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Abstract 

A new member of the family of growth models described by Baranyi et al. (1993a) is 
introduced in which the physiological state of the cells is represented by a single variable. 
The duration of lag is determined by the value of that variable at inoculation and by the 
post-inoculation environment. When the subculturing procedure is standardized, as occurs 
in laboratory experiments leading to models, the physiological state of the inoculum is 
relatively constant and independent of subsequent growth conditions. It is shown that, with 
cells with the same pre-inoculation history, the product of the lag parameter and the 
maximum specific growth rate is a simple transformation of the initial physiological state. 
An important consequence is that it is sufficient to estimate this constant product and to 
determine how the environmental factors define the specific growth rate without modelling 
the environment dependence of the lag separately. Assuming that the specific growth rate 
follows the environmental changes instantaneously, the new model can also describe the 
bacterial growth in an environment where the factors, such as temperature, pH and a w, 
change with time. 
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1. Introduction 

A m o n g  others,  food microbiologists have been  seeking efficient models  of  
microbial  growth that  might  enable them to predict  the microbiological conse- 
quences  of  food storage.  Exper ience has shown that  the necessary mathemat ica l  
models  cannot  simply be copied f rom those e labora ted  over many years in 
b io technology and chemical  engineering,  recently reviewed by Nielsen and Villad- 
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sen (1992). The reasons why predictive food microbiology should build its own 
store of mathematical-statistical tools are numerous and varied. 

(1) The goal of food microbiologists is to minimize or prevent microbial growth 
rather than optimize it, as often occurs in biotechnology. Consequently, effects of 
the inhibitory environmental factors, like preservatives, have been investigated 
more intensively. 

(2) The cell concentration of interest is much lower than in biotechnology, 
where it is typically greater than 1 0 6 - 1 0 7  cell /ml.  As a consequence, some 
methods validated at high cell concentration, e.g. turbidity, biomass or conduc- 
tance measurements, should not be applied directly without establishing the 
relationship between cell numbers and the measurement at lower bacterial concen- 
tration (Baranyi and Roberts, 1992). 

(3) In food microbiology, the kinetics of the lag phase is of great importance, 
while it is less important in a bioreactor. On the other hand, well-known models of 
the transition from the exponential to the stationary phase, like Monod's model 
(Monod, 1942), lose their significance in food microbiology because substrate 
limitation is rarely important until the microbial concentration reaches levels 
associated with spoilage. 

(4) Generally much less information, and often less accurate information, is 
available about the physicochemical environment of the food in question than, say, 
in a bioreactor. Therefore  the applied mathematical-statistical methods involve 
various simplifying and empirical elements. 

It is usual to classify the applied models into empirical and mechanistic (Roels 
and Kossen, 1978). In most investigations, however, the situation is somewhere in 
between and, as more information is gained, that situation can change (Box and 
Draper,  1987). Attempts, like those of McMeekin et al. (1993), to find a fundamen- 
tal (in that case, thermodynamic) basis for a model (the square-root model) are 
important steps towards more mechanistic approaches. Whiting and Cygnarowicz- 
Provost (1992) and Baranyi et al. (1993a), albeit in different ways, found a less 
empirical approach to substitute the commonly used Gompertz function describing 
the growth of a bacterial culture. As those authors agreed, the Gompertz function 
applied to the logarithm of the cell concentration, as in Gibson et al. (1988), 
Buchanan and Phillips (1990), Zwietering et al. (1990), is a new model and should 
be termed a 'modified' Gompertz model. The 'modified' Gompertz model does 
not have that deep root in population dynamics which was analyzed by Holgate 
(1989), and no mechanistic derivation is known for it. (Its differential-equation- 
form, published by Van Impe et al. (1992), is just another form of the same, 
'modified', Gompertz model.) 

An important feature of a model is how well it can be embedded in other, more 
general, established theories of the natural world. We suggest a simpler, determin- 
istic version of the framework of Frederickson et al. (1967) which assumes that the 
kinetics of a homogeneous bacterial cell population can be characterized by the 
extracellular, physicochemical environment (temperature,  atmosphere, substrate, 
etc.) and the intracellular conditions. The variables built in the mathematical 
model are divided into three classes: 
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(1) Extracellular conditions assumed to be unaffected, or negligibly affected, by 
the growth of the cells that characterize the growth-independent environment 
which may change with time. The most important components of the growth-inde- 
pendent environment is usually the temperature. Note that since growing cells 
produce heat, in the strict sense, the temperature should not be considered as a 
growth-independent variable. However, the small contribution of that heat pro- 
duced is neglected here. 

(2) Extracellular conditions which are changed by the growing culture. These 
will be called growth-dependent environmental quantities. They include, for exam- 
ple, the concentration of various chemicals such as growth substrates and metabolic 
products surrounding the cells. 

(3) Intracellular concentrations of certain substances, like DNA, RNA, etc. 
which change during growth and characterize the physiological state of the cells. 

It is important to appreciate that the boundary between the growth-independ- 
ent and growth-dependent quantities is not fixed for all models, and a variable 
being growth-independent in a particular model may represent a growth-depend- 
ent quantity in an other, more sophisticated, model. For example, it is known that 
the pH level is usually changed by cells growing to high concentrations. Neverthe- 
less, the pH value is often considered to be constant during the growth; partly by 
disregarding the small increases or decreases in pH, and partly by not concentrat- 
ing on the dynamics of the culture at high concentrations. With model develop- 
ment, the pH could be treated as a growth-dependent quantity. 

In our model, all the extracellular physicochemical quantities are considered to 
be growth-independent and they are included in an environmental vector-variable, 
E(t), which possibly changes with time during growth. 

From a practical point of view, there is a need to be able to predict the course 
of bacterial growth under a temperature profile that changes with time. The 
simplest approach supposes that the specific growth rate of the bacterial popula- 
tion responds instantaneously to the temperature changes. Fu et al. (1991) showed 
that, if the temperature remains within the growth conditions, instantaneous 
adjustment of the specific growth rate to the temperature changes can be assumed 
if the cells are in the exponential phase. The model described below makes it 
possible, among other uses, to predict the course of bacterial growth when the 
temperature changes in the lag phase during which the cells adjust to a new 
environment. The idea is similar to that of Srivastava and Volesky (1990) who 
assumed that there is a bottleneck-substance (RNA, in their paper) that must 
reach a certain level to induce the growth of the cells, and the rate of the 
accumulation of that substance changes instantaneously as the temperature 
changes. We have combined this idea with the growth model of Baranyi et al. 
(1993a), the mathematical properties of which are analyzed in Baranyi et al. 
(1993b). The new model gave reliable predictions when tested on experimental 
data obtained under changing temperature profiles (Baranyi et al., 1994). It 
provides an explanation, too, why the lag is inversely proportional to the maximum 
specific growth rate, a relation which is observed or supposed (implicitly or 
explicitly) by many authors. 
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In this paper, a new variable, q(t), representing the physiological state of the 
ceils is introduced. From q(t), by a simple transformation, 

q(t) 
a ( t ) -  l +q(t) 

the value of the so-called 'adjustment function' (Baranyi et al., 1993a) can be 
calculated. It can be considered as a capacity-type quantity expressing the propor- 
tion of the potential specific growth rate (which is determined by the actual 
environment) that is utilized by the cells. The process of adjustment (lag period) is 
characterized by the gradual increase of a ( t )  from a low value towards 1. Another 
transformation, 

h(t) = In 1 + = - I n  a(t) 

proves to be useful from a computational point of view; it can be considered as a 
statistically stable transformation of q(t) and a(t). The value h 0 = h(0) = - In a(0) 
will be the product of the maximum specific growth rate and the lag, therefore this 
product is constant for different growth curves provided that the physiological 
state of the cells at inoculation is identical (i.e. the subculturing procedure is 
carefully standardized). 

The environment dependence of the maximum specific growth rate and the lag 
(or their reparameterized form, see Garthright, 1991; Baranyi, 1992a,b) are usually 
modelled independently (Gibson et al., 1988; Buchanan and Phillips, 1990) al- 
though there is an obvious, high, correlation between them. Due to the construc- 
tion of the new model, this problem is eliminated and the model is made 
applicable to a t ime-dependent environment. The way in which the variance of the 
growth parameters is decreased by the new model is shown below using a 
published dataset. 

2. Theory 

2.1. A generic growth model 

Throughout  this paper, unless otherwise stated, the logarithm of a quantity, x, 
is always taken to be its natural logarithm, In x. Furthermore,  a notation f(t) can 
mean either the f function or its value at the point t. 

Let x(t) denote the cell concentration of a bacterial population at the time t. 
The derivative of x(t) gives the (absolute) growth rate and: 

d 
- - X  
dt 

x 
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is the specific, or relative, growth rate. Because: 

d 
d - - x  dt  

- - I n  x =  
dt  x 

the specific growth rate can be measured as the slope of the curve In x(t). Note 
that if the base of the logarithm is 10 then the slope of the curve logl0(t) is In 
10 = 2.3 times less than the specific growth rate. 

Our starting point is a growth model well-known from population dynamics. We 
examine the first-order ordinary differential equation: 

d 
- - x = I z ( x )  x ( O < t < o %  O < x )  ( l a )  
dt  

with the initial value 

x(0)  = x  0 ( x 0 > 0 )  ( lb )  

where /~(x), the specific growth rate, is supposed to be monotone decreasing 
(Vance, 1990). If > (x )  =//'max ---- constant, then ( la)  describes the pure exponential 
(Malthus) growth. If, for example, with m > 0: 

. ( x )  =.max 1-- (Xo<--X<--Xmax) (1C) 

then Richards' family of growth curves can be obtained. The parameter  Xma x is the 
maximum population density while m is a curvature parameter.  The special case of 
m = 1 is called the logistic or Pear l -Verlhurst  growth model. These possibilities, 
and many others, like Gompertz,  yon Bertalanffy, etc. are analyzed and unified in 
a generic growth model by Turner  et al. (1976). 

2.2. Inhibition in the end of the exponential phase 

A common feature of the growth models of the form (la) is that, if ~ (x )  is 
strictly monotone decreasing with p.(Xma x) = O, then the solution, x(t) ,  is a sigmoid 
function which approximates Xma x asymptotically as t increases. The differential 
equation ( la)  can be written in the form: 

d 
--X=Id~maxU(X)X ( O ' < t < o o ; O < x )  ( ld)  
dt 

provided that the specific growth rate, ~(x) ,  is finite (this constraint does not hold, 
for example, in the Gompertz-case whe re / z (x )  can be any large value if x is small 
enough, but does hold in Richards' model). The function u(x) will be called 
'inhibition' function because it ensures the transition of the growth curve to the 
stationary phase. Its values are between 0 and 1 and it decreases as x increases 
from 0 to X m a  x .  

Food microbiologists prefer using the logarithm of the cell concentration (a 
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consequence of the differences from biotechnology mentioned in the introduction) 
so we apply the notation: 

y ( t )  = In x ( t )  Y0 = In x 0 Ymax = In Xma x 

The above system, in terms of y( t )  = In x(t) ,  can be written as: 

d 
~ y  =/Zmax u(e  y ) (0 < t  <oe; 0 < y )  (2a) 

y(0)  = Y0 ( Y0 > 0) (2b) 

Since the applied transformation keeps the monotonity, u(e y) monotone decreases 
as y increases. Consequently, as can be seen from (2a), the derivative of the 
logarithm of the cell concentration is monotone decreasing, too, and it cannot 
provide a sigmoid curve. This is why the logarithm of the classical sigmoid (such as 
the Gomper tz  or logistic) functions cannot be used to model the variation of the 
logarithm of the cell concentration in those situations when a lag phase is observed 
in the growing culture. 

An example for the u(x) inhibition function, values of which are decreasing in 
the (0, 1) interval, can be read from the (lc)  form of Richards '  model. Another,  
well-known example is Monod's  model, where 

S 
u ( x )  = 

K s + S  

Here  S denotes the substrate concentration, K s is the so-called Michael i s -Menten  
constant, and it is supposed that 

d 
- - S  = - Y  
dx  

where Y is a positive constant (see, for example, in Roels and Kossen, 1978). 
Considering that, as long as S > 0, 

d d S K s 
- - u  . . . .  Y- < 0  
dx  dx  Ks + S ( K s + S )  2 

we can conclude that the Monod model, too, is a special case of (ld), with the 
above, substrate-dependent ,  inhibition function. However, because of the aims of 
predictive food microbiology mentioned in the introduction, we suggest that a 
simple, empirical inhibition function, like that of Richards, is suitable. 

2.3. Inhibition before the exponential phase - the form of  the new growth model 

In what follows, we investigate how an 'inhibition' function, similar to u(x),  can 
be derived for the beginning of the growth curve (lag phase). 

A scheme of a typical batch culture experiment, regularly carried out in food 
microbiology laboratories, is shown on Fig. 1. The bacterial population is first 
cultured under more or less optimal conditions (environment E 1) then inoculated 
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time 
Fig. 1. Effect of metabolic activity at inoculation on subsequent lag time. Low metabolic activity at 
inoculation causes lag in the growth of the culture. The lag in the post-inoculation environment, E2, is 
longer if the cells are closer to the stationary phase in the pre-inoculation environment, E 1. 

and grown in the actual environment,  E2, where the logarithm of the cell 
concentration changes according to a well-known sigmoid pattern,  provided that 
the environment E 2 is kept constant. In what follows, we refer to the time of 
inoculation as the zero time, t = 0. At the end of El, just before t = 0, the cells are 
either in the exponential phase or close to the stationary phase and the physio- 
logical state at t = 0 affects the length of the lag period in E 2 (Pirt, 1975). 

It is widely accepted that the maximum specific growth rate of a given popula- 
tion, ~m~,  in a constant environment,  is an intrinsic paramete r  of that population 
(Rubinow, 1984). Therefore  it is reasonable to suppose that/'~ma~ is determined by 
the variables of E 2 independently of the pre-inoculation environment,  E 1. Alter- 
nately, instead of /Xma x, the doubling time can be modelled, using the formula: 
doubling time = In 2//Zma x. 

This approach has been followed by many authors working in predictive 
microbiology (Gibson et al., 1988; Buchanan and Phillips, 1990; McClure et al., 
1993). In addition, another  paramete r  of the actual growth curves, the lag time, is 
frequently modelled. However,  the duration of lag depends not only on E 2 but 
also upon the previous history of the cells. If, for example, the cells are in high 
metabolic activity at t = 0, as when inoculation is made from the exponential phase 
of E 1, then the lag will be shorter than if this activity is low, as occurs when 
inoculation is made from the stationary phase in E1 (see Fig. 1). One reason why it 
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is more difficult to predict the length of the lag period than the maximum specific 
growth rate (or the doubling time) is that the cells' history can be significantly 
different for the same inoculum concentration. 

In our system, the instantaneous growth rate at the time t is determined by the 
cell concentration, x(t), the extracellular environment, E2, and the physiological 
state of the cells, characterized by just one variable, q(t), in what follows. 

We postulate that the cell concentration of a bacterial batch culture is described 
by the differential equation 

d 
- - X  = ]/'max oL( t )  U(X) X (0 < t < ~; 0 <X) (3a) 
d t  

with the initial value 

x(0)  = x  0 (x  0 > 0) (3b) 

The constraints for the inhibition function, u(x), are the same as under (la). The 
factor a(t) is called adjustment function. It is monotone increasing for t > 0 
describing the adjustment of the culture to the new environment. The 'damping' 
role of a(t) is similar to that of u(x) (the values of both factors are from the [0, 1] 
interval), but a ( t )  will affect the course of growth before the exponential phase. 

The so-called initial value problem (3a), (3b) has been analyzed by Baranyi et al. 
(1993b). Richards' form of u(x) (see (lc)) was suggested in Baranyi et al. (1993a). 
With that form of the inhibition function and under the constraint that the actual 
e n v i r o n m e n t ,  E 2 ,  and therefore ~m~x, is constant, an explicit solution of (3a), (3b) 
was given in the latter paper. It is worth recalling this solution, not only because of 
the unfortunate misprints in the original paper, but also because of its flexibility in 
the fitting procedure, which will be analyzed later in Section 3.2: Numerical 
properties. 

As already stated, the slope of the curve In x(t) will be the specific (per cell) 
growth rate. If E 2 is constant then the logarithm of the solution of the above 
differential equation, y(l) = In x(t) ,  can be expressed as 

y(t) = Y m a x -  in 1 + - - -  (4a) em,am~A(t) 

or, after rearrangement:  

1 (  em~tm~xA(t)--l) 
y(t)=Yo+tXmaxA(t ) -  In 1 +  em~--g}-~Cm _yo} (4b) 

where 

A(t) = ~jUa(s) ds 

(s is an integral variable running from 0 to t). 

(4c) 
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Suppose that the per cell concentration of a critical substance, P( t ) ,  is the 
bottle-neck in the process of growth, and the specific growth rate is influenced by 
P(t)  according to the well-known Michael is-Menten kinetics: 

P ( t )  

a ( t ) -  K p + P ( t )  

where Kp is the Michael is-Menten constant. Assuming that P(t)  is proportional 
to the nth power of time, a flexible sigmoid function could be obtained which is 
suitable to fit growth data (Baranyi et al., 1993a). Here  we show another form of 
P(t)  which allows that the environment may be changing during the growth. 

Suppose that, after the inoculation, the rates of the enzymatic reactions playing 
a primary role in producing P(t)  adjust instantaneously to the new environment, 
which may change during the growth, and, in the lag phase, P(t)  follows a 
first-order kinetics: 

d 
- - P =  uP 
dt 

where the rate, z,, is characteristic of the actual environment: u = 1.'(E2). In this 
way the adjustment function is influenced by the entire given environment profile, 
E 2 = E2(t), and not just by a single parameter.  

It is not easy to decide whether, and how, the Michael is-Menten constant, Kp, 
is influenced by E 2. The answer obviously depends on how the critical substance is 
affected by the factors defining E z. We return to this question later. For the time 
being, suppose that, even if E 2 changes during the growth, K e remains constant 
and therefore the adjustment function depends on the ratio P( t ) /Kp .  This is the 
quantity we will use to characterize the physiological state of the cells: let 
q(t) = P( t ) /Kp .  

2.4. Lag in a constant enuironment 

If the actual environment, E2, is constant then P(t)  grows exponentially at a 
constant specific rate, v, and our new adjustment function can be obtained in the 
form: 

P ( t )  q ( t )  qo 

a ( t )  = P ( t )  +Kp 1 + q ( t )  qo+e -~t (5a) 

where q0 = q(0) = P(O)/Kp. As can be seen from the formula, the process of 
adjustment depends on the initial value of q(t), which characterizes the physio- 
logical state of the inoculum, and on the rate u. The integral function of a(t) ,  
denoted by A(t )  in (4c), can be expressed explicitly: 

1 (e-~t+q°) (5b) 
A ( t ) = t +  In l + q 0  
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Fig. 2. R e l a t i o n  of  the  A(t) in tegra l  of  the ad ju s tmen t  funct ion to f l ( t )  = t and  f2 ( t )  = t -  A. 

f 3 ( t )  = A(t) can be cons ide red  as a resca l ing  of t ime.  It  converges  to f2(t) = t - A which is a de layed  
vers ion  of  f l(t)  = t. This  g radua l  de lay  in t ime  is u t i l ized in c rea t ing  the s igmoid  growth  funct ion.  

The above expression, substituted in the formula (4b), gives a sigmoid function 

with the parameters, Y0, Y . . . .  /Xmax, q0, v and m. 
For convenience, if the environment is constant, a lag parameter can also be 

derived in our model. Consider the formula (5b) given for A(t). As is demon- 
strated in Fig. 2, A(t) approximates the function t - h  more and more as t 
increases, where 

ln(1 + l / q 0 )  
A - ( 6 )  

v 

Baranyi et al. (1993b) proved mathematically that, if the asymptote of A(t) is a 
function of the form t - t 0, where t o is a constant, then the classical definition of 
the lag (Pirt, 1975) is very close to t 0. Therefore it is reasonable to define our 
lag-parameter by the formula (6). 

The parameter q0 and the rate u determine the process of adjustment. The 
quotient q0 = Po/Keexp resses the physiological state of the inoculum; if q0 is 
small then h is large. The rate u determines the quickness of the transition from 
the lag to the exponential phase. If u is small then the lag phase can be long. 
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2.5. A special case of  the growth model 

The specific growth rate of the bacterial culture is a result of certain enzymatic 
reactions. As a general principle, we assume that this rate is not higher than the 
rate of the slowest of these reactions, causing the bottle-neck in the growth. This 
suggests that the specific rate of production of the critical substance, v, should be 
equal to that of the bacterial culture, which rate is characteristic of the actual 
environment. That  is v (E  2) =/Zmax(E 2) and the model for the logarithm of the cell 
concentration can be described as 

d 1 
dt  y - 1 + e - o ( t ) t z m a x ( E 2 ) ( 1  - em(y--Ymax)) (7a) 

d 
~--~Q = b/,max(E2) (7b) 

y(0)  = Y0 Q(0)  = In q0 (7c) 

where Q( t ) = In q( t ). 
The specific growth rate depends on time through the actual, t ime-dependent,  

environment in the following manner: the functions E2(t) and/Zmax(E 2) should be 
provided by the modeller, where E2(t) is the environment-profile of the culture 
after the inoculation, and ~max(E2) is a suitable function to describe the relation- 
ship between the environment and the maximum specific growth rate as in the 
Arrhenius- or Square-root models, if the environment is defined by the tempera- 
ture only - see McMeekin et al. (1993). The other parameters and variables have 
been defined above. 

3. Results and discussion 

3.1. Biological interpretations 

The course of the growth, y(t),  is affected by the initial bacterial cell concentra- 
tion, Y0 as well as the physiological state of the inoculum, q0. For cultures having 
identical physiological states at inoculation and being cultivated under constant 
(but different) temperatures, the product of the lag time and the maximum specific 
growth rate will be a transformed version of q0 (see the formula (6) with v =/Zma x) 
so it is a consequence in our model that the lag is inversely proportional to the 
maximum specific growth rate. This phenomenon has been observed, for example, 
by Cooper (1963). Note that several authors (Smith, 1985; Mackey and Kerridge, 
1988) use the same model for the specific growth rate as for the reciprocal of the 
lag time, which implicitly assumes that these two parameters are inversely propor- 
tional. 

If the adjustment function is equal to 1, a( t )  = 1, then the solution of (7a), (7b), 
(7c), denoted by p( t )  here, is independent of q0. The function p( t )  is called the 
potential growth in Baranyi et al. (1993a) because it would be the course of the 
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Fig. 3. Role of the potential growth when interpreting the product of the lag and the maximum specific 
growth rate geometrically. The potential growth, p(t), responds to environmental changes instanta- 
neously, thus reflecting the behaviour of the critical product, P(t). The geometrical meaning of h0, the 
product of the maximum specific growth rate and the lag, can be read from the plot by means of the 
potential growth. 

growth curve if the cells had been inoculated from the exponential phase. Because 
the maximum specific rate of the potential growth is /Zmax, the formula (6) also 
means that, from its initial value, an increase of 

h0 =/Xmaxh = l n  1 + = --ln a 0 (8) 

must be reached by the logarithm of the potential growth by the end of the lag 
phase (Fig. 3). In the lag phase, the potential growth, p(t), can be interpreted as a 
variable, proportional to the quantity q(t), representing the actual physiological 
state of the cells. 

Note that, according to the model, q(t) grows to infinity, which is biologically 
impossible. But for our modelling purposes it is enough to say that, in the 
adjustment period, q(t) grows according to first-order kinetics, the instantaneous 
rate of which, /Xm,x(t), is influenced by the actual environment. Later, after the 
exponential phase, there is a certain 'surplus' in q(t), but this does not influence 
the bacterial concentration because the cells cannot grow faster than dictated by 
their potential specific growth rate. See more details on this question in Baranyi et 
al. (1994) who analyse whether, and to what extent, the actual decrease of q(t) at 
cell division can be neglected in the model. 
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In our model there is no independent parameter  for the lag. This expresses our 
view that the lag time is not interpretable, as a single number, if the temperature 
changes during the growth. The lag period is a process of adjustment described by 
the adjustment function, a(t). If the post-inoculation environment is constant, and 
only in that case, this function can be defined by a single parameter.  That  
parameter  may express a lag-type duration, as in Baranyi et al. (1993a), where the 
a ( t )  adjustment function depends on a lag-parameter, A, or may measure the 
physiological state of the inoculum as in the above model, where o~(t) depends on 
the physiological state of the inoculum, c/0, and the lag depends on q0 as well as on 
tZmax, the potential maximum specific growth rate in E 2. 

However, if the actual environment changes during the lagging period then the 
adjustment function should be influenced by the entire environmental profile, 
E2(t), as well as by q0- This concept is formalized in the differential equation of 
Eq. (7b). 

The adjustment function, as given in (5a), can be considered as a transformation 
of the quantity q(t) and expresses the same: the 'readiness' of the ceils for the 
actual environment. Hence, by means of a( t) ,  the ratio of the actual and the 
potential specific growth rate, we have obtained another indicator of the physio- 
logical state of the cells. Also the quantities h 0 = In (1 + 1 /q  0) = - l n  a 0 and 
a0 = q0/(  1 + q0) are just different transformations of q0, but they all measure, in 
some way, the physiological state of the inoculum. 

3.2. Some numerical properties 

The model variables represent rates and concentrations; a lag-parameter can be 
interpreted under constant conditions only. As can be seen from (6), an estimated 
lag value cannot be negative for any dataset (unlike in the case of the modified 
Gompertz function as suggested by Gibson et aI., 1988). 

The environmental profile, E2(t), has its role in (7a). The system of differential 
equations (7a), (7b) does not have an explicit solution for arbitrary E2(t) and 
/.~max(E2) functions. Solving and, especially, fitting a differential equation are much 
more labour intensive than an explicit function, although codes can be compiled 
for this purpose (Press et al., 1990). It is a purely computational investigation, 
whether, and under what conditions, an explicit solution is available. One obvious 
example is when the actual environment, Ez(t), and therefore /'/'max, are constant 
and (4a), (4b) can be obtained. According to our experience, from the forms (4a) 
and (4b), which are theoretically equivalent, the latter should be used in numerical 
calculations, especially in the lag and the exponential phase. Application of (4b) 
also has a flexible property: namely, if there are no data indicating a stationary 
phase, then the last, logarithmic, term (with Ymax in it) can simply be omitted and 
the number of parameters to be estimated decreases by one. The potential growth 
of the obtained growth function will be the pure exponential growth. This 'reduci- 
ble' feature of our family of growth functions was used efficiently in Gibson et al. 
(1994, this issue). The practical procedure is similar to omitting a term from a 
linear regression model (Box and Draper,  1987): if the t-value of the estimated 
Ymax parameter  is below a certain limit, depending on the required confidence 
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level, then the upper  asymptote is not well-defined by the dataset, so the curve is 
fitted again with the formula (4b) but omitting the logarithmic term. 

3.3. A practical guide 

Modelling the growth curve after the exponential phase is less significant in the 
microbiological safety of food and m plays a role only in the transition from the 
exponential to the stationary phase. Therefore,  an empirical value, m = 1 is 
suggested for this curvature paramete r  (logistic potential  growth). 

As has been mentioned,  it is not easy to fit these differential equations without 
skilled mathematical  help. This would be the task to carry out if one wanted to use 
the system (7a), (7b), (7c) to fit experimental  data directly. This is why we suggest 
an alternative below. 

If  the subculturing procedures are carefully standardized then the physiological 
state of the inoculum, therefore the parameters  q0 and h 0 (which are only 
transformations of each other), should be constant for the different growth curves. 
Rather  than estimating qo directly, our experience is that estimation of h 0 has the 
best statistical properties,  so this paramete r  should be fitted from the individual 
growth curves and then an average of the estimated h 0 values, hav, should be 
substituted in (8) to calculate q0. With the obtained q0 value, (7a), (7b), (7c) can be 
simulated on a computer  to predict the bacterial growth under  isothermal condi- 
tions or time-varying temperature .  This will be demonstrated below on the dataset 
of McClure et al. (1993) which measured the growth of Brochothrix thermosphacta 
under  different environmental  conditions. 

The subculturing process in those experiments was relatively standardized and 
at the time just before inoculation the cells were in a stationary phase. This is 
important  if one wants to model the acceleration from the passive to the active 
physiological state. It is also necessary that the inoculum level should be around 
the same, relatively low, value, which was ~ 103 c f u / m l  in our case. We have 
fitted the growth curves by the explicit, four-parameter  function defined by (4b) 
and (5b). The only difference between these curve fittings and those described as 
Program 2 in McClure et al. (1993) is the form of the adjustment function. Instead 
of the lag time estimated in that paper,  we now estimate the paramete r  h 0 = In 
(1 + 1 /q  0) for each growth curve. This parameter ,  which can be considered as the 
product of the lag time and the maximum specific growth rate, was close to a 
constant, similarly to the observation of Cooper  (1963), although in McClure et al. 
(1993) not only the tempera ture  but also the pH and a w were different for 
different growth curves. The average of h o was hay = 3.2 with a standard error of 
1.4. Note that in McClure et al. (1993), with different sigmoid functions, the 
q u a n t i t y  tJ, max ~ showed much higher variance. 

After  fitting the curves individually by the four parameter  sigmoid function 
given by (4b) and (5b), we fixed the value of q0 as q0 = qfL,, where 

1 

qf ix-  exp(hav) _ 1 
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The result was qf~, = 0.0425. Substituting this into (5a) fixed the adjustment 
function. The curves were fitted again with that fixed adjustment function, but now 
these were three-parameter  curve fitting procedures. The newly obtained /Zmax-Val- 
ues were then used when modelling the dependence of the maximum specific 
growth rate on the environmental factors. 

For the sake of comparison, a quadratic response surface was applied to the 
logarithm of the newly fitted/Xmax-values , as in the original paper. In McClure et 
al. (1993) the standard error of this quadratic fitting was 0.29 and 0.27, depending 
on which of the two sigmoid functions of that paper was used. With our procedure 
above, this error fell to 0.22. The improvement is evidently the result of the 
variance-damping effect of the assumption h 0 = constant. Moreover, it is not 
necessary to estimate the lag-parameter, if the same initial physiological state is 
assumed for the ceils as in the experiments, because of A = h a v / / / . ~ m a x  . This is not 
the situation when other sigmoid curves are used to fit the individual growth 
curves. It is common experience that estimates of the lag parameter  usually show 
higher variance than those of the maximum specific growth rate. For example, in 
McClure et al. (1993), the logarithm of the reported lag values varied around the 
fitted quadratic surface with a standard error of 0.43, which was almost twice as 
much as that of ln(/Xmax). 

In Fig. 4, by way of demonstration, the experimental data of the growth curve 
with code = 1 of McClure et al. (1993) are plotted together with two curves yl(t) 
and y2(t). The curve y~(t) was predicted by the method of Program 1 of that 
paper which fitted a Gompertz  function to each growth curve and then a quadratic 
response surface to the logarithm of the derived growth parameters,  the maximum 
specific growth rate and the lag time, independently of each other. The predicted 
curve was obtained by taking the values of the maximum specific growth rate and 
the lag time from the quadratic response surface and producing the desired 
Gompertz  curve by considering the inoculum level for the lower asymptote and a 
constant for the upper  asymptote. With three environmental factors, this means 
2 × 10 + 1 = 21 model-coefficients. The curve Y2(t) was predicted by the method 
described above, with only 12 coefficients, because the modelling of lag is replaced 
by modelling the product of ]d, max and the lag by a constant. The maximum 
population density was taken to be 108.5 cel l /ml,  in both cases. As can be seen in 
the plot, both predictions are acceptable as far as the maximum specific growth 
rate is concerned (/Xmaxa = 0.05 and/Zmax2 = 0 . 0 5 8 ,  respectively), but yl(t) underes- 
timates the lag. The larger error in estimating the lag reflects that the average 
multiplicative error (0.43) of the lag-prediction of Program 1 is much higher than 
that of our model where it must be the same as that of/Xm~x, i.e. 0.22. Therefore  
our re-definition of lag has also eliminated another problem because the lag and 
the maximum specific growth rate (or their reparameterized versions, see 
Garthright, 1991) are generally modelled independently of each other, which 
contradicts the commonly observed phenomenon that they are more or less 
inversely proportional for cultures when the physiological state of the inoculum is 
identical. For example, when using the independent  lag- and growth rate models to 
predict a growth curve then it is possible that the lag is underestimated while the 
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Fig. 4. Experimental data and growth curves produced by different models. Data (*) are those of curve 
No. 1 in McClure et al., 1993: Brochothrix thermosphacta, at temperature = I°C, pH 5.6, salt 0.7%. 
When constructing the curve yl(t), the environment dependence of the lag and the maximum specific 
growth rate were modelled independently of each other (21 model coefficients). Curve Y2(t) is 
generated by the new model, where the product of the lag and the maximum specific growth rate is 
constant, independently of the environment (12 model coefficients). 

maximum specific growth rate is overestimated, because the correlation between 
them is not taken into account in the model. The accumulated effect can result in 
predicted growth being much faster than the experimental curve. In our approach, 
in constant environment, the lag is per se inversely proportional to the maximum 
specific growth rate (see formula (8)) which defines the correlation between them. 

It is worth noting that also the average difference between the growth rates 
predicted by the new model and those from independent literature data, tabulated 
in McClure et al. (1993), decreased by about 20%. 

The questions, how well the model can predict the course of growth when E 2 is 
varying with time, and to what extent factors may change but the model still 
provide acceptable predictions, are published in Baranyi et al. (1994). In that 
paper, the necessary model parameters are estimated from data collected in 
constant-temperature-experiments then, by means of those parameters, growth 
curves are predicted for the situation when the temperature changes with time 
during the growth. The predictions are then compared with experimental data. 

3.4. Possibilities of further deuelopments 

One of the crucial assumptions in this paper is that the Michaelis-Menten 
constant of the critical substance, K e, is independent of the actual environment, 
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E2, so the physiological state of the cells can be characterized by just one variable, 
q( t )  = P ( t ) / K p .  This is obviously an oversimplification and is likely to be modified 
as the model develops further. For example, one consequence of that simplifying 
assumption was that, if the actual environment, E 2 is constant, the product of the 
lag and the maximum specific growth rate, h0, is independent of E 2. Therefore an 
important area for further research is to decide in what region of environmental 
factors the lag and the maximum specific growth rate are inversely proportional, 
i.e. the value of K p  is constant. 

The /Xmax(E 2) function has a central role in the system (7a), (7b), (7c). It is 
outside the scope of this paper to investigate what model should be used for that 
function. If E 2 involves the temperature only, then the Arrhenius- and the 
Square-root model are the best known relationships. These, and several alterna- 
tives to modelling the combined effects of temperature, pH and aw, are listed in 
McMeekin et al. (1993). The quadratic response surface applied for the dataset of 
McClure et al. (1993) is virtually a simple representation of the collected data and 
it is appropriate to analyze the 'smoothness'  of those data. This is why we can say 
that, among other uses, our model could 'damp'  the variance of the measured data. 
Nevertheless, the improvement of the above dynamic approach depends very much 
on the quality of the ~max(E2) model. 

One advantage of mechanistically derived models is that it is easier to develop 
them further as the quantity and quality of the information on the analyzed system 
increases. The present paper, derived from a fundamental growth model of 
population dynamics, supports this statement. 
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