	+	+	-	(1	+	15	7	Н	15	'n	=	N	+	+	+	\dashv	+	100	203	\neg	\rightarrow	-			-	-	\neg				$\overline{}$	_	-	_	-	-	-	-	-	-	-	
10 1/3 dy	Xnv	730	NOE		ងខ	A T	NO	NO		M.N	0	. 18	- 1	NO	SNE	0 3	DV	-	+	-	201																							
10 1,75 and 177 type and 187 ty	-	01.	HOL	In b		비	408	얼성)E	30	IA 7	A :	KEE	nsi	W	7.00	, 1	+	+	-10		-		_	_	_		_	_		_	_					_					_	
888 1 19jVnol 2 cep sep 1ep 0ep 0ep 1ep 1ep 1ep 1ep 1ep 1ep 1ep 1ep 1ep 1	-	7.														110	+1	ᅿ	-	-	1		_	_	_	-		_	_	\rightarrow	_	_	\rightarrow	\rightarrow	-	$\overline{}$		_	-	\rightarrow		-		
89gt hajvnot real ray from the latest and real ray from the latest and ray from the present and	+	+	+	1	3 [기	IU	-	_=	U	_=	11	IM	ah	긔	+	1	+	1	+	-	1	1.	_		_	-		_	\rightarrow	\rightarrow	-	-	_	-	_		-	-	-	-	_		-
	+	+	+	+	-	-	-	00	-	1731		-	-	-	-	_	_	4	4	1	1	1	4	5																				_
ES 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-	+			4	_	1	PRINTER	-	_		_										9-87011								NO 1	को अ	1 SE	וז ט	13 C	S C	I Li	ם כם	50 6.	40 9	In II.	שעט	0 57	T. (11
	55	2 2	Z	12	5.	302	50	19,5	61	2,81	81	S 'ZI	41	91	SL	'SL	SLIS	74	71	EL	ELIS	121	21/9	ill	1/9	OL (OL S	6	6 5	8 8	3 9	4/	9	0	S	9 0	1 5	7 .	7 5	2 3	9	2 7	13	1
	-	_		1		- 1												W776.	-	MOUL E	THE R.	MC ME	-	-0.	E TOUR	1010m	-			E MENTAL C	-	-	n ve		Ĺ	1000			7			1	L	_

On remarque que ce coefficient varie en fonction des diverses espèces végétales et de leur stade végétatif.

2.4 = FORMULE DE THORNTHWAITE

La formule de Thornthwaite, botaniste et climatologue américain, est plus complexe que celle de Blaney et Criddle. Elle fait intervenir la température et la durée du jour.

Nous avons utilisé cette méthode pour calculer l'évapotranspiration moyenne quotidienne et mensuelle et établir un bilan hydrologique dans le secteur considéré (voir troisième partie, 3). Il existe des tableaux qui facilitent l'emploi de la formule.

3 - DETERMINATION DES BESOINS EN EAU DES CULTURES - BESOINS DE POINTE

3-1 - PLAN d'ORIENTATION AGRICOLE

La région étudiée, viticole en quasi totalité fait partie d'une zone de V.D.Q.S. (V.D.Q.S.du Minervois et des Corbières).

Le tableau 3.1 montre bien la place qu'occupe la vigne parmi d'autres cultures dans la zone agricole de chaque commune (source du tableau : renseignements recueillis par nous-mêmes auprès des mairies).

Etant donné que l'irrigation offrira des possibilités nouvelles à l'agriculture de cette région de monoculture, nous pensons qu'on pourra éventuellement retenir un programme agricole prévisionnel qui sera le suivant :

Vigne irriguée

50 %

Vigne non irriguée

15 %

Autres cultures irriguées 25 % (arboriculture, culture maraichère de plein champs et culture fourragère)

Autres cultures non irriguées

10 %

^{*} page 154

Tableau 2.3.a

TABLEAU DE CALCUL DU COEFFICIENT DE CORRECTION (1 + \(\lambda\) (0)) DE L'EVAPORATION SOUS ABRI "BORDEAUX"

TEMPERATURE (6) en °C	0.	0°,5	10	10,5	20	2°,5	30	3°,5	40	4°,5
Coefficient 1 + 入 (8)	1,81	1,84	1,87	1,89	1,92	1,95	1,98	2,01	2,04	2,07
Température 8	5,0	5,5	6,0	6,5	7,0	7,5	8,0	8,5	9,0	9,5
Coefficient 1 + λ(8)	2,11	2,14	2,17	2,21	2,25	2,28	2,32	2,36	2,40	2,44
Température θ	10,0	10,5	11,0	11,5	12,0	12,5	13,0	13,5	14,0	14,5
Coefficient 1 + λ (8)	2,49	2,53	2,57	2,62	2,66	2,71	2,76	2,81	2,86	2,92
l'empérature 8	15,0	15,5	16,0	16,5	17,0	17,5	18,0	18,5	19,0	19,5
Coefficient 1 + λ (B)	2,97	3,03	3,08	3,14	3,20	3,26	3,32	3,39	3,45	3,52
Température 8	20,0	20,5	21 , D	21,5	22,0	22,5	23,0	23,5	24,0	24,5
Coefficient 1 + λ (8)	3,59	3,66	3,73	3,80	3,88	3,96	4,03	4,11	4,20	4,28
empérature 8	25,0	25,5	26,0	26,5	27,0	27,5	28,0	28,5	29,0	29,5
oefficient 1 + \(\lambda\) (8)	4,36	4,45	4,54	4,63	4,72	4,82	4,92	5,01	5,11	5,22
	-		and the same of th							

EXEMPLE: Température minima: 10

Température maxima : 20

Piche : 3,5 cm

$$8 = \frac{3 + T}{4} = \frac{30 + 20}{4} = 12,5$$

ETP BOUCHET = $2,71 \times 3,5 \times 0,37$

Plan cultural

Vigne	50 % de SAU	= i 815 ha
Arboriculture	16,5 % de SAU	= 600 ha
Culture maraichère	4,5 % de SAU	= 160 ha
Culture fourragère	4 % de SAU	= 150 ha
Cultures irriguées	75 % de SAU	= 2 722 ha
Cultures non irríguées	25 % de SAU	= 908 ha
SAU	89 % de Sd	= 3 630 ha
Surface non agricole	12 % de Sd	= 506 ha
Sd	100 %	= 41 360 ha

Sd = Surface dominée

SAU = Superficie Agricole Utile

3-2 - BESOIN MENSUEL DE POINTE

3-2-1 - Emploi de la méthode de Blaney et Criddle

Le besoin mensuel de pointe qui, suivant le programme cultural, se situe en Juin et Juillet, est exprimé par la formule :

$$Bm = 0,254 \text{ K } (1,8 \text{ t} + 32) \text{ p} - P$$

Les éléments climatologiques observés à Olonzac, pour une période de 42 ans sont les suivants :

t = température moyenne de Juillet : 22,93

p = % de durées d'éclairement de Juillet : 10,49

P = pluviométrie utile de Juillet : 16 mm

En tenant compte du coefficient K propre à chaque type de culture, la lecture de l'abaque (voir 2.1) donne les résultats suivants :

Culture	K	ET mm
Arboriculture	0,6	118
Culture maraichère	0,7	138
Culture fourragère	0,8	153

Tableau 3.1:

Répartition des cultures dans le Secteur étudié (Extrait sommaire des états cadastraux) en hectares

Commune	Terres	Vignes	Vergers	Bois (résineux)	Landes	Jardins	Terre d'agrément	"Sols"; divers (a)	Total communal	Fraction hors secteur
St Couat d'Aude	17	424	-	4	36	5	2	14	502	-
Roquecourbe Minervois	58	197	-	4	77	1	1	3	341	-
Castelnau d'Aude	141	446	pres	44	69	6	-	7	713	-
Tounouzélle	161	712	42 (b)	115	297	7	2	32	1 368	
Escales	167	587	-	31	190	6		10	991	-
Montbrun les Corbières	61	632	-	8	314	2	1	6	1 024	•
Moux	171	585	-	126	660	3	1	32	1 578(c)	1 274
Cornilhac Corbière	201	624	5	U*9	318	2	2	31	1 183(c)	675
Léztgnan- Corbière	•	2 025	-	441	*	•	•	1 184*	3 620(e)	2 048
Totaux	277	6 227	47	744	1 961	33	9	1 319	11 370(e)	3 997

⁽a) divers : par exemple : Chemin de fer, 7 ha sur St Couat ; Stada 3 ha sur Moux ; canaux : 5 ha sur Tounouzelle ...

⁽b) pêchers 3 ha ; Pommiers 39 ha

⁽c) surface totale de la commune (elle déborde le secteur étudié)

La détermination du facteur correctif de Criddle à appliquer à ces résultats sera faite à partir des doses pratiques maxima (D.P.M.) ci-dessous :

	Profondeur utile	Dose pratique maxima		
Arboriculture	1,20 m	100 mm		
Culture maraichère	0,70 m	60 mm		
Culture fourragère	1,00 m	80 mm		

Le besoin de pointe en tenant compte du facteur correctif et de la pluie utile sera le suivant :

Culture	D.P.M.	Facteur correctif	E.T.M.	Besoin de poi	nte corrigé(mm) Jour
Anhaniaultum	100		1/2		
Arboriculture	100	1,2	142	126	4,16
Culture maraichère	60	1,35	186	170	5,48
Culture fourragère	80	1,23	188	172	5,54

Compte tenu de l'efficience à la parcelle (90 %), les apports maximals mensuels nécessaires seront : 190 mm pour les cultures fourragères, 180 mm pour les cultures maraichères et 140 mm pour l'arboriculture.

La méthode de Blaney et Criddle ne peut pas être appliquée dans le cas de la vigne. D'après les essais d'irrigation de cette plante effectués depuis 1968 à "Luc sur Orbieu" on peut provisoirement admettre un besoin de 95 mm pour le mois de Juillet.

En tenant compte de la pluie utile, et de l'efficience à la parcelle l'apport maximum de Juillet pour la vigne sera : 110 mm

3-2-2 - Emploi de la formule de Turc

Les données météorologiques d'Olonzac ne sont pas suffisantes pour appliquer la formule de Turc. On peut se référer aux études fréquentielles des besoins en eau effectuées par la section technique centrale de l'aménagement des eaux du Ministère de l'Agriculture (voir 2.2).

La station la plus proche d'Olonzac où la formule de Turc peut être appliquée est celle de Narbonne. On note les besoins fréquentiels de pointe suivants :

en fréquence biennale 151 mm en fréquence quinquennale 172 mm en fréquence décennale 179 mm

3-2-3 - Emploi de la formule de Bouchet

L'application de la formule de Bouchet aux relevés météorologiques des 3 dernières années à Cruscades, donne pour le mois de Juillet les valeurs suivantes (sommes des ETP journalières)

	E.T.P.	Pinia	Besoins mm
1968	146	¥ 2.	134
1969	155	12	143
1970	169	0	169
moyenne	157	8	150

3-2-4 - Emploi de la formule de Thornthwaite

A partir des relevés moyens de la station méréorologique d'Olonzac, et en appliquant la formule de Thornthwaite (voir troisième partie, chapitre premier, 3) le calcul de l'ETP de Juillet donne une valeur de 140 mm.

3-2-5 - Débit fictif continu pondéré moyen de pointe de l'équipement du Réseau

3-2-5-1 par la formule de Blaney et Criddle

En tenant compte du plan cultural et du besoin de pointe corrigé (3-2-1), on peut calculer le besoin pondéré en mm/mois de chaque culture :

Arbericulture 126 x
$$\frac{16.5}{75}$$
 = 27.8 mm
Culture maraichère 170 x $\frac{4.5}{75}$ = 10.3 mm
Culture fourragère 172 x $\frac{4}{75}$ = 9.15 mm
Vigne 95 x $\frac{50}{75}$ = 60 mm

Soit un besoin pondéré en mm, ha de 107 mm. Le besoin correspondant par hectare de SAU est de ;

$$107 \times \frac{2722}{3630} \# 80 \text{ mm}$$

Compte tenu de l'efficience du réseau (95 %) et de l'aspersion (90 %), le débit fictif continu en tête du réseau, pour une irrigation de 20 h/24 sera :

$$\frac{80 \times 10\ 000}{0.9 \times 0.95 \times 31 \times 20 \times 3\ 600}$$
 # 0,41 1/s/ha

3-2-5-2 par la formule de Bouchet

En se basant sur l'ETP moyenne de Bouchet des années de 1968, 1969, 1970 (150 mm), on peut calculer le débit fictif de la manière suivante :

- Arboriculture

Elle intéresse les 16,5/75 de la surface irriguée. Or, ses besoins au cours du mois de Juillet sont calculés dans tout le Midi à 60 % de 1'ETP, soit dans notre cas à :

la part de consommation de l'arboriculture fruitière est de :

$$90 \times \frac{16.5}{75} \# 20 \text{ mm}$$

- Culture maraichère

Ces cultures (Asperges, tomates, artichauts), intéressent 4,5/75 de la surface irriguée.

Leur consommation au mois de Juillet n'est pas très forte. On admettra cependant un coefficient de 100 % de 1'ETP de Bouchet, soit 150mm en Juillet.

La part de consommation de ce groupe de culture sera donc de :

$$150 \times \frac{4.5}{75} = 9 \text{ mm}$$

- Culture fourragère

Nous admettrons une consommation de 100 % de 1'ETP de Bouchet.

La part de ces cultures étant 4/75, nous aurons une consommation de :

150 x
$$\frac{4}{75}$$
 # 8 mm

- Vigne

La part de sa consommation comme nous l'avons déjà calculée est de 60 mm.

Soit un besoin pondéré en mm/ha de 97 mm, le besoin correspondant par hectare SAU est de :

$$97 \times \frac{2722}{3630} \# 73 \text{ mm}$$

Compte tenu des considérations précédentes (3-2-5-1), on aura un débit fictif pondéré de $0.38\ 1/s/ha$.

3-2-5-3 par la formule de Turc

En fréquence quiquennale le besoin de pointe est de 172 mm. La consommation de la vigne étant admise égale à 95 mm, les besoins pondérés pour chaque type de culture seront :

Arboriculture	38	mm	pour	16,	5/75	
Culture maraichère	10	mm	pour	4,5	/75	
Culture fourragère	9	mm	pour	4	/75	
Vigne	60	mm	pour	50	/75	
		-				
	117			75	175	

Le besoin correspondant par hectare SAU est de :

$$117 \times \frac{2722}{3630} \# 87 \text{ mm}$$

et le débit fictif pondéré à l'hectate irrigué de :

3-2-5-4 par la formule de Thornthwaite

L'ETP de pointe calculée par la méthode de Thornthwaite est de 142 mm (à partir des données de 42 ans).

Avec des raisonnements analogues à ceux employés ci-dessus on peut calculer le débit fictif pondéré :

Arboriculture	29	mm
Culture maraich	nère 8	mm
Culture fourrag	ère 7	mm
Vigne	60	mm_
	104	

Le besoin par hectare SAU est de 78 mm et le débit fictif moyen pondéré est de : 0,41 1/s/ha

Le tableau ci-dessous résume le calcul du débit fictif moyen pondéré de l'équipement du réseau (q) par ces diverses méthodes :

	Blaney et Criddle	Bouchet	Turc	Thornthwaite
q 1/s/ha/20h/24	0,41	0,38	0,45	0,4

3-2-5 - Débit fictif continu à la borne pour la culture la plus exigeante

- Méthode de Blaney et Criddle

- Méthode de Bouchet

- Méthode de Turc

$$\frac{172 \times 10\ 000}{0,9 \times 31 \times 20 \times 3600}$$
 # 0,86 1/s/ha 20h/24

- Méthode de Thornthwaite

$$\frac{140 \times 10\ 000}{0.9 \times 31 \times 20 \times 3600}$$
 # 0,7 1/s/ha 20h/24

3-3 - BESOINS ANNUELS

3-3-1 - Par la formule de Blaney et Criddle

Les données de base sont les suivantes :

- t = température moyenne observée sur 18 années à la station météorologique d'Olonzac
- p = pourcentage d'éclairement
- ET = évapotranspiration déterminée par abaque (voir 3-2-1) après application du coefficient cultural K
- P = pluviométrie moyenne utile

Les résultats des calculs mois par mois sont donnés pour chaque culture dans le tableau suivant :

			Avri1	Mai	Juin	Juillet	Aout	Sept.	
	1.1.1	t	12,79	16,57	19,64	22,93	22,35	19,61	
	4 11 14 14 15 15	p %	9,05	10,26	10,38	10,49	9,70	8,41	
,	Arbo	riculture K=0,6		97	110	118	110	87	
ET c	cult	ure maraichère K=0,7		118	127	138	127	100	
	cult	ure fourragère K=0,8	102	130	142	153	142	118	
p1	viom	étrie utile mm	34	28	15	16	25	52	TOTAUX
1,121	in to the	Arboriculture		69	95	102	85	35	386
Beso mm	soins	Culture maraichère		90	112	122	102	48	474
		Culture fourragère	68	102	127	137	117	66	617
-									

Compte tenu du plan cultural, les besoins annuels pondérés correspondant au cycle végétatif sont les suivants : (besoin annuel de vigne est de 150 mm correspondant au mois de Juin et au mois de Juillet).

Culture et pourcentage de la surface irriguée	Besoin annuel mm	Besoin annuel pondéré mm		
Arboriculture 16,5/75	386	85		
Culture maraichère 4,5/75	474	28		
Culture fourragère 4/75	617	33		
Vigne 50/75	150	100		

Soit un besoin annuel pondéré d'environ 250 mm par hectare pour la totalité des surfaces irriguées.

3-3-2 - Par la formule de Bouchet

Les résultats des calculs des années 1969 et 1970 effectués à partir des relevés du poste météorologique de Cruscades se résument dans le tableau suivant : (ETP moyenne mensuelle - coefficient cultural moyen des différents stades végétatifs).

	Avril	Mai	Juin	Juillet	Aout	Sept.	TOTAUX
Arboriculture 60 % ETP		73	80	97	73	43	366
Culture maraichère		60%ETP 73	70%ETP 94	100 % ETP 162 122		70%ETP 94	505
Culture fourragère 100 % ETP	115	122	134	162	122	72	736
Vigne			55	95			150

Soit tous calculs faits, les besoins pondérés annuels sont !

Arboriculture 80
Culture maraichère 30
Culture fourragère 39
Vigne 100

Soit un besoin annuel de 250 mm par hectare pour l'ensemble de la superficie irriguée.

3-3-3 - Par la formule de Thornthwaite

Le calcul de l'ETP quotidienne et mensuelle a été effectué à partir des données moyennes de 42 ans (Station d'Olonzac)

	Avril	Mai	Juin	Juillet	Août	Septembre
ETP journalière mm	1,68	3	3,58	4,6	4,08	2,9
ETP mensuelle mm	50	90	108	142	122	87
ETP pluie utile mm	16	62	93	126	97	35

Compte tenu du plan d'orientation agricole les besoins annuels pondérés seront :

Arboriculture	90 mm
Culture maraichère	25 mm
Culture fourragère	23 mm
Vigne	100 mm

Soit un besoin annuel pondéré de 240 mm par hectare pour l'ensemble de la superficie irriguée.

3-3-4 - Par la formule de Turc

L'étude fréquentielle des besoins en eau pour le poste météorologique de Narbonne a donné les résultats suivants :

Besoins	Fréquence	Réserve facilement utilisable				
en mm		50 mm	100 mm			
Mai	Biennale	64	21			
200	Quinquennale	112	77			
Juin	Biennale	130	128			
	Quinquennale	144	144			
Juillet	Biennale	148	148			
	Quinquennale	172	172			
Août	Biennale	111	111			
	Quinquennale	132	132			
Septembre	Biennale	68	68			
* - *	Quinquennale	89	89			

On remarque que les besoins en eau sont presque égaux pour les R.F.U. de 50~mm et de 100~mm.

On retiendra les besoins de fréquence quinquennale correspondant à R.F.U. = 100 mm.

Après l'application du plan cultural envisagé, le besoin annuel pondéré pour le cycle végétatif ci-dessus, sera de l'ordre de 300 mm par hectare pour l'ensemble de la surface irriguée.

3-3-4-1 Besoin annuel en tête du réseau

Compte tenu des résultats donnés par ces différentes méthodes nous adopterons pour les besoins annuels pondérés ramenés à l'hectare irrigué, la valeur de 250 mm.

En considérant l'efficience à la parcelle (90 %) et le rendament du réseau (95 %), on aura :

$$\frac{2500}{0.9 \times 0.95}$$
 # 3 000 m³/ha de surface irriguée

La superficie irriguée étant de 2 722 ha, le besoin annuel sera de :

8 166 000 m³.

chapitre deux

Calculs théoriques des réseaux d'irrigation

1 - SITUATION DU SECTEUR ETUDIE ET LIMITES DE SA ZONE IRRIGABLE

Ce secteur est compris dans l'aménagement d'ensemble de la vallée de l'Aude. Le schéma d'ossature de cet aménagement envisage de desservir cet ensemble à partir de plusieurs stations de pompages implantées en bordure de l'Aude. Ce fleuve qui traverse d'un bout à l'autre ce périmètre, sera utilisé comme vecteur de transport, son débit d'éciage étant régularisé par des réserves à créer dans la haute vallée.

Le secteur qui nous concerne sera alimenté par l'une de ces stations de pompage.

Les limites de la zone irrigable ont été fixées par notre étude pédologique (cf. pièce "schéma hydraulique").

Rappelons que cette zone a :

- une superficie dominée
- = 4 136 ha
- une superficie agricole utile
- = 3 630 ha
- une altitude variant entre 30 et 130 m N.G.F. environ

2 - SCHEMA GENERAL

La station de pompage desservant ce secteur sera située en bordure de l'Aude, au lieu-dit "le Rosaire" à l'Est de Laredorte. La cote du plan d'eau moyenne dans le fleuve est de 36 m N.G.F. Elle prélèvera dans l'Aude les débits nécessaires qui seront refoulés dans un réservoir surélevé situé sur la colline de Tourouzelle, au Nord-Ouest du Mas St François à la cote N.G.F. 132 m.

Le réseau d'irrigation constitué par des conduites enterrées se développera à partir de ce réservoir. Il constitue un seul secteur.

3 - BESOINS EN EAU ET DEBIT DU MOIS LE PLUS CHARGE

Rappelons que le besoin annuel pondéré à l'hectare a été choisi égal à 250 mm, soit 8 166 000 m³ pour l'ensemble de la superficie irriguée et que le débit fictif continu pondéré de pointe par hectare irrigué a été fixé à 0,41 1/s/ha.

4 - CALCULS THEORIQUES DES RESEAUX

4-1 - CARACTERISTIQUE DU RESEAU

- La hauteur optimum du réservoir est déterminée pour assurer une pression minimale de 4 bars à 1 amont de chaque borne.
- Le tracé des conduites de distribution depuis le réservoir jusqu'aux bornes d'irrigation a été effectué en tenant compte des obstacles naturels et artificiels de manière à réduire la longueur des canalisations.
- Une borne dessert en moyenne une superficie agricole utile de 10 ha pour des raisons techniques. La superficie équipée correspond à la superficie agricole utile, le découpage parcellaire a donné, suivant le schéma hydraulique, un total de 381 bornes.
 - Chaque borne aura 4 prises pouvant débiter globalement 12 1/s.

4-2 - CALCUL DU DEBIT DANS LES CONDUITES

Une fois les bornes implantées, le "ramassage" de celles-ci permet de fixer le tracé des conduites.

A partir du module que peut délivrer chaque borne d'irrigation et de la surface desservie par chacune d'elle nous avons calculé les débits du réseau en appliquant la formule de M. Clément.

La formule de CLEMENT s'exprime :

$$x = m \left(1 + U \sqrt{\frac{1}{m} \frac{1}{n}} \right)$$

avec

X = le nombre maximal probable de prises en fonctionnement simultané

m = le nombre moyen de prises en fonctionnement simultané

soit:
$$m = \frac{q S}{r \cdot d}$$

q = débit fictif continu pondéré

S = superficie équipée (S.A.U.)

r = coefficient d'utilisation du réseau

d = débit de la prise

U = paramètre dépendant de la qualité de fonctionnement du réseau
Il est donné par le tableau ci-après.

Q	-	dm	(1	+		-	1)	
Q		0,50	11 :	S +	2,16	S			

q	10	0,41	1/s/ha	irrigué
d		31/8		
n	=	2,5		
		0,83		
u	=	2,234		
Ħ	=	0, 167	5	

S ha (1)	0,5e1 × S (2)	√ S (3)	2,16 ×√S (4)	(2) + (3)
25	12,525	5	10,80	23,325
36	18,036	6	12,96	30,996
49	24,549	7	15,12	39,669
64	32,064	8	17,28	49,344
81	40,581	9	19,44	60,021
100	50,1	10	21,6	71,7
121	60,621	11	23,76	84,381
144	72,144	12	25,92	98,064
169	85,569	13	28,08	113,649
196	98,196	14	30, 24	128,436
225	112,725	15	32, 40	145,125
256	128,256	16	34, 56	162,816
289	144,789	17	36,72	181,509
324	162,324	18	38,88	201,204
361	180,861	19	41,04	221,901
400	200,4	20	43,6	244,0
441	220,941	21	45,36	266,301
484	242,484	22	47,52	290,164
529	265,029	23	49,68	314,709
576	288,576	24	51,84	340,416
625	313,125	25	54	367,125
676	338,125	26	56,16	394,836
729	365,229	27	58,32	423,549
784	392,784	28	60,48	453,264
841	421,341	29	62,64	483,981
900	450,9	30	64,8	515,7
961	481,461	31	66,96	548,421
1024	513,024	32	69,12	582,144
1089	545,589	33	71,28	616,869
1156	579,156	34	73,44	652,596
1225	613,725	35	75,6	689,325
1296	649,296	36	77,76	727,056
1369	685,869	37	79,92	765,789
1444	723,444	38	82,08	805,524
1521	761,721	39	86,24	847,961
1600	801,6	40	86,00	887,6
1681	842,181	41	88,56	930,741
1764	883,764	42	90,72	974,484
1849	926,349	43	92,88	1 019,329
1936	969,936	44	95,04	1 064,976
2025	1 014,525	45	97,20	1 111,725
2116	1 060,116	46	98,96	1 159,076

п	= 0,167 \$			
S ha (1)	0,501 × S (2)	(3)	2,16 × √S (4)	(2) + (3)
2209 2304 2401	1 106,709 1 159,304 1 202,901	47 48 49	101,52 103,68 105,84	1 208,229 1 257,984 1 308,741
2500 2601 2704	1 252,5 1 303,101 1 354,704	50 51 52	108,0 110,16 112,32	1 360,5 1 413,261 1 467,024
2809 2916 3025	1 407,309 1 460,916 1 515,525	53 54 55	114,48 116,64 118,80	1 521,789 1 577,556 1 634,325
3136 3249 3364	1 571,136 1 627,749 1 685,364	56 57 58	120,96 123,12 125,28	1 692,096 1 750,869 1 811,644
3481 3600 3 721 3 844	1 743,981 1 803,6 1 864,221 1 925,844	59 60 61 62	127,44 129,6 131,76 133,92	1 870,721 1 933,2 1 995,981 2 059,764
			ga 11	

Qualité de fonctionnement, c'est-à-dire la probabilité de fonctionnement normal de la canalisation en %	υ
70	0, 525
80	0,842
90	1,282
95	1,645
99	2,324
99,9	3,09

Le débit en tête de chaque tronçon qui dessert un nombre de prises supérieur à 10 est donné par la formule :

$$O(1/s) = dX$$

Les valeurs numériques adoptées sont les suivantes :

$$q = 0,41 1/s$$

$$d = 3 1/s$$

$$r = 20h/24 = 0.83$$

U = 2,324 (pour une qualité de fonctionnement de 99 %)

 $N = \frac{S}{2.5}$ (quatre prises pour chaque 10ha de SAU)

$$m = \frac{0.41 \times S}{0.833 \times 3} = 0.167 \text{ S} \qquad \text{d 'où}$$

$$Q = dm(1 + U) \sqrt{\frac{I}{m} - \frac{I}{n}} = 3 \times 0.167 \text{ S} (1 + 2.324) \sqrt{\frac{1}{0.167S} - \frac{2.5}{S}}$$

On aura en définitive la relation :

$$Q = 0,501 S + 2,16 \sqrt{S}$$

qui permet de tracer la courbe de Q = f(S) en prenant 0 > S > 3630 ha (les calculs sont présentés dans le tableau ci-contre).

A l'aide de cette courbe (ci-jointe), nous avons calculé pour chaque tronçon de conduites le débit nécessaire pour irriguer la superficie (SAU) qu'il dessert.

Ces résultats devront être affectés d'un coefficient minorant fonction du rapport entre la superficie effectivement irriguée et la superficie équipée (SAU) soit ∞ ce coefficient.

La valeur de « est fournie par une courbe en fonction de la superficie agricole utile (SAU). Elle décroit à mesure que la SAU augmente.

On admet que pour une valeur de la SAU inférieure à Sml, le coefficient « reste égal à l, la superficie irriguée est alors égale à la superficie agricole utile.

Pour une valeur de la superficie agricole utile supérieure à Sm2, on admet que le coefficient reste constant et est égal à ∞. Entre Sm1 et Sm2, ∞ varie linéairement. La valeur de Sm1 et Sm2 est donnée par le programme cultural.

Compte tenu des cultures actuellement en place et du programme cultural à long terme Sml et Sm2 sont égales respectivement à 50 et 250 ha.

SAU ha	€. 50	60	70	80	90	100	110	120	130	140	150	160	170
∞	1	0,98	0,97	0,96	0,95	0,93	0,92	0,91	0,9	0,89	0,87	0,86	0,85
	18	30	90	200	210	220	2.3	30	240	≥250)		
SAU ha													

Le cableau suivant donne les valeurs de ∞ :

Sur la carte "schéma hydraulique" ont été portés les débits de pointes ainsi calculés pour les conduites d'ossatures.

D'après les calculs le débit de pointe en tête du réseau est de 1 530 1/s soit un débit de 5 508 m^3/h .

4-3 - CALCUL OPTIMISE DU RESEAU DE CONDUITESALIMENTE PAR LA STATION DE POMPAGE

Le calcul optimisé du réseau consiste à déterminer la hauteur de refoulement donnant lieu à une dépense totale minimale. Il fait întervenir les taux d'entretien et de renouvellement des ouvrages dont les valeurs usuelles sont les suivantes :

- Pour le réseau

Le coût du réseau se décompose : 60 % pour les canalisations et 40 % pour l'appareillage. Sa durée de vie est de 50 ans en moyenne.

On peut négliger le taux de renouvellement des canalisations, et se baser sur le taux de l % pour les frais d'entretien (barème du 18.8.67 du Ministère de l'Agriculture).

Le taux d'entretien et de renouvellement de l'appareillage du réseau est de 4 % environ.

On aura donc un taux d'entretien et de renouvellement pondéré de 2,2 %.

- Pour l'équipement électromécanique

Le taux d'entretien et de renouvellement est de 12 %.

- Pour le réservoir

Le taux d'entretien est de 1 %

- Pour les conduites de refoulement

Le taux d'entretien d'après le barème ministériel est de 1 %.

Le calcul d'optimisation paut s'effectuer selon deux méthodes :

- . par comparaison des charges annuelles
- . par comparaison des valeurs capitalisées des dépenses.

4-3-1 - Par comparaison des charges annuelles

Nous exposons le cas général des calculs d'optimisation en désignant par :

A = coût du réseau

tc = taux d'entretien et de re-

nouvellement

B = coût de l'équipement électromécanique te = taux d'entretien et de re-

= taux d'entretien et de renouvellement

R = coût du réservoir surélevé

tr = taux d'entretien

CR = coût de la conduite de refoulement

tcr= taux d'entretien

E = dépense annuelle de l'énergie

On notera que :

La courbe représentant le coût du réseau en fonction de la hauteur de refoulement est de forme hyperbolique (elle est appelée courbe caractéristique).

Les courbes représentant B, R, CR et E en fonction de la hauteur de refoulement sont pratiquement linéaires.

4-3-1-1 Charges annuelles du réseau

La somme à verser annuellement pour rembourser le coût du réseau (pour une durée de vie de 50 ans) est égale à 0,10086 A(°) (pour un loyer annuel de 1'argent de 10 %)

(°) table pour le calcul des intérêts composés (PA V

(PA VIOLEINE)

La charge annuelle en tenant compte du taux d'entretien du réseau sera :

$$A (0.10086 + tc)$$

4-3-1-2 Charge annuelle de l'équipement électromécanique

La somme à verser annuellement pour rembourser le coût de l'équipement électromécanique (pour une durée d'amortissement moyenne du matériel de 25 ans) est égale à 0,110178

La charge annuelle en tenant compte du taux d'entretien et de renouvellement sera :

4-3-1-3 Charge annuelle du réservoir surélevé

La somme à verser annuellement pour rembourser le coût du réservoir surélevé (pour une durée de vie de 50 ans) est égale à 0.10086 R.

La charge annuelle en tenant compte du taux d'entretien sera :

4-3-1-4 Charge annuelle de la conduite de refoulement

Pour une durée de vie de 50 ans, et en tenant compte du taux d'entretien, la charge annuelle sera :

$$CR(0,10086 + tcr)$$

4-3-1-5 Charge annuelle de l'énergie

Soit E la dépense annuelle consécutive à la consommation d'énergie. On la suppose constante par hypothèse.

4-3-1-6 Charge annuelle totale

Elle sera égale à :

cha = A(0,10086 + 0,022) + B(0,11017 + 0,12) + R(0,10086 + 0,01) + CR(0,10086 + 0,01) + E

cha = 0, 12286 A + 0,23017 B + 0,11086 R + 0,11086 CR + E

$$\frac{\text{cha}}{0,12}$$
 = A + 1,873 B + 0,902 R + 0,902 CR + 8,14 E

Les termes B, R, CR, et E sont sensiblement proportionnels à la hauteur h de refoulement dans l'intervalle utile des hauteurs de refoulement. Par conséquent la relation :

$$\frac{\text{cha}}{0.12}$$
 = A + 1,873 B + 0,902 R + 0,902 CR + 8,14 E

varie en fonction de h et représente des droites en fonction de cette valeur.

Soit h la hauteur de refoulement déterminée à partir d'un plan de référence quelconque, les termes B, R, CR et E peuvent s'écrire :

$$B = Bo + bh$$

R = Ro + rh

E = Eo + eh

CR = CRo + ch

Comme on recherche une valeur minimale, les termes constants (Bo, Ro, ...) peuvent être négligés.

On peut écrire :

$$\frac{\text{cha}}{0,12}$$
 = 1,873 bh + 0,902 rh + 0,902 ch + 8,14 eh + A

$$\frac{\text{cha}}{0.12}$$
 = (1,873 b + 0,902 r + 0,902 c + 8,14 e) h + A

$$cha = 0,12 (1,873 b + 0,902 r + 0,902 c + 8,14 e) h + 0,12 A$$

La courbe de la charge annuelle (cha) présente un minimum. En ce point, sa dérivée par rapport à h est nulle.

La dérivée de cha est la somme des dérivées de \hat{A} et $\hat{D}h$. $\hat{D} = 1,873 \, \hat{b} + 0,902 \, \hat{r} + 0,902 \, \hat{c} + 8,14 \, \hat{e}$

Donc au minimum, la pente de la tangente à la courbe A est égale et de signe contraire à celle de la droite D.

Le point optimum est donc celui où la droite symétrique de D par rapport à l'axe des h est tangente à la courbe A. La recherche de l'optimum consiste donc, sur la courbe caractéristique (A=f(h)) à tracer l'équation de la droite :

(1) Dca =
$$-(1,873b + 0,902r + 0,902 cr + 8,14 e) h$$

4-3-2 - Par comparaison des valeurs capitalisées des dépenses

Il faut totaliser le capital initial investi et la valeur actualisée initiale des dépenses d'entretien et de renouvellement.

> Le taux d'actualisation est supposé égal à 10 %. Le résultat des calculs donne :

4-3-3 - Détermination de la hauteur de refoulement pour une dépense totale minimale du réseau et de la station de pompage

Il faut tracer la droite de la charge annuelle (Dca) ou la droite de la valeur actualisée (DVa), et chercher le point de tangente d'une parallèle à ces droites avec la courbe caractéristique du secteur.

Dans les équations (1) et (2), en fonction de la hauteur de refoulement, les variables représentent :

b = la variation du coût de l'équipement
 r= la variation du coût du réservoir
 cr = la variation du coût de la conduite de refoulement
 e = la variation du coût de l'énergie

Les valeurs numériques de ces coefficients sont les suivantes : pour b

Le rendement des pompes étant supposé égal à 0,78 et celui des moteurs à 0,90 la puissance correspondant à l'élévation d'un mètre cube à une hauteur de 1 m :

$$pKW = \frac{Q \times Hm}{102 \times \frac{r1}{100} \times \frac{r2}{100}}$$

$$pKW = \frac{1000 \times 1 \times 1 \times m}{102 \times 100}$$

$$14$$

pour le débit de pointe de 1530 1/s

$$14 \times 1.53 = 21.42 \text{ KW}$$

Les matériels qui sont directement influencés par la variation de la hauteur de refoulement et de la puissance sont :

les transformateurs (60 francs par KW), les moteurs (120 francs par KW), les pompes (60 francs par KW), les tuyauteries et robinetteries (120 francs par mètre de hauteur), les cables de puissance (50 francs par KW), les contacteurs (25 francs par KW), la ligne de pilote reliant la station au réservoir (130 francs par mètre de hauteur).

Au total la variation du coût de l'équipement par mètre de hauteur de refoulement est de :

b = 21,41 (60 + 120 + 60 + 50 + 25) + 120 130 = 6744 cette valeur sera arrondie à 7000 francs.

pour r

Pour le réservoir le coût de la variation par mètre de hauteur s'élève à 15 000 francs.

pour e

Soit 0,075 francs le coût du KWh.

Le coût de l'énergie par mètre de hauteur et par an pour un volume pompé V est :

$$e = \frac{9.8}{r1 \times r2} \times \frac{V}{3600} \times 0,075$$

avec

rl = rendement de la pompe = 0,78

r2 = rendement du moteur = 0,90

V = volume annuel pompé (en m³)

d'où

$$e = 0,292.10^{-3}$$
 V par mètre de hauteur

volume nécessaire annuellement au périmètre : égal à 8 166 000 m3.

On aura
$$e = 0,292 \times 10^{-3} \times 8 \cdot 166 \cdot 000 \# 2 \cdot 400 \text{ francs}$$

pour cr

La variation de la hauteur du réservoir a une incidence sur la classe des tuyaux constituant la conduite de refoulement.

La moyenne des différences de prise entre chaque classe successive de canalisation d'un même diamètre par mètre linéaire est donné par le bordereau de prix, soit 1,50 francs.

La longueur de la conduite de refoulement est de 1750 mètres, l'incidence par mètre de hauteur du méservoir est d'environ :

Les valeurs numériques de ces coefficients pour le périmètre sont par conséquent les suivantes :

b = 7000 Francs

r = 15 000 Francs

e = 2400 Francs

cr = 2 600 Francs

Appliquées aux deux équations (1) et (2), on aura :

$$D_{ca} = -(1,873 \text{ b} + 0,902 \text{ r} + 0,902 \text{ cr} + 8,14 \text{ e}) \text{ h} = -35 360 \text{ h}$$

$$DVa = -(1.803 b + 0.902 r + 0.902 cr + 8.2 e) h = -35 360 h$$

Le point de tangence d'une parallèle à cette droite à la courbe caractéristique du périmètre donne la hauteur optimale du refoulement, soit la cote de 185 mètres. (voir la courbe caractéristique ci-jointe).

4-3-4 - Calcul optimisé du réseau de conduite en fonction de la cote du réservoir

A la B.Rh.L., on utilise la méthode dite discontinue de "M. LABYE" pour le calcul optimisé du réseau de conduite permettant de déterminer la répartition du coût minimal des différentes canalisations utilisées dans un réseau d'irrigation de type ramifié.

La méthode de M. LABYE permet également la sortie de la courbe caractéristique.

4-3-4-1 Exposé du problème

Le secteur est équipé d'un réseau de conduites de tracé connu. Il comprend plusieurs tronçons de longueur et de débit connus. L'eau s'écoule gravitairement à partir du réservoir jusqu'aux extrémités où elle est distribuée. Le problème consiste à déterminer sur chacun des tronçons le diamètre des canalisations de manière à satisfaire aux impératifs suivants :

- les diamètres acceptables pour un tronçon de conduite sont contenus dans une table commerciale qui donne pour chaque diamètre le prix du mêtre linéaire et le coefficient de perte de charge.
- le choix du diamètre pour chaque tronçon de conduite est déterminé par des conditions de débit limite.
- en certains points du réseau, la cote piézométrique doit être supérieure ou égale à une valeur minimale imposée.
 - le prix total du réseau doit être minimal.

En ce qui concerne le bordereau de prix des canalisations, il sera fait application de celui de Mars 1969, actualisé à Juin 1970. Les prix sont majorés d'un certain pourcentage affecté à chaque nature de conduite pour tenir compte des terrassements, des pièces spéciales, des butées et de l'appareillage.

Ces coefficients sont les suivants :

1,7 pour le béton et la fonte

2,0 pour l'amiante ciment

2,5 pour le P.V.C.

La loi des pertes de charge est celle de "LECHAPT" et "CALMON" en usage à la Compagnie :

 $j = 1,4 Q^{1,96} D^{-5,19}$ (majorée de 10 % pour tenir compte des pertes de charge singulières)

Toutes les données concernant chaque tronçon, longueur, débit, cote piézométrique minimale, sont codifiées pour le calcul, d'une part, de

la courbe caractéristique du secteur (courbe, hauteur, prix), et d'autre part, de la cote du réservoir pour le calcul des réseaux (diamètres, cotes piézométriques). Pour éviter de pénaliser le coût de l'ensemble du réseau par l'application uniforme d'une pression de 4 bars à l'amont des bornes, on a admis pour certaines d'entre elles, situées dans des zones marginales, de réduire cette pression à 2 bars. C'est ainsi que la cote piézométrique à l'amont des bornes desservant des parcelles situées entre les cotes 100 et 120 m N.G.F. a été fixée à 140 mètres N.G.F. uniquement.

La codification étant faite, les calculs effectués par l'ordinateur donne les résultats suivants :

- . pour chaque tronçon :
 - la longueur de la conduite du diamètre utilisé
 - la perte de charge dans le tonçon considéré
 - la cote piézométrique amont et aval du troncon
 - le prix du tronçon
 - un état récapitulatif de toutes les conduites utilisées avec la longueur totale et le prix relatif à chaque canalisation
 - le prix total du réseau
 - la courbe caractéristique du secteur.

5 - CALCUL DE LA STATION DE POMPAGE

Le débit d'équipement de la station de pompage en bordure de l'Aude sera de 1 530 1/s. Ce débit sera élevé à la cote 185 m N.G.F. Le niveau minimal d'aspiration 36 m N.G.F. Le diamètre intérieur de la conduite de refoulement sera de 1 000 mm, la longueur de la conduite de refoulement est de 1 750 mètres.

La perte de charge dans la conduite de refoulement y compris les pertes de charge singulières sera de 3,38 mm x 1 750 = 5,92 mètres. La perte de charge singulière à la station de pompage (clapets, coudes, vannes) est estimée à 2 mètres.

La hauteur géométrique de refoulement : 185 - 36 = 149 m Hauteur d'eau manométrique de refoulement 149 + 2 + 6 = 157 m Rendement global des groupes électro-pompes : 70 % La puissance théorique installée sera :

$$pKW = \frac{9,81 \times 1,530 \times 157}{0.7} = 3 370$$

La puissance installée :

3 groupes principaux de 510 1/s et 1125 KW

2 groupes d'hiver de 255 1/s et 565 KW

soit au total

4 495 KW

Consommation annuelle d'énergie

volume maximal d'eau pompé annuellement : 8 166 000 m³ consommation annuelle d'énergie :

$$\frac{9,81:8\ 166\ 000\ \times\ 157}{0,7\ \times\ 3\ 600} = 4\ 990\ 884\ KW$$

Dépense annuelle d'énergie :

 $0,075 \times 4 990 884 = 374 316$ Francs

6 - ESTIMATION

Le montant des investissements peut être estimé de la façon suivante :

- PRISE D'EAU DANS L'AUDE : (Génie Civil, grille batardeau)

250 000 F

- STATION DE POMPAGE : (Génie Civil, matériel électro-mécanique, matériel de filtration, matériel électrique, matériel de télécontrole, ligne électrique 20 KV) 5 050 000 F
- CONDUITE DE REFOULEMENT : (Fourniture, transport et pose de canalisations béton Ø /1000. Majoration pour terrassement, pièces spéciales, butée, Génie Civil et appareillage 50 % du prix des canalisations)
- RESERVOIR SURELEVE

795 000 F

- OSSATURE ET RESEAU DE DISTRIBUTION : (Canalisation, appareillage et Génie Vivil. Bornes d'irrigation à 4 prises équipées de leur tubulure)

15 600 000 F

TOTAL 23 245 000 F

- Somme à valoir pour divers et imprévus 8 % environ : 1 755 000 F

- Total (T.T.C.) 25 000 000 F

Cette valeur ramenée à l'hectare équipé s'élève à :

Ce montant est très raisonnable.

7 - RESUME ET CONCLUSION

Le projet d'irrigation par aspersion que nous venons de présenter est une première application directe des études agropédologiques exposées dans la deuxième partie de notre thèse.

Dans le premier chapitre, les besoins en eau des cultures sont calculés selon diverses méthodes et à partir d'un programme d'orientation agricole à long terme. Nous avons calculé les besoins de pointe ce qui nous a permis de définir le débit fictif pondéré en tête du réseau pour le mois le plus chargé.

Il est difficile d'apprécier quelle est la méthode la plus exacte à cause d'une part, du degré propre d'imprécision de chacune de ces méthodes de calcul, et d'autre part, en raison des conditions dans lequelles ont été recueillies les données de bases ayant servi à ces calculs; en effet :

- . l'étude fréquentielle des besoins en eau par l'utilisation de la formule de Turc intéresse la région de Narbonne, où elle a été réalisée à partir d'un programme cultural différent de celui qui concerne le secteur intéressé;
- . le calcul de l'E.T.P. par la méthode de Bouchet n'a pu être fait qu'à partir de trois années seulement d'observations météorologiques.

On peut tout de même comparer les résultats obtenus par la méthode de Blaney et Criddle et ceux obtenus par la méthode de Thornthwaite. On remarque que les besoins de pointe et annuels calculés par la méthode de Thornrhwaite sont plus faibles que ceux obtenus par la méthode de Blaney et Criddle. (La méthode de Thornthwaite fait totalement abstraction des cultures, alors que la méthode de Blaney et Criddle en tient compte). Le deuxième chapitre a été consacré à l'étude d'un projet d'irrigation : au cours de ce chapitre nous avons calculé les débits de transit dans les conduites adductrices, issues du réservoir, par application de la formule de CLEMENT.

Le débit de pointe ainsi obtenu a permis de définir les caractéristiques principales de la station de pompage.

Un calcul optimisé du réseau de distribution a donné :

- . la hauteur de refoulement optimale (dépense totale minimale pour le réseau des conduites et la station de pompage);
- . les diamètres et pressions pour chaque tronçon.

Une étude économique succinte a chiffré le montant total des investissements et fixé le prix de l'équipement d'un hectare de la superficie agricole utile.

CONCLUSION GENERALE

•

Notre travail a consisté à rassembler les éléments nécessaires à un projet d'aménagement de la région de Lézignan-Corbières.

Dans la première partie, nous avons étudié les données générales : géologie, climatologie et végétation.

La majeure partie du secteur étudié est occupée par les formations continentales constituées par des marnes argileuses et limoneuses, des grès calcaires, et des poudingues contenant des galets de roches éruptives métamorphiques et calcaires. Ces formations sont considérées comme d'âge lutétien.

Les formations marines sont moins développées dans la région étudiée. Leur étendue est facilement appréciable. Elles sont constituées de marnes limoneuses, localement sablonneuses, et de grès calcaires. Elles appartiennent à l'Yprésien. Ces formations sont mieux développées sur le massif de Lézignan à Moux, que sur celui de Tourouzelle.

Toutes ces formations ont été affectées par des plissements d'âge pyrénéen. Elles sont fracturées ; les couches ont une orientation générale Nord-Est, Sud-Ouest, qui correspond au type d'accident dominant.

L'exploitation des données géologiques a permis de connaître la structure du substratum, et de comprendre le mode d'alimentation des eaux souterraines.

La découverte d'un ancien cours de l'Aude, dans la plaine d'Escales, constitue un des résultats de l'étude des formations superficielles

L'étude climatologique a montré que la région étudiée est une des plus sèches de France, à pluviométrie très contrastée, et que le secteur de Lézignan-Corbières, au pied de la Montagne Noire, a un micro-climat bien particulier que l'on a pu caractériser par les indices climatiques de Martonne, Emberger, et Hénin.

Il peut arriver que plusieurs années très sèches consécutives mettent en danger l'économie agricole de cette région.

L'étude de la végétation naturelle et des cultures donne des indications générales sur les principales espèces végétales dans l'ensemble du secteur : la végétation naturelle se trouve localisée principalement sur les collines de Lézignan et Tourouzelle, ainsi que sur les zones de basses collines. Elle est généralement en relation avec le relief, et les affleurements du substratum : pelouse à Brachypode sur les grès calcaires, pins rabougris et chênes kermes sur les marnes et poudingues, végétation du type xérophile lans les zones de bad-land ... etc ...

Les cultures sont essentiellement la vigne. Elle est cultivée sur des types de sols et des reliefs très divers ; on la rencontre partout où les engins agricoles et l'homme ont accès.

Dans les dépressions arrondies de la plaine d'Escales, on a rencontré des espèces caractéristiques des stations mal drainées et peu salées ; Suaeda fruticosa, Plantago lanceolata.

L'étude agropédologique de la deuxième partie a permis de dresser deux cartes : carte pédologique, et carte des caractéristiques des sols.

4

Les sols du secteur sont généralement calcaires et parfois très calcaires, sauf ceux développés sur les formations caillouteuses des terrasses alluviales de l'Aude, ils sont en général sensibles à l'érosion et au compactage.

La texture des sols observés est variable, mais elle est souvent limoneuse.

Leur structure, sauf pour les sols situés dans quelques petites dépressions centrales de la plaine d'Escales est généralement satisfaisante.

Les caractères d'hydromorphie sont fréquemment observés en surface et dans les profils ; les surfaces où l'assainissement est absolument nécessaire à la mise en valeur, sont limitées à quelques dépressions de faible superficie (50 ha), situées dans la plaine d'Escales ; en cas de généralisation de l'irrigation, la superficie des zones à assainir va s'étendre principalement dans la plaine d'Escales ; le drainage des zones à assainir ne pose pas de problème important, la Jourre et ses affluents pourront, après aménagement, évacuer aisément toutes les eaux excédentaires de la plupart des sols hydromorphisés.

L'étude agropédologique a permis également de délimiter la superficie irrigable : sur 7 500 ha du périmètre étudié, 3 630 ha seront aptes à recevoir l'irrigation.

Sur le plan agronomique, les sols du secteur étudié présentent des aptitudes culturales variées et les aménagements à prévoir pour les améliorer, à part l'apport de l'eau, sont très réduits.

L'étude hydrogéologique a permis de connaître les disponibilités en eau. On a tenté de chiffrer les éléments du bilan hydrologique; les résultats obtenus doivent être considérés comme des ordres de grandeur très approximatifs.

A l'aide des essais des débits, on a calculé la transmissibilité de la nappe de graviers et de limons.

L'étude de la forme de la surface libre des nappes a permis de déterminer le sens d'écoulement, et de montrer que la nappe de graviers ne reçoit pas d'eau de l'Aude.

L'étude de la chimie des eaux nous a apporté des résultats précieux principalement sur la qualité des eaux souterraines pour l'irrigation : nous avons vu que la teneur élevée en ions, Cl et Na empêche l'emploi des eaux de la nappe de graviers pour l'irrigation.

Dans la quatrième partie, nous avons étudié un projet d'irrigation par aspersion. Les besoins en eau des cultures sont calculés selon diverses méthodes.

On a calculé les principales caractéristiques d'un réseau général d'irrigation.

L'objet essentiel de notre travail étant de faire une étude préliminaire et de reconnaissance d'un secteur donné elle ne saurait prétendre résoudre tous les problèmes qui se posent avant un aménagement d'ensemble.

On pourrait, par exemple, juger nécessaires les études complémentaires suivantes :

- une étude pédologique de détail pour mieux préciser les caractéristiques et les limites des types de sols à partir de sondages plus nombreux;
- une étude des structures humaines (structures démographiques, structures socio-professionnelles, structures sociales);
- une étude des structures agricoles (structures foncières, structures de l'appareîl de production, structures des moyens de production et structures de la production);
 - une étude de marché;
- une étude économique sur la rentabilité de l'irrigation à partir du programme cultural à long terme ;
- une campagne de géophysique pour préciser l'épaisseur des marnes de l'Eocène inférieur et connaître la nature des formations sousjacentes jusqu'à d'éventuels niveaux aquifères;
- des sondages de reconnaissance afin de connaître avec précision l'épaisseur du cailloutis continental dans la plaine d'Escales;

- une étude du bilan hydrologique appuyée sur les données d'une station limnigraphique qu'il faudrait réaliser dans la Jourre près de Sérame.

-

Il est certain que ces études complémentaires seraient utiles ; nous espérons pourtant avoir recueilli des éléments de base pour une bonne connaissance hydro-agricole de la région de Lézignan-Corbières et l'esquisse d'un schéma d'aménagement.

Ces deux années de travail, d'observations de terrain, de contacts très variés de recherches et d'études nous laissent des souvenirs extrêmement précieux et nous donnent un profond désir de revenir un jour dans ce merveilleux pays.

Nîmes-Montpellier - Juillet 1971

BIBLIOGRAPHIE

- AT de SAINT-FOULC J. d' (1967) Irrigation par aspersion Editions Eyrolles 61, Bd St-Germain Paris Ve.
- AUBERT G. (1953) Cours de pédologie : Facteurs d'évolution des sols (Tome I), processus de pédogénèse (Tome II), fertilité des sols, géographie des sols (Tome III) O.R.S.T.O.M.
- AVIAS J. (1968) Cours (Diplome d'Etudes Approfondies) sur l'hydrogéologie des roches carbonatées Faculté des Sciences de Montpellier
- AVIAS J. (1968) Cours professés d'hydrologie et de géologie appliquée aux Travaux Publics (Diplome d'Etudes approfondies) - Faculté des Sciences de Montpellier.
- BARRIERE J., BOUTEYRE G., MAZIER J., RUTTEN P., VIGNERON J. (1965) Note préliminaire sur l'interprétation géomorphologique et paléopédologique de la vallée de l'Orb, dans la région de Maraussan - Service Etude des Sols, B.Rh.L.
- BENETT H.H. (1950) Manuel de conservation du sol La Maison Rustique, 26 Rue Jacob. Paris VIe.
- BOGOMOLOV G.V. et SILIN-BEKTCHOURINE A.I. (1955) Hydrogéologie spécialisée Traduction par JAYET E. et CASTANY G. Annales du Service d'information géologique du Bureau de Recherches Géologiques, Géophysiques et Minières. N° 37.
- BOGOMOLOV G. (1963) Hydrogéologie et notions de géologie d'ingénieur Editions de la Paix - Moscou.
- BONFILS P. (1967) Méthodes d'analyses des sols Service d'Etude des Sols E.N.S.A. de Montpellier.
- BORNAUD M. (1962) Les sols rouges du confluent Rhône-Isère. Service d'Etude des Sols - C.R.A. Midi-Montpellier - I.N.R.A. (Science du Sol (A.F.E.S.) 2, pp.3-28).
- BOUCHET J. (1961) Signification et portée agronomique de l'E.T.P. Annales Agronomiques, V. 12 (1), 51-63 (I.N.R.A.)
- B.Rh.L. Bas-Rhône-Languedoc Revues
- B.Rh.L. (1970) Etude hydrogéologique, pédologique et de la salinité de la Camargue Service Etude des Sols.
- B.Rh.L. (1970) Méthodes d'analyses du Laboratoire du Service Etude des Sols de la B.Rh.L.
- BULLETIN DE LA SOCIETE LANGUEDOCIENNE DE GEOGRAPHIE (1967) Tome I Fasc. 2 Avril-Juin - Edité avec le concours de l'Université de Montpellier.

- B.T.I. (1965) Bulletin technique d'information des ingénieurs des Services Agricoles - La Maitrise de l'eau en agriculture -Publication mensuelle du Ministère de l'Agriculture -Juillet-Agût - N° 201.
- CASTANY G. (1963) Traité pratique des eaux souterraines Dunod Paris.
- CHAMAYOU H. (1967) Cours de pédologie sur éléments physiques du sol . (Diplome d'Etudes Approfondies) - E.N.S.A. de Montpellier.
- CHEYLAN G. (1966) Etudes géologiques des aménagements hydrauliques de la Compagnie du Bas-Rhône et du Languedoc Thèse présentée à la Faculté des Sciences de Grenoble-
- COMBES Ch. (1970) Données de bases pour la vulgarisation et la pratique de l'irrigation par aspersion Service Agronomique de la B.Rh.L.
- CORMARY Y. (1967) Cours d'hydrologie Faculté des Sciences de Montpellier.
- COURRIER L.P. (1961) Extrémité orientale du Bassin de Carcassonne D.E.S. de Sciences Naturelles (Mention Géologie) Faculté des Sciences de l'Université de Bordeaux.
- C.P.C.S. (1963-1967) Classification des sols Travaux du Comité de Pédologie et de Cartographie des Sols.
- DARLOT A. (1962) La détermination des débits d'équipement des installations d'irrigation à partir de l'étude fréquentielle -B.T.G.R. 55, Antony
- DEMOLON A. (1966) Dynamique du sol Dunod
- DERRUAU M. (1958) Précis de géomorphologie Masson et Cie, Editeurs
- DESAUNETTES J.R. (1959-1962) Cours de pédologie S.E.S.-C.N.A.R.B.R.L.
- DESAUNETTES J.R. (1958) Etudes pédologiques rationnelles pour la mise en valeur par l'irrigation S.E.S. C.N.A.R.B.R.L.
- DONCIEUX L. (1903) Monographie géologique et paléontologique des Corbières orientales - Thèse présentée à la Faculté des Sciences de l'Université de Lyon,
- DUCHAUFOUR Ph. (1968) L'évolution des Sols Essai sur la dynamique des profils Masson et Cie Editeurs.
- FOURNIER F. (1960) Climat et érosion Presses universitaires de France 108, Bd St-Germain - Paris.
- GAUCHER G. (1968) Traité de pédologie agricole Dunod -
- GELIS E. de (1956) Eléments d'hydraulique souterraine Edition du Service Géol. du Maroc - Rabat.
- GLEIZES C. (1964) Techniques rurales en Afrique 1 Evaluation des quantités d'eau nécessaires aux irrigations - Document établi à la demande du Ministère de la Coopération, sous la Direction Générale du Génie Rural et de l'Hydraulique Agricole.

- JAHANBAKHCH F. (1969) Atlas hydrogéologique au 1/50 000e du Languedoc-Roussillon. Feuille de Pézenas et feuille d'Aude. Thèse présentée à la Faculté des Sciences de Montpellier.
- JAMAGNE M. (1967) Bases et techniques d'une cartographie des sols Annales agronomiques Vol. 181 N° hors série (2 volumes).
- KALMS J.M. et CAYET L. (1970) Estimation des besoins agricoles sur le bassin de l'Hers Vif - Note Hyd 40-70 (Electricité de France).
- LEPOUTRE B. et SAUVAGEOT A. (1969) Une cause de la saturation magnésienne des argiles dans le sol ; l'hydromorphie temporaire de saison chaude Cahiers ORSTOM, série pédologie Vol. VII, N° 2.
- MOHAMMADI-FATIDEH M. (1967) Etude de la stabilité structurale dans les sols salés D.E.A. de Pédologie E.N.S.A. de Montpellier.
- MOHAMMADI-FATIDEH M. (1969) Contribution à l'établissement de la carte hydrogéologique du Languedoc-Roussillon - D.E.A. d'hydrogéologie - Feuille d'Arles au 1/50 000e - Coupures 2 et 3 -Université des Sciences et Techniques du Languedoc.
- MORET L. (1955) Précis de Géologie Masson et Cie.
- NEJAD-HACHEMI M.A. (1968) Contribution à l'étude hydrogéologique de la région nimoise - Thèse de 3ème cycle présentée à la Faculté des Sciences de Montpellier.
- PLOTNIKOV N.A. (1962) Ressources en eaux souterraines : classification et méthodes d'évaluation Gauthier-Villars et Cie, éditeur imprimeur-libraire, 55, Quai des Grands Augustins Paris VIe.
- POGGI J.P. (1968) Contribution à l'étude hydrogéologique de la plaine alluviale du Rhône entre Beaucaire et Arles Thèse présentée à la Faculté des Sciences de Montpellier.
- POIREE M. et OLLIER Ch. (1962) -Irrigation Les réseaux d'irrigation- Théorie technique et économie des arrosages. Eyrolles, Editeurs, Paris.
- POIREE M. et OLLIER Ch. (1965) Assainissement agricole Eyrolles, Editeurs, Paris
- PLEGAT R. (1968) Cours d'hydrogéologie sur l'hydraulique souterraine (Diplome d'Etudes Approfondies) - Faculté des sciences de Montpellier.
- REMINIERAS G. (1960) Hydrologie de l'ingénieur Eyrolles, Paris
- RUELLAN A. (1970) L'histoire des sols : quelques problèmes de définition et d'interprétation ORSTOM
- SCHNEEBELLI G. (1966) Hydraulique souterraine Collection du centre de Recherches et d'Essais de Chatou Editeur Eyrolles.
- SCHOELLER H. (1962) Les eaux souterraines Masson, Paris

- SERVAT E. (1967) Cours de pédologie sur l'altération des roches et la cartographie des sols (Diplome d'Etudes Approfondies) - Faculté des Sciences de Montpellier.
- SIMONNEAU P. (1970) Les sols salins du Roussillon Publié par la Société d'Aménagement Foncier et d'Etablissement rural du Languedoc-Roussillon.
- TRICART J. (1965) Principes et méthodes de la géomorphologie Masson et Cie, Editeurs, Paris.
- UNESCO (1957) Utilisation des eaux salines.
- VIGNERON J. (1958) Etablissement d'un indice de compacité S.E.S.-C.N.A.R.B.R.L.
- VIGNERON J. (1958) Etude de capacité de rétention du sol 7 C.R.E.G.R., n°40-2 Antony.
- VIGNERON J. (1959) Eau du sol et dose d'arrosage S.E.S.-C.N.A.R.B.R.L.
- VIGNERON J. (1961) L'arrosage et les propriétés physiques du sol Revue de la C.N.A.R.B.R.L., n° 6.

BIBLIOGRAPHIE (complément)

- C.N.A.R.B.R.L.-S.E.S. (1958) Etude pédologique du secteur rive droite de 1'Orb-Cazouls.
- C.N.A.R.B.R.L.-S.E.S. (1962) Etude pédologique du secteur rive droite de 1'Orb-Capestang.
- C.N.A.R.B.R.L.-S.E.S. (1967) Etude des normes de présentation des données pédologiques.
- C.N.A.R.B.R.L.-S.E.S. (1971) Irrigation du Lauragais audois Etude pédologique de reconnaissance.
- C.N.A.R.B.R.L.- D.T. (1971) Irrigation de la région de Pont Saint Esprit.
- C.N.A.R.B.R.L.-D.M.V.A. (1971) Equipement et Mise en Valeur des zones à dominante viticole.

ANNEXES

- I Table pour le calcul de l'E.T.P.
- II Relevé des mesures piézométriques
- III Relevé des niveaux au cours des essais de débit
 - a) Puits d'Escales
 - b) Puits de la Boulandière
 - c) Puits de la Bastide
 - d) Puits de Montbrun-les-Corbières
- IV Tableaux de résultats d'analyses des eaux

VALEUR DE L'INDICE i EN FONCTION DE LA TEMPERATURE MOYENNE MENSUELLE (°C)

0 1 2 3 4 5 6	.09 .25 .46 .71 1.00 1.32	.10 .27 .48 .74 1.03 1.35	.01 .12 .29 .51 .77	.01 .13 .31 .53	.02 .15 .33	.03	.04	.05	.06	.07
1 2 3 4 5 6 7	.25 .46 .71 1.00 1.32 1.66	.27 .48 .74 1.03	. 29 . 51 . 77	.31	. 33			. 20	21	0.0
3 4 5 6 7	.25 .46 .71 1.00 1.32 1.66	.48 .74 1.03	.51	. 53		25			. 41	. 23
4 5 6 7	.46 .71 1.00 1.32 1.66	.48 .74 1.03	. 77		50	. 35	. 37	. 39	.42	. 44
4 5 6 7	.71 1.00 1.32 1.66	.74 1.03	. 77	80	. 00	. 58	.61	. 63	.66	. 69
5 6 7	1.00 1.32 1.66	1.03		. 00	.82	.85	.88	. 91	.94	.97
6 7	1.32 1.66		1.00	1.09	1.12	1.16	1.19	1.22	1, 25	1.29
7	1.66	4,00	1.39	1.42	1.45	1.49	1.52	1.56	1.59	1.63
		1.70	1.74	1.77	1.81	1.85	1.89	1.92	1.96	2.00
8	2.04	2.08	2.12	2.15	2,19	2.23	2, 27	2.31	2.35	2.39
9	2.44	2, 48	2.52	2.56	2.60	2.64	2,69	2. 73	2,77	2.81
10	2.86	2,90	2.94	2.99	3.03	3.08	3.12	3.16	3, 21	3, 25
11	3.30	3, 34	3, 39	3.44	3.48	3, 53	3, 58	3,62	3,67	3.72
12	3, 76	3,81	3,86	3.91	3.96	4.00	4.05	4.10	4.15	4.20
13	4. 25	4.30	4.35	4.40	4. 45	4.50	4.55	4.60	4, 65	4.70
14	4.75	4.81	4.86	4.91	4.96	5.01	5.07	5.12	5.17	5. 22
15	5.28	5.33	5, 38	5.44	5.49	5.55	5.60	5, 65	5.71	5.76
16	5.82	5.87	5.93	5.98	6.04	6,10	6.15	6.21	6, 26	6.32
17	6.38	6.44	6.49	6.55	6.61	6.66	6.72	6.78	6.84	6,90
1.8	6.95	7.01	7.07	7.13	7.19	7, 25	7.31	7.37	7. 43	7.49
19	7.55	7.61	7.67	7, 73	7. 79	7.85	7.91	7.97	8.03	8.10
20	8.16	8.22	8, 28	8.34	8,41	8.47	8,53	8.59	8.66	8. 72
21	8. 78	8.85	8,91	8.97	9.04	9.10	9.17	9.23	9, 29	9.36
22	9.42	9.49	9, 55	9,62	9.68	9, 75	9.82	9,88	9.95	10.01
	10.08	10.15	10.21	10.28	10.35	10.41	10.48	10.55	10,62	10.68
	10.75	10.82	10.89	10,95	11.02	11.09	11.16	11, 23	11.30	11.37
	11.44	11.50	11.57	11.64	11.71	11.78	11.85	11.92	11.99	12.06
	12.13	12, 21	12, 28	12, 35	12.42	12.49	12.56	12.63	12.70	12.78
	12.85	12,92	12.99	13.07	13, 14	13, 21	13, 28	13, 36	13, 43	13.50
	13.58	13.65	13, 72	13,80	13.87	13,94	14.02	14.09	14.17	14. 24
	14.32	14.39	14.47	14.54	14.62	14.69	14.77	14.84	14.92	14.99
	15.07	15, 15	15.22	15.30	15.38	15.45	15.53	15.61	15.68	15.76
	15.84	15.92	15.99	16.07	16.15	16.23	16.30	16, 38	16.46	16.54
	16.62	16.70	16. 78	16.85	16.93	17.01	17.09	17.17	17.25	17.33
	17.41	17.49	17.57	17.65	17, 73	17.81	17.89	17.97	18.05	18.13
(40.000)	18.22	18.30	18.38	18.46	18.54	18,62	18.70	18.79	18.87	18.95
	19.03	19.11	19.20	19.28	19.36	19.45	19.53	19.61	19.69	19.78
	19.86	19.95	20.03	20,11	20, 20	20. 28	20.36	20, 45	20.53	20.62
	20.70	20.79	20.87	20.96	21.04	21,13	21, 21	21.30	21.38	21.47
	21.56	21.64	21.73	21.81	21.90	21.99	22.07	22.16	22, 25	22.33
	22.42	22.51	22.59	22, 68	22.77	22, 86	22.95	23.03	23, 12	23, 21
	23.30									