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Abstract

A new experimental technique for measurement of size-dependent settling velocities of particles in polydisperse suspensions
(in which particle sizes are distributed continuously) is developed. The new technique employs a continuously fed column, operating at
steady state. The size-dependent average hindered velocities of particles present in the column are obtained using the framework of
population balances. The proposed technique requires just two measurements of size-specific number densities, one at the inlet to the
column and the other at some point in the middle of the column.

The present technique avoids the difficulties with having to observe a multitude of diffused moving fronts in earlier experimental
methods, which are also limited to polydisperse suspensions of widely disparate particle sizes. The effects due to multi-body
interactions, and surface and inter-particle forces are subsumed by the measurement technique. The technique is also capable of
determining velocities of all particles from the dilute limit to the dense over the entire range of polydispersity. Results for many
emulsions show good agreement with well-known predictions in the dilute limit. More significantly, substantial deviations in particle
speed are measured in dense systems for small particles while the largest particles are accurately represented by the well-known
Richardson and Zaki correlation. The technique is capable of measuring the effects of numerous additives, such as glycerin, salts, and

gums on creaming dynamics. © 2000 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Hindered settling (or creaming) of particles in a dense
suspension occurs in a large variety of natural and man-
made processes. The term “hindered” signifies the con-
straint on an individual particle from moving “freely”
with Stokes velocity (Bird, Stewart & Lightfoot, 1960).
The hindrance basically arises from the collective interac-
tion of the particles with the fluid phase (of main interest
to hydrodynamicists), and between the particles themsel-
ves (of interest to colloid and surface scientists). In de-
scribing hindered motion of particles, we actually imply
average hindered motion relative to the local volume-
averaged fluid velocity, the average being based on both
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the continuous and the dispersed phase. The averaging
process includes both statistical (over all possible particle
configurations) as well as spatial averaging such as over
a fixed spatial volume. The resulting average hindered
velocity is therefore free from variations with position as
well as time.

Hindered velocities are crucial to applications in the
settling of dispersions, creaming of emulsions and so on.
Their theoretical calculation, particularly at high holdup
of particles, is belabored by issues connected with inad-
equate information about inter-particle forces, multi-
body interactions, the consequent lack of closure, etc.
Determining the hindered velocity from experiment, on
the other hand, has been possible only with dispersions
that are monodisperse or those that are polydisperse with
widely disparate particle sizes. This paper presents a new
technique for measuring the hindered settling velocity of
particles. The new technique is based on population
balance concepts and applies from dilute to dense
dispersions without any constraints on the form of
polydispersity.

0009-2509/00/$ - see front matter © 2000 Published by Elsevier Science Ltd. All rights reserved.

PII: S0009-2509(99)00457-1



1894 S. Kumar et al. | Chemical Engineering Science 55 (2000) 1893-1904

Nomenclature

A cross-sectional area

d shear migration factor from Nott and Brady)
(1994)

D Diffusivity

g gravitational acceleration

G gravity coalescence kernel

ni, N, inlet and exit number densities

n(v, r,z) number density

¢ volume fraction

bi, e inlet and exiting volume fractions

0 volumetric flow rate

¥ radial position

R column radius

Ap mass density difference

Uy, Uy radial and vertical velocity

U, average bulk velocity of the fluid

v particle volume

z vertical location

Z hindered settling velocity

Experimentally, the buoyancy-induced hindered velo-
city of solid particles in suspensions and hindered velo-
city of drops in emulsions are obtained in the following
manner. A graduated cylinder is filled with the “disper-
sion” and the “particles” are allowed to settle or cream.
To keep the discussion general, and applicable to both
suspensions and emulsions, the term “dispersion” will be
used; the word “particle” will refer interchangeably to
solid particles or drops. For the simple case of dilute to
moderately concentrated dispersion of monodisperse
particles, an initially homogeneous dispersion evolves
into three zones. The first zone consists of clear liquid, the
second of dispersion which is the same as the initial one,
and the third of sediment or cream. The velocity of the
interface separating the clear liquid from the zone con-
sisting of particles is measured and used to obtain the
settling velocity of the particles in the second zone
(Kynch, 1952). The method has also been extended to
obtain hindered velocities of particles in bidisperse and
tridisperse systems, provided the particle populations are
substantially different from each other in size so that
clear interfaces separate various zones and can be
monitored for their movement.

In comparison, polydisperse dispersions, the most
widely encountered ones in practice, consist of particles
lying in a broad size range. The particle sizes are so
closely spaced in these dispersions that the particle size
space can be considered to be a continuum and the
particle population can be represented by a continuous
“number density”. When a polydisperse dispersion is

allowed to settle or cream, it does not give rise to interfa-
ces separating various zones. The conventional methods
which rely on tracking of interfaces in a batch column to
measure hindered velocities thus fail for polydisperse
systems. Furthermore, in settling (or creaming) experi-
ments in a batch column, the relative motion of particles
segregates the large particles from the small particle.
Hence, the effect of the large particles on the motion of
the small ones is not available for direct observation. For
these reasons, Batchelor’s theory (1982) for hindered
motion of particles, which applieds in principle to dilute
dispersions, is yet to be tested for truly polydisperse
systems.

Another limitation of the conventional method is that
even for monodisperse particles, it does not always work.
An interface is not a sharply defined plane which can be
tracked easily, but rather a diffused region over which
particle concentration changes from a finite value to
zero. In the presence of small particles, which execute
Brownian motion, the region over which particle concen-
tration changes can expand significantly. Therefore, the
conventional experimental method can fail for mono-
disperse particles.

In the present paper, we propose a new experimental
method for estimating creaming/settling velocities of par-
ticles in polydisperse dispersion. The method naturally
applies to both mono and multidisperse (bidisperse,
tridisperse, etc.) systems. The proposed method makes
use of the framework of population balances and through
just two measurements of the size distribution, enables
the estimation of hindered velocities of particles lying in
a wide size range. The experimental method relies on
measuring changes in number density of particles due to
their relative motion, rather than monitoring velocities of
interfaces. The proposed method thus does not suffer
from the limitations of the conventional method dis-
cussed before.

The remainder of the paper is organized as follows. In
Section 2, we elucidate the principle behind the proposed
technique. Section 3 contains the required mathematical
justification for an important simplification in the experi-
mental procedure for particle movement under the com-
bined influence of buoyancy and Brownian motion.
Section 4 establishes further usefulness of the proposed
procedure for large particles which consitute industrially
important class of dispersions. The mathematical proced-
ure for obtaining size and environment-dependent sett-
ling/creaming velocities from the experimental data is
presented in Section 5. Details of the experimental pro-
cedure and equipment used are provided in Section 6.
The experimental data and a discussion of the proposed
experimental technique are presented in Section 7. The
experimental data are presented in this paper with a view
to only demonstrate the potential of the proposed
technique. A detailed analysis of the experimental
data for various systems for a variety of experimental



S. Kumar et al. | Chemical Engineering Science 55 (2000) 1893-1904 1895

conditions is presented elsewhere (Pirog, Kumar &
Ramkrishna, 1999).

2. A new experimental method

Buoyancy-driven relative motion of particles in a dis-
persion results in segregation of the dispersed phase from
the continuous phase. Depending on the application,
relative motion of particles may be a desired feature as in
thickeners, or an unwanted trouble as in food emulsions.
Estimation of particle velocities is, however, necessary to
characterize the overall process in all such applications.

In the limit of infinite dilution, the relative velocity
between the particle and the fluid is referred to as Stokes
velocity in the literature. As the dispersed-phase holdup
increases, the hydrodynamic interaction of a reference
particle with its neighbors increases and its motion is
hindered. Conventionally, the extent of hindering experi-
enced by a particle has been assumed to depend only on
the local holdup of particles. Batchelor (1982), in his
theory of hindered settling of particles in dilute polydis-
perse systems, however, shows that the extent of hinder-
ing depends on the individual holdups of particles of all
sizes that constitute the local environment, and not just
their sum total which is the local total holdup. Since
Batchelor’s theory is limited to binary interactions, it is
designed to apply only at suitably low holdup of different
sizes.

Before we expound the idea behind the new method
proposed in this paper, let us observe that the particle
velocities we seek are “mean” quantities obtained by
averaging over the local particle configuration. The par-
ticle velocities measured here are, however, averaged not
only over the local particle configuration but also over
the flow cross-section of the column. This constraint of
averaging over the cross-section can be overcome by
ensuring that the number density is cross-sectionally
uniform to a good approximation in order that the mea-
sured velocities are only configurationally averaged as
required.

Consider a tall vertical column of uniform cross-sec-
tional area, fitted with a conical section, at the bottom for
experiments with emulsions and at the top for experi-
ments with suspensions. Suppose that the column is fed
with a monodisperse suspension of particles of size v and
volume fraction ¢;, at rate Q;,. Under steady-state con-
ditions, the volumetric flow of particles at the inlet must
match that which comes out, so that, in the absence of
diffusion, one must infer the mean hindered velocity of
the particles as below.

Qind)in = A[Ub + Z] nv, (1)

where A is the cross-sectional area of the column, U, is
the average bulk velocity of the fluid, and » is the number

of particles per unit volume in the column. Here, Z is the
mean hindered velocity of particles with respect to the
wall of the container in a non-flowing system at the same
number density as in the column. Eq. (1) allows estima-
tion of hindered velocity Z as the other quantities ap-
pearing in it are either fixed a priori or can be measured
experimentally.

For the monodisperse particles considered in this
example, nv is the particle holdup in the column and can
be measured experimentally. The holdup (or number
density) changes in a very small region around the entry
point to the conical section of the column. It continues to
change further due to the diverging cross-section of the
conical section and becomes constant after the column
diameters becomes constant.

A generalization of the simplified situation considered
above is now undertaken for a polydisperse feed. As the
particles of different sizes move with different relative
velocities, their concentrations in the column become
different from the concentrations at the inlet. By measur-
ing changes in concentration of particles of each size,
hindered relative velocity of particles of all sizes present
in the column can be determined. When particle sizes are
distributed very closely, concentration of particles of
various sizes is best represented by a continuous number
density. Thus, by measuring changes in number density
at the inlet and in the column, the hindered relative
velocity of particles present in a polydisperse dispersion
can also be determined. By comparing these velocities
with the corresponding Stokes velocities, the size and
environment-dependent hindered creaming correction fac-
tor can be obtained in a straightforward way.

The technique can also be used to determine particle
velocities in dispersions consisting of particles of different
densities. All the particles in the dispersion should how-
ever move in the same direction. The estimated size-
dependent particle velocities will then correspond to the
average velocity of all the particles of various densities
but of the same size.

The experimental situation considered thus far, how-
ever, encounters a serious operational difficulty — cross-
sectional inhomogeneity. The feed to the column is
inhomogeneous because of buoyancy-induced segrega-
tion in the tube feeding the conical section. Particles
attain their terminal velocities in fluid elements moving
at different velocities at a given cross section and cause
further non-uniformities. Increasing cross-sectional area
of the conical section in downstream direction makes the
continuous phase move radially. Since the particles move
with a net relative velocity along the column axis, ex-
panding cross-section makes particles concentrate in
the central region of the column. The particles leaving
the conical section are thus distributed non-uniformly.
The resulting radial non-uniformities may be ac-
countable in the theory and the measurements, but it will
render the proposed technique extremely complex to use.
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Fig. 1. Experimental setup for settling experiments.

To keep the new technique simple, the contents of
a small segment of column are mixed so that the particles
get distributed uniformly at some plane. The setups used
to effect it are shown in Figs. 1 and 2.

It is not obvious, however, how the development of
a parabolic velocity profile from the irregular velocity
profile in the mixer section through the radial component
of velocity will not again segregate the particles. Since
radial uniformity is essential for the proposed technique,
we show that development of velocity profile down-
stream of the mixer section does not produce any in-
homogeneity. We first consider the case of small particles
which execute Brownian motion also along with the
buoyancy-induced motion.

3. Radial uniformity of particles in presence of
particle diffusion

To rigorously establish that the particles mixed in
some small segment of the column do not develop any
cross-sectional inhomogeneity while the velocity profile
changes, we set up continuity equations for both particle
and continuous phases for bulk convective motion, rela-
tive motion of particles due to buoyancy, and particle
diffusion in both radial and axial directions. We assume
that u,.(r, z) and u,(r, z) are local fluid velocities in the

continuous column
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Fig. 2. Experimental setup for creaming experiments.

radial and axial directions, respectively, and n(v, r, z) dv is
the number of particles lying in size range v to v + dv at
physical location (r, z). The relevant balance equation at
steady state is

0 . 10
% [{u.(r, 2) + Z(v, n(v, r, 2))} n(v, r, 2)] + piew (ru,(r, z)n)

0 on(v, r, z) 10 on(v, r, z)
0z {D 0z } + r or {FD or ’ @

The relative velocity of particles of size v, Z(v, n), is in
contrast with the conventional approaches where Z is
assumed to depend only on v and ¢. We consider Z to
depend on v and local number density n as shown by
Batchelor (1982). The above dependence is more general
because dependence on ¢, defined by

o(r, z) = J vn(v, r, z) dv (3)
0

can be obtained as a simplified case. The dependence of

variables n(v, r, z), u,(r, z), and u,(r, z) on v, r, and z has

been suppressed in all subsequent equations for nota-

tional brevity. A balance similar to Eq. (2) for the con-

tinuous phase is

10

0
5 (L =d)uzj+— = {r(l — Py =0. (4)

r
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Egs. (2) and (4) can be manipulated to obtain

0 on 10 on
&{Dg}—}_r&r{l)&} {u. + Z(v, n)}

on n 0¢ 0¢

—“rar—l_qs[“rar*“zaz}o’ G)
which is solved with the following boundary conditions:

0
Z=0,n=ni(U);Z—>w,—n=0, (6)

0z

on on

r:(),a:(),r:R,&:O. (7)

To show that non-uniformities do not develop beyond
the mixer section, we first assume that ¢ is a constant in
Eq. (5) and then validate the assumption a posteriori.
Thus, for a constant value of ¢, we have

D 7Y A LY S
0z 0z ror | ar (T W RALAIPY

on
—ur5=0. (8)

Defining i(v) = n — n;(v), the above equation can be re-
cast as

o ( onw) 10 ( o) . (o)
% {D e } + - = {VD . } —{u, + Z(v, n(v))}

., on(v) _o ©)
or
with the following boundary conditions:
p
L= 0. i) = 0z > o, W . (10)
0z
_0, 010 _ g, — g IO _ g (11)
or or

Using Phragmen-Lindelof principle (Protter and Wein-
berger, 1967) for unbounded domains, it can be shown
that Eq. (9) for arbitrary choices for functions u,(z, r) and
u,(z, r) and the boundary conditions specified above has
only one solution, i.e.,

n(v)=0
or
n(v, r, z) = m;(v) .

Since n;(v) is independent of r and z, the assumption
made carlier, that ¢(r, z) is a constant, is self-consistent.
Thus, once the contents are well mixed artificially in the
mixer section, they remain well mixed in the section
downstream. The conclusion reached here relies on the
presence of the diffusion term in the balance Eq. (2).
When the particle size is large, the intensity of Brownian
motion decreases. In fact, for particles of radii larger than
about 2 pm, the term representing particle diffusion are

equated to zero. The next section shows that under these
conditions also, non-uniformities do not develop in the
section downstream of the mixer section.

4. Radial uniformity of particles

The relevant equation in the absence of particle diffu-
sion can be obtained by dropping the terms correspond-
ing to particle diffusion from Eq. (2). The simpler
equation is given as (explicit dependence of various
variable on v, r and z has been suppressed for clarity)

ﬁi [{u. + Z(v, n)in] + 1 g [ru,n] =0. (12)
z r or

The balance equation for the continuous phase is the
same as Eq. (4). Egs. (12) and (4) can be combined to
obtain

[{uz+Z(v,n)}(; + u, Z’:}+1f¢|:u %+u é;(f:|

0Z(v, n)
p——>"

0z
A slight rearrangement of Eq. (13) yields

on u, 0¢ 0Z(v,n)
|:{u + Z(v, n)}6 +n {l—qbaz—i_ P }:|

on n o |
+[ua—+l_¢)uar]—0 (14)

=0. (13)

Eq. (14) provides the basis for establishing radial homo-
geneity. As before, consider a radial plane at the end
of the conical entrance section in which the particles
are uniformly distributed. Let us first consider the
case of monodisperse particles of volume v;, ie.,
n(v, r, z) = Ny(r, z)0(v — v;), and ¢ = N;v;. Substituting
for these in Eq. (14), and replacing 0Z(v, n)/dz by

dz,/d¢ a¢/az yields
1 L4z aN
—¢" 1 dg

+[ ON; ¢ uaNi]=0. (15)

or 1—¢ or
N; depends on both r and z here. Rearrangement of the
previous equation leads to

el 8]

0N, ¢ JoN:

or

u, d((f)Zl) 5N1 u, aN, _
[1—¢+ a6 }aﬁ[l—qj a0
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Eq. (17) holds for all possible values of u.. If particles are
well mixed in one plane, i.e., IN;/0r is zero everywhere in
a given plane, Eq. (17) shows that dN;/0z will also be
identically zero everywhere in this plane. One can now
march along the direction of flow and show that particles
cannot develop any concentration gradients in a plane
a little distance away from the first plane. The argument
can be repeated to show that a plane still farther away
will also not develop any concentration gradients and so
on. Thus, the column, beyond the first well-mixed plane,
will be uniform everywhere, excluding the regions near
the exit port.

For polydisperse systems, complete radial mixing in
a given plane will likewise allow us to drop all radial
gradients from Eq. (14). Thus,

. on u, 0¢ 0Z(v,n)
{u, +Z(U’n)}62 +n{1 — 6z + pe

}:0. (18)

If we assume 0Z(v, n)/0z to be zero, the above equation
reduces to

. on u 0
f 1 z —_— =
qu+Z(v,n)JaZ+n{l_¢} 2 0 (19)

which shows that in order for the fluid velocity at every
point to be in the direction of the average flow, 0n/0z and

0¢/0z must have opposite signs for all v. Since ¢ is
defined as

o0 a o0 o)
¢=1| wndv or 7(;5 = v@ dv,
0 0z o 0z

the above conclusion can hold only for

q—qs = @ =0 Vv. (20)
0z 0Oz
Since,
0Z(v, n) B dZ(v, n) %
oz d¢ oz’

the assumption 0Z(v, n)/0z = 0 made in the above analy-
sis is self-consistent.

The arguments presented thus show that uniform dis-
tribution in one radial plane ensure that concentration
gradients will not develop as the dispersion goes down-
stream of the mixer section. The presence of shear field
because of a net flow through the column may, however,
induce some particle migration from high to low shear
regions (Gadala-Maria and Acrivos, 1980; Nott and
Brady, 1994) and cause non-uniformities in a radial
plane.

Nott and Brady (1994) show that the length scale for
the effect of shear migration to reach the centerline in
pipe flow is given as

L 1 (D2\?
D2~ 12d(9) <a> ‘

Here L is the required length, 12d(¢) is approximately
1 for ¢ > 0.3, D is the tube diameter, and a is the particle
radius. Clearly, for a in the range of tens of microns and
D being a couple of centimeters, the effect of particle
migration can be safely neglected.

Yet another feature of the flowing dispersions which is
absent in batch systems is shear-field-induced relative
motion and collisions between particles. At low Reynolds
number, a reference particle in a constant shear field
interacts symmetrically with its neighbors, hence, shear
field may not have any net effect on buoyancy-induced
relative motion of the reference particle. A non-zero effect
is likely only for spatially varying shear field. Flow
through the column does produce such a shear field. The
effect of shear-field-induced relative motion between par-
ticles on the buoyancy-induced relative hindered velocity
of particles is not known; however, the effect can be
expected to be small if the magnitude of the shear field
itself is negligibly small. The smallness of the magnitude
of the shear rate can be obtained by estimating the ratio
of buoyancy-induced collisions to shear-field-induced
collisions. The above ratio for collisions between par-
ticles of diameters d; and d;, corresponding to the highest
shear rate on the wall of the column is given by (see the
appendix)

For typical values used in experiments, R =2 cm,
Q =4 ml/min, 4p = 0.1 g/em®, u = 0.01 P, and |d; — d||
= 2 um, the buoyancy-induced collision rate is estimated
to be 30 times larger than the shear-field-induced colli-
sion rate. Thus, the prevailing shear rates are to small to
have any impact. The data presented later suggests that
this is indeed valid.

Peysson and Guazzelli (1998) have recently shown
that settling of large size monodisperse glass beads
(800 um) in a narrow column (4x4cm) results
in a weak global circulatory flow and introduces non-
uniformities in particle concentration across a cross sec-
tion. The presence of a lighter film near the container
wall, because the particle centers cannot enter this film, is
the reason for the circulatory flow. The use of the conven-
tional technique to measure particle velocities in such
systems will require cross-sectional averages. The present
technique can also be used with cross-sectional average
number density. However, it is of interest to note that
systems having nearly monodisperse particles and very
small ratio of column dimension to particle dimension,
both of which are required for substantial circulatory
flow, are rare. The commonly encountered systems are
polydisperse with a large ratio of column dimension to
particle dimension and are unlikely to have circulatory
flow.
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5. The procedure for estimating size-specific
creaming velocities

Having established that the number density becomes
constant beyond the mixer section, an expression for the
relative velocity of the particles can be obtained by bal-
ancing the flux of particles entering the column with that
passing through a plane located beyond the mixer sec-
tion. If a dispersion is fed with rate Q and the number
density of particles in it is n;(v), then Qn;(v) dv is the rate
at which particles in size range (v, v + dv) enter the col-
umn. At steady state this rate should equal the rate at
which particles are leaving through a plane located be-
yond the mixer section. Thus, in absence of any concen-
tration gradients,

On;(v) dv = JR {u.(r, z) + Z(v, n,(v))} n.(v) dv 2zr dr,

21
where n,(v) as the number density beyond the mixed
section. Since n,(v) does not depend on r, the above
equation simplifies to

R

On;(v) = n,.(v) J {u(r, z) + Z(v, ne(v))} 2zr dr. (22)

A balance for the continuous phase yields

o1 —¢y) = JR uz(r, z) (1 — ) 2nr dr. (23)
As ¢, is also independent of r,

01 — i) =1 — ) JR u(r, z) 2mr dr . (24)
Egs. (22) and (24) can be combined to obtain

010 = 0| 0= + Zomiomr? | 29
or

; _ 0 |ml) 1—9¢;

Z(v, n.(v)) = ) [ne(v) —1 %]' (26)

Thus, given just two measurements of number density,
one at the inlet and the other at a location beyond the
mixed section but away from the exit port (to avoid end
effects), the hindered relative velocities of all the particles
at the local environment prevailing there, i.e., n.(v), can
be obtained using Eq. (26). Estimates of ¢; and ¢, can be
obtained from the corresponding number densities using
expressions similar to that in Eq. (3).

6. Experimental
Experiments were conducted in a tall vertical column

of uniform diameter of 4 cm. The column was equipped
with sampling ports located at regular intervals. The

sampling ports were closed using a septum through
which a needle could be pierced to withdraw samples.
The entry to the column consisted of a conical section,
expanding from 0.8 cm diameter at one end to the col-
umn diameter (4 cm) on the other end over a length of
5 cm. The conical section was located at the bottom of
the column for dispersions of lighter particles and at the
top for heavier particles. For the latter, the column had
to be necessarily filled with the continuous phase before
introducing the dispersion. In both cases, feed, which was
kept in a well-agitated vessel to ensure constant composi-
tion, was pumped into the column using a peristaltic
pump. The conical entrance section contained a small
magnetic stir bar which was revolved at 50 rpm using
rotating magnets outside to ensure complete mixing of
particles across the inlet. A schematic of the complete
radial mixer is shown in Fig. 3.

The samples of size 300-500 ul were withdrawn for
estimation of particle size distribution using needles. The
needles were chosen such that their ID was more than ten
times the size of largest particle to eliminate the possibili-
ty of selective withdrawal of drops. The OD was at least
50 times smaller than the column diameter to minimize
disturbance to flow field in the column. The size distribu-
tions were measured using a Coulter Counter with
a Channelyzer. The Coulter Counter continuously moni-
tors electrical resistance across an orifice. The resistance
changes momentarily when a non-conducting particle
passes through it; the change in resistance appears as
a spike in the signal. The height of a spike is related to the
volume of the particle passing through the orifice. Thus,
number density as a function of particle volume can be
obtained straightaway.

Care was taken to dilute the samples to reduce the
holdup inside the Coulter sampling vessel for two rea-
sons. First, high sample concentrations lead to double
counting and erroneous number density measurements
by the Coulter Counter. Many samples were analyzed at

Fig. 3. Magnetic stirrer used to ensure complete radial mixing at
column entrance.
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various dilutions to ensure reproducible number density
measurements and to determine the necessary sample
vessel volume fraction to avoid such artifacts. Second,
extreme dilution minimizes coalescence of drops. It was
verified that surfactants were not necessary to maintain
stable particle distributions due to the extremely low
volume fraction of samples in the coulter sampling vessel.

The experimental procedure involved suspending the
particles in an agitated vessel. For measurement of
creaming velocities of drops in emulsions, a fine stable
emulsion was first made using Omni lab-scale homogen-
izer. This emulsion was then kept well mixed in a gently
agitated vessel and fed to the column. Samples were
taken from the agitated vessel and various ports on the
column. The samples from the column ports indicated
that the size distribution reached steady state in less than
an hour. The measurements also showed that the size
distribution did not change as the dispersion moved up
in the column to the exit.

Since the estimates of hindered velocity depend on the
differences in the size distributions obtained from the
agitated vessel and ports in the column, it was thought
necessary to ensure that the size distribution did not
change due to undesired processes such as drop coales-
cence, entry effects, etc. Thus, size distributions from
the vessel were measured at various times to ensure that
the feed to the column did not change with time. The
measurements showed that there was no coalescence of
drops during the time-scale of the experiment and the
feed remained constant. Measurements were also made
to ensure that the transport of emulsion from the agitated
vessel to the entry point to the column did not change the
drop size distribution due to entry effects in the agitated
vessel or coalescence of drops during their passage
through the connecting tubes. As the samples needed to
be kept well mixed in a vessel during the course of its
analysis in the Coulter Counter, measurements were
made to verify that drops did not undergo coalescence
during the measurement time. We found that during the
measurement time which was typically about 3 min, no
coalescence or dissolution of drops took place. Also,
samples taken at different radial positions were identical
which establishes radial homogeneity in a plane.

7. Results and discussion

The new technique needed to be validated first. These
experiments were conducted with a suspension of mono-
disperse latex micro-sphere (diameter = 9.77 um, den-
sity = 1.05 g/ml) at an extremely low holdup (0.025%) at
which the settling velocity of particles is expected to be
the same as the corresponding Stokes velocity. As the
monodisperse latex particles are expensive, a specially
designed miniature column (Fig. 1) was used. The num-
ber densities at the inlet and at a plane beyond the mixer
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Fig. 4. Number density versus drop volume in the agitated vessel for
dilute (0.025% holdup) monodisperse latex particles. The particle dia-
meter is 9.77 pm.

250
200 | 1
2
2 150 | |
[}
kel
g
= 100 | |
>
c
50 | 1
0 Ll A
100 1000 10000

drop volume (um®)

Fig. 5. Number density versus drop volume in the column for dilute
monodisperse latex particles. The particle diameter is 9.77 pm.

section were measured at steady state and are shown in
Figs. 4 and 5, respectively. The size distributions show
that the particles used were almost monodisperse with
very little “polydisperse type” interactions. A second
small peak in both the figures corresponds to small
number of doublets that were present in the sample.
The velocity of monodisperse particles was obtained
from the two measurements of number density and Eq.
(26) in the following way. The maximum in the measured
number density and the corresponding particle volume
were taken to represent the nearly monodisperse suspen-
sion. Experiments were also performed for monodisperse
suspensions of other sizes. At extremely low holdups used
in these experiments, the measured velocities are ex-
pected to be the same as the corresponding Stokes vel-
ocities because the particle-particle interactions are
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Fig. 6. Settling rates versus drop volume for dilute monodisperse latex
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Fig. 7. Error associated with the velocity measurement for a 5 pm latex
particle versus column radius. The error bound is given for two flow
rates.

nearly zero. Fig. 6 shows that the expected and the
measured particle velocities are indeed in good agree-
ment, although with a large error bar for the smallest
particles.

While the log-scale exaggerates the error bar for small
particles in appearance, the experimental error does be-
come large for small particles. Small particles move with
small relative velocities and cause proportionally small
difference between the two number densities, making it
difficult for the experimental measurements to resolve the
difference accurately, hence, the observed increase in the
error. The experimental error can be reduced by reducing
the bulk flow velocity either by reducing the flow rate or
by increasing the column radius. Fig. 7 shows estimated
error for 5 pm latex particles as a function of column
radius. The error was calculated for 3% error in measure-
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Fig. 8. Number density versus drop volume in agitated vessel for
a 1.0% paraffin oil emulsion stabilized with 0.5 wt% SLS.

ments of number density and 1% error in determination
of the flow rate through the column.

Settling of polydisperse particles in batch systems does
not give rise to sharp fronts, hence, particle velocities
under such conditions could not be measured hitherto.
As the focus of the proposed technique is measurement of
particle velocities under such conditions, the technique
was next tested for extremely dilute polydisperse emul-
sions. The measured particle velocities under such condi-
tions should correspond to their Stokes velocities. The
use of emulsions allowed measurements to be undertaken
in a modified tall column assembly shown in Fig. 2. The
emulsion system chosen for the experiments was a disper-
sion of paraffin oil (density = 0.84 g/ml) in 0.5 wt% SLS
(sodium lauryl sulfate) solution in water. Surfactant SLS
was added to the continuous phase to prevent the coales-
cence of drops.

Fig. 8 shows the number density in the vessel for 1.0%
holdup emulsion at two times: in the beginning of the
experiment and much later. The figure shows that as
required for the proposed technique, the drop size distri-
bution in the vessel remained constant not just during
the course of the experiment ( ~ 2 h) but actually much
longer than that.

The measured number density in the column displays
fluctuations at large particle sizes due to the very small
number of particles counted in these size ranges. The size
distribution in the column was therefore measured sev-
eral times to increase the number of large drops counted
to reduce fluctuations. Two size distributions, measured
at a time interval of 2 h, are shown in Fig. 9. As the data
collected at two different times fall on a single curve for
the most of the drop size range, steady-state mode of
operation is evident. A spatially non-uniform number
density in the column indicates coalescence or floccula-
tion of drops. The data for such systems, if used to obtain
creaming velocities of drops, will lead to wrong estimates.
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Fig. 9. Number density versus drop volume in column for a 0.2%
paraffin oil emulsion stabilized with 0.5 wt% SLS. Identical number
densities at two locations in the column establish uniform number
density. The scatter for large particle sizes occurs due to their small
number.

To ensure that the drops did not undergo any such
undesirable processes, measurements were also made at
different ports. The figure shows that all the distributions,
measured at different times and different ports, are identi-
cal in the size range in which the populations are large
and consequently random fluctuations are small.

The size-dependent hindered velocities of drops for the
above experiment were obtained using average number
densities at the inlet and in the column. The estimated
velocities for a holdup of 0.2% in the column are shown
in Fig. 10 along with the corresponding Stokes velocities.
The good agreement shown in the figure between the
measured and the corresponding Stokes velocities estab-
lishes the correctness of the proposed technique for poly-
disperse systems. Thus, if two accurate measurements of
number density are available, one at the inlet and the
other in the column, the new technique can provide
estimates of velocities of drops lying in a broad size
range. It is important to point out that the predicted
Stokes velocities correspond to spherical solid like drops.
This indicates that paraffin oil drops in an emulsion have
immobile interface (due to the presence of surfactant on
the interface).

To show that the good agreement shown in Fig. 10 is
not system dependent, experiments were conducted with
another system: soybean oil drops (density = 0.92) dis-
persed in 0.5 wt% SLS in the aqueous phase. Fig. 11
shows a comparison of the estimated hindered creaming
velocities for this system with the corresponding Stokes
velocities. The holdup of drops in the mixing vessel and
the column were 1.0 and 0.2%, respectively. It is evident
from the figure that the proposed technique yields very
good estimates for this system as well.

Having demonstrated the ability of the proposed tech-
nique to predict the behavior of particles in a polydis-
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Fig. 10. Creaming rate versus drop volume for a 0.2% paraffin oil
emulsion stabilized with 0.5 wt% SLS.
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Fig. 11. Creaming rate versus drop volume for a 0.2% soybean oil
emulsion stabilized with 0.5 wt% SLS.

perse system at extremely low holdups, we now explore
the potential of the present technique to study those
systems that could not be studied hitherto because of the
limitations of the conventional techniques. These systems
are low to high holdup polydisperse dispersions, also the
most frequently encountered ones in the industrial
practice.

Fig. 12 shows a plot of the measured hindered cream-
ing velocities of drops for a paraffin oil emulsion stabil-
ized with 0.5wt% SLS. The estimated creaming
velocities correspond to a volume fraction of 0.026 in the
column, and have been compared with the corresponding
Stokes velocities and those obtained by using the correla-
tion of Richardson and Zaki (1954); the latter is meant to
describe hindered relative velocity of particles in mono-
disperse systems, however. As the volume fraction of the
dispersed phase in the column is only 0.026, the figure
shows that the hindered velocities are predicted to be
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Fig. 12. Creaming rate versus drop volume for a 2.6% paraffin oil
emulsion stabilized with 0.5 wt% SLS.

only slightly smaller than the corresponding Stokes
velocities. The estimated particle velocities using
the new technique, however, show that only the largest
drops move with the corresponding Stokes velocities
or those predicted using the correlation of Richardson
and Zaki (1954). The velocities of the smallest drops,
as determined by the experiment, are significantly
higher than even the Stokes velocities. The data seem to
suggest that the motion of smaller drops is strongly
influenced by the presence of the larger drops. The small
drops appear to be “dragged” with the larger
drops.

To further explore the above possibility, another ex-
periment was conducted for the same system at a moder-
ate holdup of 23.8% in the column. At this holdup, the
extent of hindrance to the motion of a drop is predicted
to be very large. Fig. 13 shows a comparison of the
estimated velocities with the corresponding Stokes
velocities and the predictions of the correlation of
Richardson and Zaki (1954). The figure shows that the
interesting effect of large particles on the motion of the
smaller particles is further exaggerated at these holdups.
The smaller particles move at almost identical speeds as
the large drops; the particle velocities in small size range
are in fact larger than the corresponding Stokes vel-
ocities. The theory of Batchelor (1982) for polydisperse
systems, which predicts particle velocities to be only
smaller than the corresponding Stokes velocities because
of the hindering effect of other particles present in the
system thus appears to be inadequate.

Interestingly, the estimates of drop velocities for both
2.6 and 23.6% holdup show that the correlation of
Richardson and Zaki (1954) (which corrects the Stokes
velocity assuming a monodisperse system) predicts the
large particle movement correctly. This suggests that the
motion of large particles is influenced only by the total
volume fraction of particles within the system. It is ap-
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Fig. 13. Creaming rate versus drop volume for a 23.8% paraffin oil
emulsion stabilized with 0.5 wt% SLS.
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Fig. 14. Creaming rate versus drop volume for a 0.7% paraffin oil
emulsion with 0.01 M NacCl stabilized with 1.0 wt% SLS.

parent that the influence of the small particles on the
large particles is not as significant.

Our technique is also capable of measuring the effect of
additives on drop—drop interaction potential or the con-
tinuous-phase viscosity as changes in these character-
istics directly affect the hindered creaming velocity of
a particle. The effect of varying drop-drop interaction
potential on the measured creaming rate will be illus-
trated for a paraffin oil emulsion with the addition of an
ionic species to alter the droplet-droplet interactions.
The hindered creaming velocities of drops for addition of
0.01 M NaCl are shown in Fig. 14 for a column holdup of
0.7%. The figure shows a dramatic increase in the par-
ticle velocities compared to the corresponding Stokes
velocities. This could be attributed to a reduction in
electrostatic repulsion between drops in the presence of
screening action of ions. As shown by Batchelor (1982),
inter-particle forces can substantially affect the hindered
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creaming process in dispersions. Neither the theory lead-
ing to Stokes velocity nor the correlation of Richardson
and Zaki (1954) accurately predicted the particle vel-
ocities. This is to be expected as they do not account for
such effects.

8. Summary and conclusions

A new experimental technique to estimate buoyancy-
induced hindered velocities of particles/drops in suspen-
sions/emulsions is proposed. The proposed technique
can measure particle velocities in monodisperse, polydis-
perse, dilute and concentrated dispersions. Previous
techniques which focused on the moving interface were
unable to obtain hindered velocities in polydisperse
systems.

The theoretical analysis and the experimental data
presented indicate that the technique proposed in this
work is quite powerful and robust. Although our analysis
in Section 3 shows that diffusion may not affect the
results, we have limited ourselves to particle size ranges
for which diffusion can be ignored, i.e., for large enough
Peclet numbers. An important aspect of the presented
technique is the maintenance of cross-sectional uniform-
ity of the particle number density in the column. The
technique is capable of estimating particle velocities in
a wide variety of systems containing a diverse mixture of
different dispersed phases (all heavier or lighter than the
external phase), addition of electrolytes, polymers, thick-
ening agents, and many others.

The estimates of drop velocities in polydisperse
emulsions, made possible for the first time through the
proposed technique, show that the motion of particles
changes qualitatively for semi-dilute and dense disper-
sions when compared to the dilute systems which can be
modeled using Stokes velocity. The velocities of small
particles in non-dilute dispersions are estimated to be
larger than those predicted by the existing theories
(Batchelor, 1982) or correlations.
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Appendix A. Derivation

Buoyancy-induced collision rate:

(r; + ”j)2|“i —uyl,

where
_24pg ,
U =———rf.
9 u

Shear-induced collision rate:

/2
ZJ 2(r; 4 r;) sin Od[(r; + r;) cos O]1G(r; + r;) cos 0

0

which reduces to
(ri +1)*3Glri +7)).

For a given flow rate Q through a pipe of diameter R, the
shear rate G at the wall is estimated to be (BSL)

6=

Thus, the ratio of buoyancy- to shear-field-induced colli-
sions comes to be

20 u 1=l
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