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Selection of Variables to preserve 
Multivariate Data Structure, using Principal 
Components 
By W. J. KRZANOWSKI 

University of Reading, UK 

[Received March 1986. Revision July 1986] 

SUMMARY 
A common objective in exploratory multivariate analysis is to identify a subset of the variables which 
conveys the main features of the whole sample. Analysis of a well-known multivariate data set shows 
that methods currently available for selecting variables in principal component analysis may not lead 
to an appropriate subset. A new selection method, based on Procrustes Analysis, is proposed and 
shown to lead to a better subset for the data first analysed. Some supporting Monte Carlo results are 
presented, and implications for other multivariate techniques are briefly discussed. 

Keywords: Monte Carlo simulation; Principal component analysis; Procrustes rotation; Singular 
value decomposition; Variable selection 

1. Introduction 
Exploratory multivariate studies generally aim at data inspection and dimensionality 
reduction. If sample features are unknown a priori, one of the objectives of the analysis is to 
uncover any interesting patterns that may be exhibited by the data. It often happens that the 
investigator has also measured more variables than strictly necessary on each sample member. 
Consequently, the dimensionality can be reduced easily without disturbing the overall features 
of the sample. The most common data-exploratory technique for use in such circumstances 
is principal component analysis [see, e.g. Mardia, Kent and Bibby (1979, Chapter 8), Seber 
(1984, pp. 176-203) or Jolliffe (1986)]. Suppose that p variates X1, X2, ..., Xp have been 
observed on each of n individuals and that the observation vector for the ith individual is 
denoted by X(i) .- (Xi1, Xi2i .. . Xip)'. Principal component analysis linearly transforms the 
variates X1, ..., XP to new variates Y1, ..., Yp, the principal components, and hence the data 
observations X(i to corresponding principal component scores y(i) = (Y , . . ., Yip)'. Dimension- 
ality reduction is effected if q( <p) of the components Yi convey "most of the sample 
information" inherent in the p variates Xi. In this case the original observations X(i) can be 
replaced by the first q elements of the corresponding principal component scores. We can then 
write y(i) = (Yi1, . . ., Yiq)'. A plot of these scores against q orthogonal axes yields an 
approximation to the original data configuration. In particular, if q = 2, the resulting scatterplot 
yields the best two-dimensional projection of the original high-dimensional data swarm for 
inspecting the sample and revealing interesting patterns. 

The major deficiency of this approach to dimensionality reduction is that, while the 
dimensionality of the space may indeed be reduced from p to q, all p original variables are in 
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MULTIVARIATE DATA STRUCTURE 23 

general still needed in order to define the q new variables Yi. This deficiency is highlighted by 
Srivastava and Khatri (1979) and also by McCabe (1984), who states: "In many applications, 
it is desirable not only to reduce the dimension of the space, but also to reduce the number 
of variables which are to be considered or measured in the future". One practical example of 
this objective occurs in sensory data analysis, where a panel of judges may be asked to rate 
each of a set of n food products (e.g. steak, sausage, beefburger) with respect to each of a set 
of p descriptors (e.g. smooth, gritty, chewy). Commonly, the objective is to quantify the 
perceived similarities among the products and hence to assess the market potential of a new 
product. When initiating such an experiment, the appropriate descriptors on which to compare 
the products may not be known. A possible approach is to start with a very large and exhaustive 
number p of such descriptors, conduct a pilot study, and use the results to select the q "best" 
descriptors. In such a pilot study, many of the descriptors will inevitably be redundant and 
the true dimensionality of the data will be much smaller than p. However, retaining all p 
descriptors but using only q linear combinations of them in future experiments is unsatisfactory 
not only because it is wasteful of time and resources but also because interpretation of such 
linear combinations is often difficult. Hence a reduction in the number of descriptors themselves 
is essential. 

Identification of redundant variables, and selection of subsets of variables, is a long-standing 
area of interest in multivariate analysis. The most researched areas of application are those 
of multiple regression and discriminant analysis, where there exist natural criteria with respect 
to which optimality of selection can be defined (e.g. predictive sum of squares; error rate). 
Some references in these areas are Beale, Kendall and Mann (1967), Hocking (1976) and McKay 
and Campbell (1982, a,b). Only two systematic studies seem to have been made in the context 
of principal component analysis, however. Jolliffe (1972, 1973) discussed a number of methods 
for selecting a subset of q variables which preserve most of the variation of the original 
variables. McCabe (1984) worked with the concept of a "principal variable", which is a variable 
containing (in some sense) as much sample information as possible, and showed how the 
selection of a subset of such principal variables can be made on the basis of various optimality 
criteria. 

From a practitioner's point of view, the best subset of q variables will contain those variables 
which reproduce as closely as possible the general features of the complete data (as might be 
evinced by a principal component analysis of the original p variables). While Jolliffe's or 
McCabe's subsets all satisfy various optimality criteria, they do not necessarily meet this 
particular requirement; this is demonstrated in section 2 for a data set first analysed by Jeffers 
(1967). The purpose of this paper is therefore to suggest an alternative criterion and subset 
selection technique which is more directly aimed at meeting the requirement. Methodological 
details are considered in section 3, some investigations of the technique via Monte Carlo 
simulations are reported in section 4, and the method is briefly placed in a wider context in 
section 5. 

2. Motivation 
Jeffers (1967) has provided two detailed case studies of principal component analysis. We 

focus here on the second of these. The data comprise 19 variables measured on each of 40 
winged aphids (alate adelges) that had been caught in a light trap. The full 40 x 19 data matrix 
is given in Table 1. A description of the variables is given by Jeffers, and from their disparate 
nature it is evident that the data should be standardised before analysis. Full details of the 
analysis are given in Jeffers (1967); his two main conclusions were that the essential 
dimensionality of the data was two and that the 40 aphids formed four distinct groups. The 
first conclusion was based on inspection of the eigenvalues of the correlation matrix (his table 
10), while the second came from the plot of the data on the first two principal components 
as axes (his Fig. 1). 
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TABLE 1 

Alate Adelges data. [For description of variables, see Jeffers (1967)] 
Aphid Variable CI) 

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 > 

1 21.2 11.0 7.5 4.8 5 2.0 2.0 2.8 2.8 3.3 3 4.4 4.5 3.6 7.0 4.0 8 0 3 

2 20.2 10.0 7.5 5.0 5 2.3 2.1 3.0 3.0 3.2 5 4.2 4.5 3.5 7.6 4.2 8 0 3 

3 20.2 10.0 7.0 4.6 5 1.9 2.1 3.0 2.5 3.3 1 4.2 4.4 3.3 7.0 4.0 6 0 3 

4 22.5 8.8 7.4 4.7 5 2.4 2.1 3.0 2.7 3.5 5 4.2 4.4 3.6 6.8 4.1 6 0 3 

5 20.6 11.0 8.0 4.8 5 2.4 2.0 2.9 2.7 3.0 4 4.2 4.7 3.5 6.7 4.0 6 0 3 

6 19.1 9.2 7.0 4.5 5 1.8 1.9 2.8 3.0 3.2 5 4.1 4.3 3.3 5.7 3.8 8 0 3.5 

7 20.8 11.4 7.7 4.9 5 2.5 2.1 3.1 3.1 3.2 4 4.2 4.7 3.6 6.6 4.0 8 0 3 

8 15.5 8.2 6.3 4.9 5 2.0 2.0 2.9 2.4 3.0 3 3.7 3.8 2.9 6.7 3.5 6 0 3.5 

9 16.7 8.8 6.4 4.5 5 2.1 1.9 2.8 2.7 3.1 3 3.7 3.8 2.8 6.1 3.7 8 0 3 

10 19.7 9.9 8.2 4.7 5 2.2 2.0 3.0 3.0 3.1 0 4.1 4.3 3.3 6.0 3.8 8 0 3 

11 10.6 5.2 3.9 2.3 4 1.2 1.0 2.0 2.0 2.2 6 2.5 2.5 2.0 4.5 2.7 4 1 2 

12 9.2 4.5 3.7 2.2 4 1.3 1.2 2.0 1.6 2.1 5 2.4 2.3 1.8 4.1 2.4 4 1 2 

13 9.6 4.5 3.6 2.3 4 1.3 1.0 1.9 1.7 2.2 4 2.4 2.3 1.7 4.0 2.3 4 1 2 

14 8.5 4.0 3.8 2.2 4 1.3 1.1 1.9 2.0 2.1 5 2.4 2.4 1.9 4.4 2.3 4 1 2 

15 11.0 4.7 4.2 2.3 4 1.2 1.0 1.9 2.0 2.2 4 2.5 2.5 2.0 4.5 2.6 4 1 2 

26 18.1 8.2 5.9 3.5 5 1.9 1.9 1.9 2.7 2.8 4 3.5 3.8 2.9 6.0 4.5 9 1 2 

17 17.6 8.3 6.0 3.8 5 2.0 1.9 2.0 2.2 2.9 3 3.5 3.6 2.8 5.7 4.3 10 1 2 
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18 19.2 6.6 6.2 3.4 5 2.0 1.8 2.2 2.3 2.8 4 3.5 3.4 2.5 5.3 3.8 10 1 2 
19 15.4 7.6 7.1 3.4 5 2.0 1.9 2.5 2.5 2.9 4 3.3 3.6 2.7 6.0 4.2 8 1 3 
20 15.1 7.3 6.2 3.8 5 2.0 1.8 2.1 2.4 2.5 4 3.7 3.7 2.8 6.4 4.3 10 1 2.5 
21 16.1 7.9 5.8 3.7 5 2.1 1.9 2.3 2.6 2.9 5 3.6 3.6 2.7 6.0 4.5 10 1 2 
22 19.1 8.8 6.4 3.9 5 2.2 2.0 2.3 2.4 2.9 4 3.8 4.0 3.0 6.5 4.5 10 1 2.5 
23 15.3 6.4 5.3 3.3 5 1.7 1.6 2.0 2.2 2.5 5 3.4 3.4 2.6 5.4 4.0 10 1 2 
24 14.8 8.1 6.2 3.7 5 2.2 2.0 2.2 2.4 3.2 5 3.5 3.7 2.7 6.0 4.1 10 1 2 
25 16.2 7.7 6.9 3.7 5 2.0 1.8 2.3 2.4 2.8 4 3.8 3.7 2.7 5.7 4.2 10 1 2.5 
26 13.4 6.9 5.7 3.4 5 2.0 1.8 2.8 2.0 2.6 4 3.6 3.6 2.6 5.5 3.9 10 1 2 
27 12.9 5.8 4.8 2.6 5 1.6 1.5 1.9 2.1 2.6 5 2.8 3.0 2.2 5.1 3.6 9 1 3 
28 12.0 6.5 5.3 3.2 5 1.9 1.9 2.3 2.5 3.0 5 3.3 3.5 2.6 5.4 4.3 8 1 2 
29 14.1 7.0 5.5 3.6 5 2.2 2.0 2.3 2.5 3.1 5 3.6 3.7 2.8 5.8 4.1 10 1 2 
30 16.7 7.2 5.7 3.5 5 1.9 1.9 2.5 2.3 2.8 5 3.4 3.6 2.7 6.0 4.0 10 1 2.5 
31 14.1 5.4 5.0 3.0 5 1.7 1.6 1.8 2.5 2.4 5 2.7 2.9 2.2 5.3 3.6 8 1 2 
32 10.0 6.0 4.2 2.5 5 1.6 1.4 1.4 2.0 2.7 6 2.8 2.5 1.8 4.8 3.4 8 1 2 
33 11.4 4.5 4.4 2.7 5 1.8 1.5 1.9 1.7 2.5 5 2.7 2.5 1.9 4.7 3.7 8 1 2 x 
34 12.5 5.5 4.7 2.3 5 1.8 1.4 1.8 2.2 2.4 4 2.8 2.6 2.0 5.1 3.7 8 0 2 
35 13.0 5.3 4.7 2.3 5 1.6 1.4 1.8 1.8 2.5 4 2.7 2.7 2.1 5.0 3.6 8 1 2 H 
36 12.4 5.2 4.4 2.6 5 1.6 1.4 1.8 2.2 2.2 5 2.7 2.5 2.0 5.0 3.2 6 1 2 
37 12.0 5.4 4.9 3.0 5 1.7 1.5 1.7 1.9 2.4 5 2.7 2.7 2.0 4.2 3.7 6 1 2 > 
38 10.7 5.6 4.5 2.8 5 1.8 1.4 1.8 2.2 2.4 4 2.7 2.6 2.0 5.0 3.5 8 1 2 > 
39 11.7 5.5 4.3 2.6 5 1.7 1.5 1.8 1.9 2.4 5 2.6 2.5 1.9 4.6 3.4 8 1 2 
40 12.8 5.7 4.8 2.8 5 1.6 1.4 1.7 1.9 2.3 5 2.3 2.5 1.9 5.0 3.1 8 1 2 

- (* 
C 
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Fig. 1. Alate data exhibited against the first two principal components computed from all nineteen variables. 

This analysis suggests that considerably fewer than 19 variables should be sufficient for 
identification of the structure in the data, but how many variables are necessary? Subjecting 
the standardised data to the cross-validatory technique described by Eastment and Krzanowski 
(1982) showed that four components were necessary to model the "signal" in the data, the 
remaining fifteen dimensions being a reflection of the "noise". This suggests that the minimum 
number of variables necessary for recovery of the data structure is four. Application of each 
of the criteria in Jolliffe (1972) and McCabe (1984) to this data set gives the following possible 
4-variable subset selections for consideration: 

Jolliffe McCabe 
(i) variables 5, 8, 11, 14 (iii) variables 9, 11, 17, 19 
(ii) variables 5, 11, 13, 17 (iv) variables 5, 9, 11, 18 

(v) variables 6, 11, 17, 19 
(vi) variables 5, 8, 11, 18 

Some further details about these subsets may be found in Jolliffe (1986, p. 111). For present 
purposes, we wish to determine how well each subset represents the structure of the complete 
data. To do this, a principal component analysis was first done on the complete 40 x 19 
(standardised) data matrix, and the (40 x 4) matrix of scores on the first four principal 
components was obtained. The first four principal components account for 91.9 % of the total 
variation, so this matrix is a good approximation to the overall data matrix. The (40 x 4) 
data matrix obtained from each of the above subsets was then compared in turn with this 
(40 x 4) matrix of scores, by means of Procrustes Analysis (see next section). The residual 
sums of squares for the six analyses provide a ranking of the six subsets; the smaller the sum 
of squares, the better the agreement between the subset data and the overall data. The six 
residual sums of squares were (i) 239, (ii) 258, (iii) 267, (iv) 258, (v) 266 and (vi) 261; the best 
Jolliffe subset comprised variables 5, 8, 11, 14, while the best McCabe subset comprised 
variables 5, 9, 11, 18. To determine how well these two subsets capture the structure of the 
complete data, a further principal component analysis was done on each (40 x 4) data matrix 
and the data were plotted on the first two principal components as axes. As a benchmark, 
Fig. 1 shows the two-dimensional representation of the complete data matrix while Fig. 2 
presents the two-dimensional representation for the Jolliffe subset 5, 8, 11, 14 and Fig. 3 the 
two-dimensional representation for the McCabe subset 5, 9, 11, 18. Each two-dimensional 

This content downloaded from 195.221.106.26 on Tue, 2 Dec 2014 09:52:55 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


MULTIVARIATE DATA STRUCTURE 27 

pc.2 

2-1 

Fig. 2. Alate data exhibited against the first two principal components computed from variables 5, 8, 11 and 14 only. 

representation is a good approximation to the relevant complete matrix, with 85.3, 82.3 and 
78.2 per cent variance accounted for in Figs 1, 2 and 3 respectively. Comparison of Figs 2 
and 3 with Fig. 1 shows that, while the tight group of aphids in the top left corner of the full 
analysis is readily identified (albeit more loosely) in the two subset analyses, the three groups 
in the lower part of the full analysis have been merged. In Fig. 3 these groups are indistinct, 
while Fig. 2 is between Figs 1 and 3 in terms of data structure. None of the other subsets 
provides any improvement in this respect, and hence none of the subsets adequately captures 
the group structure of the complete data. 

Thus it is evident that a different criterion to those previously defined is necessary, if 
capturing the data structure is the prime objective. This criterion is considered in the next 
section. 

pc.2 

9 9 ~~~~~~~~~2- - 

-2 25 12 ?J 3 p CA 

37 
QJ~i 

Fig. 3. Alate data exhibited against the first two principal components computed from variables 5, 9, 11 and 18 only. 
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3. A Procrustes Criterion 

One possible reason why none of the selection methods considered in section 2 identified 
a subset of variables that recovered the group structure of the complete data is that all the 
selection criteria are concerned with overall features, either of the subset data (McCabe) or 
of the complete data (Jolliffe). Thus the criteria are based exclusively on variance-covariance 
or correlation matrices and their eigenvalues/eigenvectors. A more appropriate criterion for 
preserving structure among units will be one that involves some direct comparisons between 
the individual points of the subset configuration and the corresponding points of the complete 
data configuration. Since the same number of units are involved in both the complete data 
and the subset data, a criterion based on Procrustes Analysis (Gower, 1971; Sibson, 1978) 
seems to be a natural contender. Derivation of such a criterion will now be outlined. 

Denote by X the (n x p) data matrix (standardised if appropriate), consisting of the values 
of p variables measured on each of n sample individuals. Suppose that the essential 
dimensionality of the data, to be used in any comparison, is k. This may be decided either 
formally [e.g. by using the cross-validatory techniques of Wold (1978) or Eastment and 
Krzanowski (1982)] or informally from considerations of convenience (e.g. because two 
dimensions have been decided upon for displaying the data). However, in the latter case, care 
must be taken to ensure that sufficient data variability has been accounted for in the chosen 
k. Let Y be the (n x k) transformed data matrix of principal component scores, yielding the 
best k-dimensional approximation to the original data configuration X. We would now like 
to select q of the original p variables, where q < p (so that selection does take place) and q > k 
(so that there is hope of recovering the true structure with the selected variables). Suppose 
that X denotes the (n x q) data matrix which retains only q selected variables X", Xv, ..., XW, 
and that 2 is the (n x k) matrix of principal component scores of these reduced data. This 
latter is therefore the best k-dimensional approximation to the q-dimensional configuration 
defined by the subset data. If the true dimensionality of the data is indeed k, then Y can be 
viewed as the "true" configuration, while 2 is the corresponding approximate configuration 
based on only the q variables X., Xe, . . ., X,. To measure the discrepancy between the latter 
configuration and the true configuration we can conduct a Procrustes Analysis, viz. find the 
sum of squared differences between corresponding points of the two configurations after they 
have been matched as well as possible under translation, rotation and reflexion. This residual 
sum of squares therefore measures the loss of information about the data structure when only 
the q variables X., Xv, . . . , X, are used instead of all p variables. The schematic diagram below 
shows the steps of the procedure. 

Select 
X(n xp) - > X(n xq) 

IPCA PCAI 
Y(n x k) - Z(n x k) 

Procrustes 

Matching under translation is effected by ensuring that both Y and 2 are mean-centred 
(Gower, 1971; Sibson, 1978). Matching under rotation and reflexion is effected by considering 
one configuration to be fixed and transforming the other one under these operations. Since 
we wish to find the loss of information caused by deletion of some variables, Y is the natural 
choice for the fixed configuration while Z is the configuration that is to be transformed. 
Standard results of Procrustes Analysis (e.g. Gower, 1971) then yield the sum of squared 
differences between the two configurations as 

M2 = Trace{YY' + ZZ' - 2ZQ'Y'}. (1) 
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In this expression, Q is given by multiplying together two of the matrices in the singular value 
decomposition of the k x k square matrix Z'Y This takes the form (see, e.g., Good, 1969): 

Z'Y = UEV' 
where U'U = Ik, V'V= VV'= Ik and X = diag(al, a2, *... ( k). Computer algorithms for 
calculating U, E and V are readily available (e.g. Golub and Reinsch, 1970). The matrix Q is 
then given by Q = VU'. Substituting into (1) and carrying out some algebraic manipulation 
yields 

M2 = Trace{ YY' + 22' - 2E} (2) 

The quantity M2 given by equation (2) can be computed readily for any selected subset X., 
Xv, ..., XW of the variables, and denotes the closeness with which the configuration based 
on these variables matches the configuration derived from the complete data. The "best" 
subset of q variables will thus be that subset which yields the smallest value of M2 among all 
q-variable subsets. In principle, subset selection can be effected by computing (2) for all possible 
subsets of variables and choosing the ones which give minimum M2 for each desired choice 
of q. In practice, of course, this procedure may not be computationally feasible, and an 
alternative strategy needs to be employed. Any of the standard approaches (forward selection, 
backward elimination or stepwise selection) can be implemented, but forward and stepwise 
selection lead to time consuming procedures as well as posing various programming problems. 
On the other hand, given some very efficient algorithms for obtaining an amended singular 
value decomposition after the deletion of a single variable from a data set (Bunch and Nielsen, 
1978; Bunch, Nielsen and Sorensen, 1978), the following backward elimination procedure can 
be programmed easily and has proved to be very effective. 

(I) Initially set q = p, and for fixed k compute the matrix of principal component scores Y 
Set Z= Y 

(II) Using the updating algorithms in Bunch et al, obtain and store the matrix of principal 
component scores on deleting in turn each variable from Z. 

(III) Compute M2 from equation (2) for each such matrix of scores and identify the variable X. 
which yields the smallest M2. Let Z(u) denote the corresponding matrix of scores. 

(IV) Delete variable X". Set Z = Z(u) and return to stage II with p-1 variables. Continue this 
cycle until only q variables are left. 

This process is computationally very fast. Step I requires one complete singular value 
decomposition, to obtain the principal component scores Y (If the singular value decomposition 
of the original data matrix X is given by X = UEV', where U is n x p while E and V are both 
p x p, then Y is given by the first k columns of US.) Step II requires the fast updating subroutine 
for each variable deletion. (If U and E are the amended elements of the earlier singular value 
decomposition on deletion of a given variable, then the amended matrix of scores is given by 
the first k columns of US.) Step III requires only k singular values (elements of X) to be 
computed for each application of equation (2). No singular vectors (columns of U or V) are 
required in this step, which improves considerably the speed of computation. 

Returning to the alate data, the above backward elimination procedure yielded the subset 
containing variables 5, 12, 14 and 18 (using the value k = 4 obtained from prior application 
of the Eastment/Krzanowski technique). The value of M2 for this subset was 221, which is 
substantially lower than any of the values for the previous subsets (iHvi). Principal component 
analysis of this subset gave the two-dimensional representation shown in Fig. 4 (with 90.4 % 
of variability accounted for by the first two components). It can be seen that the four groups 
of the complete data are recovered very well. In fact the variable selection picks out those 
variables most important for defining the groups. In the absence of the fifteen other variables 
that create the "noise" in the system the groups in the subset data are even more sharply 
delineated than they are in the full data. There might even be a case for considering the 

This content downloaded from 195.221.106.26 on Tue, 2 Dec 2014 09:52:55 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


30 APPLIED STATISTICS 

pc 2 

@)%~~~~~~~~~~~~~~- 

-3 -2 -1 1 2 3 PC 
23 
18 1716 

36~ ~ 2 1 5 
383 -1- 

Fig. 4. Alate data exhibited against the first two principal components computed from variables 5, 12, 14 and 18 only. 

existence of two extra "groups", consisting of aphid numbers 34 and 8 + 9 respectively. Aphid 
number 34 has untypical value 0 on variable 18 whereas all other aphids in its group of Fig. 
1 have value 1. Aphids 8 and 9 have distinctly lower values for variables 12, 13 and 14 than 
the others in their group of Fig. 1. 

4. Some Monte Carlo Results 
The analysis of the alate data has demonstrated the value of the Procrustes criterion, and 

analyses of various sets of sensory data have also led to sensible choices of subsets. Some of 
these analyses will be reported elsewhere. To investigate the whole procedure more broadly, 
however, a Monte Carlo simulation study was set up along the lines of the one described by 
Jolliffe (1972). Jolliffe generated a large number of artificial data sets, conforming to one of five 
predetermined models. Each model was constructed in such a way that certain variables were 
linear combinations of other variables, except for a random disturbance, and hence were 
redundant. He then tested his various rejection methods on the data to see whether the variables 
they rejected were the redundant ones. In all his models, there was some choice regarding the 
best set of rejected variables, and he accordingly labelled the different possible subset selections 
as "best", "good", "moderate" or "bad". He gave in his table 2 a definition of the constructed 
variables for each of models I-IV, and specified this subset labelling for each of the same 
models in his table 3. Model V was more complicated, and was described separately. 

In the present study, data were generated in accordance with each of Jolliffe's models I-IV. 
One hundred samples of size 100 were generated for each of these models, and the procedure 
described in Section 3 selected the following subsets. 

Model I Subset (4, 5, 6) 100 times ("Best" in Jolliffe's classification) 

Model II Subset (3, 4, 6) 70 times ("Good") 
(3, 4, 5) 11 times ("Good") 
(1, 3, 6) 1 time ("Good") 
(4, 5, 6) 18 times ("Bad") 

Model III Subset (4, 5, 6) 100 times ("Good") 

Model IV Subset (1, 3, 6, 10) 91 times ("Best") 
(3, 6, 9, 10) 8 times ("Bad") 
(3, 5, 6, 10) 1 time ("Bad") 
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In each simulation, the "true" dimensionality for comparison (k of Section 3) was set to be 
the true dimensionality of the model, i.e. 3 for models I, II and III and 4 for model IV, and 
a subset of k variables was selected each time. 

The main drawback with this simulation study is that the data sets are purely random, 
each of the generated variables either being a N(0, 1) variable or a linear combination of N(0, 
1) variables. There is therefore no inherent structure present, each data set being a collection 
of points randomly scattered about zero. Jolliffe's main objective was to investigate the rate 
at which the various methods succeeded in discarding the redundant variables. From the 
results above it can be seen that the method based on the Procrustes criterion performs 
creditably in this respect. The poorest performance is for Model II. This is the only model 
which contains one variable that is independent of the rest, counterbalanced by a group of 
three highly intercorrelated variables. It can be noted that neither of Jolliffe's two rejection 
methods selected any "best" subsets for this model, either. However, his inclusion method did 
select the "best" subset nearly always. On the other hand, the Procrustes criterion clearly 
outperforms Jolliffe's inclusion method for models I and III, is only marginally worse than 
the inclusion method for model IV, and is only clearly outperformed by either of Jolliffe's 
rejection methods for model II. However, these data sets do not test whether or not the 
selected variables preserve the essential features of the data, and indeed Jolliffe's subset 
classifications do not reflect this objective. To do this, it is necessary to build in some extra 
structure into the data, and then see whether the variables that are selected are the ones that 
carry this structure. 

Extra structure was therefore built into Jolliffe's models, to create clear groupings of 
individuals. This was done in a 32 factorial manner as follows. The first factor controlled the 
type of structure present, with levels (single outlier, weak groups, strong groups), while the 
second factor controlled the amount of structure present with levels (in one variable, in two 
variables, in three variables). In the case of the "single outlier", the value 10 was added to 
each of the first j variables of the first sample member, where j was the chosen level of the 
second factor. Thus the first sample individual differed from the remaining sample members 
in mean value by ten sample standard deviations on each of j variables. In the case of "weak 
groups", the first 25 sample members were left unchanged, the next 25 sample members had 
the value 2 added to each of the first j variables, the following 25 sample members had the 
value 4 added to each of the first j variables, while the last 25 sample members had the value 
6 added to each of the first j variables. For the "strong groups" level the same procedure was 
carried out except that multiples of 10 replaced multiples of 2 when the constant value was 
added. Once again, j was the chosen level of the second factor in each case. Variable selection 
was then carried out using the procedure described in Section 3, k again being set to the true 
dimensionality of the chosen model. The composition of the chosen subset, as regards the 
number of structure-carrying variables that had been correctly selected, was recorded and the 
results are given in Table 2. If j = 1 for the second factor, then the tabulated results give the 
number of times that variable 1 was selected as part of the chosen subset for each model, as 
well as the number of times that variable 1 did not appear in the chosen subset. If j = 2 then 
the tabulated results comprise the number of times both variables 1 and 2 appeared in the 
chosen subset, the number of times either variable1 or variable 2 appeared and the number 
of times that neither appeared. Finally, if j = 3, the tabulated results comprise the number of 
times all three variables 1, 2 and 3 appeared in the chosen subset, the number of times two 
of the three appeared, the number of times one of the three appeared, and the number of 
times none appeared. 

As the structure in the data becomes progressively stronger, so does it become more likely 
that the structure-bearing variables are included in the chosen subset. With strong grouping, 
all chosen subsets contained all of these variables. Note in particular that to include all of 
variables 1, 2 and 3 in the case j = 3 for model IV, the in-built redundancy between variables 
2 and 3 has first to be overcome. With weak grouping the structure is not strong enough to 
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TABLE 2 
Results of Monte Carlo variable selections. Number of times the given number of structure 
variables is selectedfor each model and 32 factorial design. For definition of models see 

Jolliffe (1972) 

Number of Number of 
variables structure 
exhibiting variables 

Structure structure selected Model I Model 1I Model III Model IV 

Single 1 0 0 0 9 0 
Outlier 1 100 100 91 100 

2 0 0 0 2 0 
1 6 15 75 97 
2 94 85 23 3 

3 0 0 0 0 0 
1 6 20 6 0 
2 84 72 84 100 
3 10 8 10 0 

Weak 1 0 0 0 0 0 
Grouping 1 100 100 100 100 

2 0 0 0 0 0 
1 0 0 0 0 
2 100 100 100 100 

3 0 0 0 0 0 
1 0 0 0 0 
2 1 0 11 100 
3 99 100 89 0 

Strong 1 0 0 0 0 0 
Grouping 1 100 100 100 100 

2 0 0 0 0 0 
1 0 0 0 0 
2 100 100 100 100 

3 0 0 0 0 0 
1 0 0 0 0 
2 0 0 0 0 
3 100 100 100 100 

do this, and forj = 3 all chosen subsets contained only two of variables 1, 2, 3 under model IV. 
Models I and III also contained a small proportion of data sets in which this happens. Apart 
from these instances, however, all chosen subsets contained the correct number of structure- 
bearing variables. Hence, under group structure, the procedure of Section 3 is expected 
to perform well. When the only "structure" in the data comes from a single outlier, however, 
the results are more variable. The most notable pattern that emerges is that one variable 
fewer than the number defining the outlier is identified. Thus when j = 3, two variables are 
selected consistently for all models; when j = 2 both variables are well identified in models I 
and II, but only one is consistently chosen in the other two moels. When j = 1, however, then 
variable 1 is chosen almost always by all models. 

5. Comment 
The Monte Carlo simulations of the previous section, and the real data sets analysed to 

date, show that the technique described in this paper will identify structure-bearing variables 
in a data set and successfully isolate them from "noise" variables, particularly when groups 
are present in the data. This has implications for a number of other multivariate techniques 
such as discriminant analysis, projection pursuit and cluster analysis. First, however, we must 
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carefully distinguish our objectives from those of the latter techniques. We are attempting to 
select a subset of variables that preserve what (unknown) structure may be present in the data. 
If we wish to use a known group structure in further analysis, then discriminant analysis is 
appropriate; if we wish to find groups or outliers in the data, then either cluster analysis or 
projection pursuit (Huber, 1985) is appropriate. Selection of variables sometimes features as 
an adjunct to each of these techniques, and the method of this paper may be contrasted with 
such additional selection exercises. In discriminant analysis, attention is usually focussed on 
the selection of variables in order to maximise the probability of correct allocation to existing 
groups of future individuals (a classification objective), while the present technique provides 
a method for selecting those variables which best show up the presence of the existing groups 
(a discrimination objective). The former objective usually requires some probabilistic assump- 
tions, while the latter is strictly data-based. In cluster analysis or projection pursuit, once the 
sample has been partitioned into clusters, the practitioner is often interested in identifying a 
small number of variables which can be used to describe cluster membership and distinguish 
between clusters. If the data do form groups, then the technique of this paper will accomplish 
this objective directly. Indeed, the variables selected for the alate data (Figure 4) almost provide 
a key to classification in that each variable distinguishes the individuals in one of the four 
groups from the rest of the sample almost perfectly. The present technique may thus also 
provide a useful tool in setting up diagnostic keys (see Payne and Preece, 1980). 
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