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This study documents the pressure drop and heat transfer through bundles of parallel 
cylinders in a domain that has been overlooked, namely, low Reynolds numbers, arrays 
that are long in the direction of f low such that the f low is hydraulically and thermally fully 
developed, and cylinders inclined relative to the f low direction. The numerical results cover 
the range 1 < Reo < 30, 0.72 ___ Pr < 100, 0.6 < ~ < 0.95 and 0 ° _</~ < 60 °, where ~ is 
the porosity of the bundle as a saturated porous medium, and/~ is the angle between the 
cylinder centerline and the direction perpendicular to the f low direction. The accuracy is 
verified by means of experimental measurements of the pressure drop across a bundle 
with 115 cylinders in the f low direction, in the range 8 < ReD < 50, 0.84 _< ~ < 0.92 and 
0 ° </~ < 60 °. The results show that significant errors may occur if the available large-ReD 
information is extrapolated to the domain covered by this study. 
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' I n t r o d u c t i o n  

This article documents the flow and heat-transfer characteris- 
tics of bundles of parallel cylinders that are inclined relative to 
the free stream that bathes them. The emphasis is on (1) the 
low Reynolds number range ReD < 30, (2) the fully developed 
regime, and (3) the effect of the angle of inclination on the 
pressure drop and heat-transfer coefficient. These aspects have 
been overlooked despite the large research effort that has been 
devoted to banks of cylinders in cross-flow. The progress on 
this general topic has been reviewed by Zukauskas (1972, 
1987a, b) and Kays and London (1984). 

In his more recent review, Zukauskas (1987b) proposed a 
correction factor to account for the effect of angle of inclination 
on pressure drop calculations. It is unclear whether his method 
is universally valid, or applies only to a certain range of 
Reynolds numbers and a certain type of cylinder array. One 
objective of the present study was to clarify the conditions 
under which Zukauskas's correction is applicable. 

The flow and heat-transfer results assembled in this article 
were developed in three phases. First, numerous cases of the 
flow and temperature fields in long bundles of inclined cylinders 
were simulated numerically, based on detailed three-dimen- 
sional (3-D) calculations. In the second phase, the heat and 
fluid-flow results were correlated into a saturated porous 
medium model that accounts for the angle of inclination and 
the low Reynolds number range. The third phase was 
experimental, where the accuracy of the numerical results was 
tested against laboratory measurements of the pressure drops 
through bundles at several cylinder inclinations and Reynolds 
numbers. 

Address reprint requests to Professor Beian at the Department of 
Mechanical Engineering and Materials Science, Duke University, 
Box 90300, Durham, NC 27708-0300, USA. 

Received 8 October 1993; accepted 8 December 1993 

© 1994 Butterworth-Heinemann 

Mathematical  formulation 

The numerical part of the study refers to an array of staggered 
cylinders, with their centers arranged in an array of equilateral 
triangles. Two orientations of the flow relative to the array were 
examined (Figure 1, top). The entire array was tilted to an angle 

that varied from 0 ° to 60 ° relative to the perpendicular 
(Figure 1, bottom). In the numerical simulations (and unlike in 
the experiments; see later discussion) the spacing between 
cylinders was fixed so that the porosity of the bundle ~ was 
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Figure 1 Arrays of parallel cylinders with forced convection heat 
transfer (top), and 3-D computational domain (bottom) 
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not a function of the angle ft. In an equilateral triangle array 
the porosity is ~ = 1 - 0.907 (D/S) 2, where S is the distance 
between cylinder centers. 

In the range ReD < 30 the flow is laminar and the wake 
behind each cylinder is steady and symmetric. This allowed us 
to view the array as a sandwich of many channels like the one 
highlighted in the middle of Figure 1 and illustrated by the 
dashed lines in the top drawings of Figure 1. There was no 
mixing between the channels. The computational domain con- 
tained only one channel. 

The equations that account for the conservation of mass, 
momentum and energy in the fluid regions of the 3-D frame 
defined in Figure 1 are 

~u c~v ~w 
- -  -I- - -  + - -  = 0 (1) 
dx gy dz 

dui i OP d2ut 
uj Oxj p dxi V v dx 2 (2) 

dT dT gT [gZT gZT d2T~ 
- -  - - - k W - -  u + v = + (3) dy 2 

where (u, v, w) are the velocity components aligned with the 
(x, y, z) axes. Equation 2 makes use of the tensor notation 
convention that triple summation is indicated by repeated 
indices. The boundary conditions on the cylinder surfaces 
account for no slip, no penetration and uniform temperature, 

ui = 0 and T = T O on all cylinder surfaces (4) 

Along the top and bottom of the channel and on the side-wall 
regions contained between cylinders the conditions were zero 
shear, no penetration and zero heat flux, 

du 0,~3v OT 0 at z 0, H (5) dz ~ 0, w = 0  and dz 

du 0, v 0, O w = 0  and d T = 0  at y = 0 ,  W (6) 
dy cqy dy 

The flow was isothermal and longitudinally uniform at the 

Banks of inclined cylinders: A. ,1. Fowler and A. Bejan 

channel inlet, 

u = U ® , v = O , w = O  and T = T ®  at x = 0  (7) 

The channel outlet conditions were zero stress and zero longi- 
tudinal heat flux, 

du dv c~w --=dT 0 at x = L  (8) 
- P + 21J -~x = O' ox = O' ~x = O' dX 

The equations and boundary conditions were nondimension- 
alized by using D, U~ and (To - T~) as representative scales, 

(x, y, z) (u, v, w) 
(X, Y, Z) = - - ,  (U, V, W) = - -  (9) 

D U® 

T - T ~ o  p 
O= To_  To~, P pU~ (10) 

The nondimensional counterparts of Equations 1-8, which 
are omitted for brevity, contain the nondimensional numbers 

Rev = U®D, Pr =-,v (A ,  L ,  IY¢') = _ _ ( H ' L '  W) (11) 
v a D 

The system of nondimensional equations was solved using 
the finite element package FIDAP (1991). When the cylinders 
are inclined ( / /#  0) the problem is inherently 3-D, and thus a 
3-D solver was required. The computational domain was built 
up of 8 node brick elements. A Stokes flow solution was used 
to initialize the solution for the mass and momentum equations 
when fl = 0 °, and then the solution to each prior run was used 
to initialize the next run, as fl was increased. Because the energy 
equation is only weakly coupled to the mass and momentum 
equations, it was solved separately for the various Pr values 
after the velocity field was determined. 

Numerical testing indicated that a channel with 40 cylinders 
in the longitudinal direction allowed for pressure measurements 
at rows 11, 19 and 27 that were not affected by the entrance 
or exit regions. We verified that the flow was fully developed 
by calculating the pressures at three equidistant longitudinal 
locations (say a, b and c), and checking that the pressure drops 

N o t a t i o n  

A wetted area 
/~ dimensionless wetted area 
~now dimensionless flow cross-sectional area 
Bh,v. x bias errors 
c constant 
cv fluid specific heat at constant pressure 
D cylinder diameter 
P dimensionless mean velocity, Equation 18 
H height of computational domain 
/-7 dimensionless height 
K permeability of porous medium 
L length of computational domain 
E dimensionless length 
n constant 
Nu row Nusselt number 
p pressure 
P dimensionless pressure 
Pr Prandtl number 
Ph.F, v,a precision errors 
r exponent 
ReD Reynolds number 

S 
T 
To 
T~ 
Ui 

I/, V, W 

U , V , W  
U® 
W 
vl, 
X, y, Z 
X , Y , Z  

distance between cylinder centers 
temperature 
surface temperature 
inlet fluid temperature 
velocity components 
velocity components 
dimensionless velocity components 
inlet velocity 
width of computational domain 
dimensionless width 
Cartesian coordinates 
dimensionless Cartesian coordinates 

Greek letters 

ATom 
0 
g 
V 

P 
¢, 

fluid thermal diffusivity 
angle, Figure 1 
log-mean temperature difference 
dimensionless temperature 
viscosity 
kinematic viscosity 
fluid density 
porosity 
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matched, P , -  Pb = P b -  P=. In all cases, the discrepancy 
between the two pressure drops was less than 1 percent. 

The effect of doubling the channel height/7 was found to 
be insi[~nificant (<  1 percent change in the pressure gradient) 
if the H > 6, and a free-slip boundary condition was used at 
the top and bottom of the channel. The solution proved to be 
extremely sensitive to changes in channel height when a no-slip 
condition was imposed on the top and bottom planes of the 
channel. Convergence testing for the mesh density was per- 
formed with/~ --- 45 °. The number of elements was doubled in 
each direction until such doubling produced a change in the 
pressure gradient of < 3 percent. These tests were performed for 
each porosity, and for both orientations of the array. 

All of the final numerical meshes for determining the pressure 
gradient required between 20 000 and 35 000 elements. Typic- 
ally the initial run, which requires a Stokes flow solution for 
initialization, required 10 to 20 rain of CPU time on a Cray 
Y-MP. The runs that followed generally required about 10 min 
of CPU time each• The temporary space required for the 
matrix solver ranged from 500 to several thousands of mega- 
bytes. This, in combination with the increased computational 
cost of doing proper convergence testing, made a supercompu- 
ter necessary. The convergence testing for stability in the 
calculated Nusselt number indicated that twice as many ele- 
ments were necessary in the x-direction to achieve a 3 percent 
stability in the Nusselt number than were needed for the same 
stability in the pressure gradient. To solve for the velocity field 
on the finer mesh required about 50 min of CPU time on 

the Cray Y-MP. Three additional minutes were needed to solve 
the heat-transfer problem for each Prandtl number. 

The Nusselt number calculation could not be performed for 
the entire range defined by 0.6 < ~ < 0.95, 0.72 < Pr < 100 
and 1 < ReD < 30. For example, in the case 0b = 0.6, Pr = 0.72 
and ReD = 10, the fluid reached thermal equilibrium with the 
solid almost immediately (i.e., after the first row). In the 
opposite extreme (e.g., ~b = 0.95, Pr = 100, ReD = 10) the flow 
was not fully developed thermally at the downstream end of 
the computational domain, and no fully developed Nu could 
be reported. As a rule, if Nu varied by more than 5 percent over 
the 20 inner rows of cylinders, the thermal development was 
considered incomplete. 

P r e s s u r e  d r o p  resu l ts  

The results that document the effect of the cylinder angle of 
inclination on pressure drop are presented in Figures 2a--d. The 
ordinate shows the pressure gradient in an array with inclined 
cylinders, as a fraction of the pressure gradient when the same 
array is perpendicular to the same flow. The first three frames 
show that when Re D < 10 the relative pressure drop AP(18)/ 
AP(0 °) is influenced only by the angle/~ and not by the other 
parameters (RED, ~b, orientation). The ~ effect can be significant; 
for example, in all four frames of Figure 2 the pressure drop 
decreases to 60 percent of its original value as fl increases from 
00-60 ° ' 
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Figures 2a and d indicate that at Reynolds numbers larger 
than 10 the relative pressure drop depends on ReD and ~, in 
addition to ~. The pressure drop is considerably more sensitive 
to changes in the angle fl at low porosities (~ = 0.6) than at 
high porosities (~ = 0.9). When the porosity is high, the angle 
of inclination has no visible effect on the pressure drop if 
/ ~  30 o. 

These results can be compared with the single relative 
pressure drop curve reported by Zukauskas (1987), which falls 
right on top of the curve drawn in Figure 2a for ReD = 30 and 

= 0.6. The present results suggest that the AP(/J)/AP(O °) 
curve is not universal (i.e., it is not independent of ReD and ~). 
This lack of universality is particularly evident in the direction 
of increasing ReD, which is the domain of heat exchanger 
applications. At the same time, the present results show that a 
universal relative pressure drop curve different than Zukaus- 
kas's exists when Reo is smaller than 10. 

We also correlated the pressure drop data for cross-flow 
(fl = 0 °) by modeling the array and the fluid as a saturated 
porous medium. In the small-ReD limit the flow is expected to 
follow the Darcy model, 

dp /~ 
. . . .  u (12) 

tgx K 

The permeability K was determined by fitting the numerical 
pressure gradient results to Equation 12 and correlating the K 
values using a formula similar to the Carman-Kozeny relation 
(Carman 1937), 

D2 F ~3 7 r 
K = 12~/(1 - 4,)22 (13 )  

with r = 0.85 for orientation 1 and r = 0.8 for orientation 
2. Equation 13 agrees within 6 percent with the numerical K 
values deduced from Equation 12 for orientation 1 and ~ < 0.9. 
The agreement between Equations 12 and 13 is within 35 
percent for all the runs made for orientation 2: the average 
error for all the runs in both orientations was 10 percent. The 
agreement for the runs in orientation 2 is illustrated in Figure 
3, where the numbers listed after each point represent ReD and 
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Figure 3 Porous-medium correlation of the pressure drop results 
for cross-flow 
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~. The use of K l/z as length scale in the dimensionless groups 
on the ordinate and abscissa of Figure 3 is standard in the field 
of convection in porous media (Cheng 1978; Nield and Bejan 
1992). Equation 12 is not shown in the figure: it would be 
represented by a line of slope - 1 passing through the point 
(1, 1), that is, a line that would pass right through the shown 
data. 

H e a t - t r a n s f e r  r e s u l t s  f o r  c y l i n d e r s  in  
c r o s s - f l o w  

The results of the heat transfer part of the problem defined in 
the mathematical formulation section are summarized as an 
average Nusselt number 

hD 
Nu = - -  (14) 

k 

The rate of heat transfer between the fluid and the wetted 
area A in any control volume of the computational domain is 

q = hAATI m = rJlcp(You t - Tin ) (15) 

where th is the mass flow rate through the domain (Figure 1, 
bottom). The relation between Nu and the nondimensional 
formulation presented in the mathematical formulation section 
is 

gReDer(0o,t -- 01,) 
Nu = .~0~m (16) 

where ,2/= A/D 2 and 

0 o . ,  - 0 i .  
01m = (17) 

In[(1 - 0,.)/(1 - Oo.t)] 

---- I'_ Ud~flow (18) tr 
JA gow 

Experimental studies usually report Nu averaged over the 
entire array, because that value is experimentally accessible. We 
calculated the "local" Nusselt number associated with (aver- 
aged over) a certain row of cylinders to monitor the thermal 
development of the flow, from one row to the next. 

The results obtained for fl = 0 ° show that in general the row 
Nusselt number Nu in the first few rows is larger than in later 
rows. This trend is illustrated in Figure 4. We found that the 
Nu value for the first row was very sensitive to grid refinement. 

Nu 
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Figure 4 The local (row) Nusselt number as a function of Pr and 
longitudinal position 
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Table 1 Constants for the fully 
developed Nusselt number corre- 
lation (Equation 20) 

(~ C n 

0.6 5.64 0.14 
0.9 2.34 0.18 
0.95 2.0 O. 18 

authors tested an array of in-line square pin fins with 10 to 20 
rows in the longitudinal direction, and found that Nu ~ R ~ ,  
where " is between 0.2 and 0.25 in the laminar regime and for 
Pr = 7 (water). Comparison of our findings with the results of 
Minakami et al. (1993) is reasonable because the shape of the 
pins (square or cylindrical) should have only a small effect in 
the low ReD regime. Furthermore, Zukauskas (1987a) indicates 
that Nu values for staggered and in-line arrays have the same 
ReD dependence for ReD > 40. 

After a few rows Nu approached a constant, which was less 
sensitive to grid refinement. Our convergence tests were based 
on the stability of the constant Nu value found between rows 
7-31. 

The only correlation for low Reynolds number heat transfer 
for staggered tube banks in cross-flow appears to be a formula 
by Zukauskas (1987a). 

/ P r  \0.22 
Nu = 1.04 Re°i~Pr°'36[ ̀  " f |  (19) 

' \ V r . /  

where Nu is the value for " inner rows," and ReD.r is based 
on the velocity averaged over the minimum cross section. 
Equation 19 was recommended for the range 1.6 < ReD,f < 40. 
The subscripts r and ,, indicate that the properties must be 
evaluated at the f low mean temperature and, respectively, the 
cylinder surface temperature. 

Our results for fully developed cross-flow in the range 
1 < ReD < 30 and 0.72 < Pr < 100 are correlated by the power 
law 

Nu = c(ReD Pr)" (20) 

for which the constants c and n are reported in Table 1. The 
agreement between the numerical Nu values and the values 
obtained based on Equation 20 is within 4 percent. 

The most important difference between the correlations 
(Equations 19 and 20) is the smaller exponent n (i.e., weaker 
ReD and Pr effect) present in Equation 20. To understand these 
differences we examined the experimental and numerical work 
on which Equation 19 is based (Bcrgelin et al. 1949, 1950; 
Omohundro et al. 1949). For example, Equation 20 underesti- 
mates by a factor of 2 the Nusselt number found experimentally 
by Bergelin et al. (1950) for Pr ~ 500. The numerical work of 
Chang et al. (1989), which was performed for Pr = 0.7, agrees 
with the Bergelin et al. experiments when a Pr °'33 correction 
factor is applied to the Nusselt number. The agreement between 
Bergelin et al. and Chang et al. is due to the shortness of the 
arrays studied (10 rows for Bergelin et al. and 5 rows for Chang 
et al.), and explains why Equations 19 and 20 are different. 

Figure 4 illustrates the effect of the Prandtl number on the 
local Nusselt number over the first 30 rows. When we examine 
our numerical results for the first 10 cylinder rows we find that 
the Nusselt number averaged over 10 rows scales as Pr °'3 and 
that our numerical simulation agrees with the findings of 
Bergelin et al. to within 10 percent. Nonetheless at later rows 
where the flow is fully developed, our correlation (Equation 20) 
applies. For flow systems in which the flow becomes fully 
developed early in the array, it is clear that Zukauskas's 
formula (Equation 19) would result in significant error 
(although it is correct for short arrays in which entrance effects 
dominate). 

The same explanation (fully developed flow vs, entrance flow) 
holds for the different exponents on the Reynolds number in 
Equations 19 and 20. That the Nusselt number in the fully 
developed region is proportional to R ~  where" is significantly 
;mailer than in Zukauskas's correlation (Equation 19) is further 
supported by the experiments of Minakami et al. (1993). These 

H e a t  t r a n s f e r  r e s u l t s  f o r  i n c l i n e d  c y l i n d e r s  

Zukauskas (1972) proposed the single curve of Figure 5 (top) 
as a heat-transfer method of accounting for the effect of the 
angle of inclination/3 between the cylinder axis and the direc- 
tion perpendicular to the flow. He did not indicate the ReD 
range and array dimensions for which this curve is valid. Our 
results for fully developed flow, 1 < ReD < 30, 0.72 ,~ Pr < 100, 
and orientation 1 indicate that the angle effect on Nu is 
considerably smaller than indicated by Zukauskas. 

Groehn (1981) proposed the principle of independence as a 
method of accounting for the effect of/3 on the Nusselt number. 
In this method the relevant velocity scale is that normal to the 
cylinder; hence, the Reynolds number that should be used in 
Equation 20 is Re=)cos/3. If the principle of independence is 
valid then the ratio Nu(fl)/Nu(0 °) should be a function of ~b and 
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Figure 5 Zukauskas's (1972) curve for the effect of the angle 8 
on the Nusselt number (top); the principle of independence in 
combination with Equation 20 (bottom) 
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only. Figure 5 (bottom) illustrates the curves predicted by the 
principle of independence in combination with Equation 20. 

Figures 6a-c show how the ratio Nu(p)/Nu(0 °) responds to 
changes in/~, ~b and Pr when Re D is fixed. An interesting feature 
is the evolution of the Pr -- 7 curve (e.g., water) as the porosity 
increases from 0.6-0.95. The Nu(~/Nu(0 °) curve moves 
upward as 0 increases, and this means that the angle effect is 
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Figure 6 The effect of angle of inclination, Prandtl number and 
porosity on the Nusselt number (ReD = 10) 
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weaker in a sparse array than in a dense array. In particular, 
when ~ = 0.95 and 0 ° </~ ~< 45 ° the Nusselt number for 
inclined cylinders is greater than for the same array in 
cross-flow. This feature is almost the same as in the 
experimental results of Willins and Griskey (1975), who 
measured the mass transfer from a single cylinder inclined 
relative to a uniform flow. In the Willins and Griskey 
experiment the group ReD Sc was of the order of 104 (note that 
ReD Sc is the mass-transfer equivalent of the Peclet number in 
forced convection heat transfer). In Figure 6c, the Pr --- 7 curve 
corresponds to PeD = 70, which is the highest Peclet number 
illustrated in that frame. Moreno and Sparrow (1987) found an 
increase in Nu at small angles/~ in flow through tube banks 
at ReD ~ 104 if the cylinders were in line, but not if they were 
staggered. As our array becomes more sparse, it more closely 
approximates the in-line configuration. In conclusion, Figure 
6c, Willins and Griskey's and Moreno and Sparrow's results 
suggest that the increase in Nu(/~) and Nu(0 °) in a small/~ range 
is a high Peclet number effect visible in in-line arrays, sparse 
staggered arrays or isolated cylinders. 

Figure 7 shows how the Nusselt number behaves at constant 
Pr and constant ReD. The curves show that the porosity has a 
relatively weak effect and that the ratio Nu~)/Nu(0 °) is mainly 
a function of/~. Again, the exception is the 0 = 0.95 curve in 
Figure 7b, which shows that the porosity plays a role when the 
array is sufficiently sparse. 
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Figure 7 The effect of angle of inclination and porosity when ReD 
and Pr are fixed 
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Figure 8 The effect of the Reynolds number on the Nusselt number 
of an inclined array 

Figure 8 shows that the Re/) effect is such that Nu(~)/Nu(0 °) 
increases when Re D increases. This is interesting because it 
means that the Nu(/])/Nu(0 °) curve becomes less and less like 
Zukauskas's curve (Figure 5) as Rex) increases. This trend is the 
opposite of what we found in the results for the pressure drop, 
where the AP(~)/AP(O °) curve approached Zukauskas's curve 
as ReD increased (Figure 2a). 

Finally, in Figures 9a and b we show that when the Peeler 
number (PaD = ReDPr) is held constant (of order 100), the 
ratio Nu(~/Nu(0 °) is essentially a function of ~ only. Plotted 
are two curves (P% = 70 and 100) for ~b = 0.6 and ~b = 0.9, 
and a single point (ReD = 30, Pr = 3.3) for ~ = 0.6. Compar- 
ing this finding with the relative pressure curves of Figure 2 
leads to the conclusion that when the relative pressure curve 
is independent of ReD (namely, when ReD < 10), the ratio 
Nu(/~)/Nu(0 °) is a function of ~ and PeD, and not of ReD and 
Pr separately. 

The dependence of Nu(/~)/Nu(0 °) on Pr and ReD indicates 
that the principle of independence does not hold in a strict 
sense. It does, however, provide a good order-of-magnitude 
estimate for the effect of ~. That the principle of independence 
does not hold exactly in the low ReD regime is reasonable, 
because this principle is based on the assumption that the flow 
away from the cylinder surface is inviscid. 

The most important aspect of the heat-transfer results 
presented in this section is that at low Reynolds numbers the 
effect of cylinder inclination is relatively small, regardless of the 
Peclet number. For example, if the ~ effect is ignored in the 
estimation of Nu in the fl range 00-60 °, the error in Nu is less 
than 20 percent. 

E x p e r i m e n t s  f o r  p r e s s u r e  d r o p  

We verified the accuracy of our numerical results by measuring 
in the laboratory the pressure drop across a long bundle of 
cylinders with several inclinations (p = 0 °, 45 °, 60 °) and at low 
Reynolds numbers (8 ~< ReD ~< 50). We chose to test the pres- 
sure drop calculations because they represent the most critical 
part of the results described until now, because the effect 
of cylinder inclination is much greater on the pressure drop 
than on the heat-transfer coefficient. We needed to verify that 
our computational domain captured correctly the 3-D flow 
effects present in an array with many yawed and long cylinders. 
Earlier experimental studies of low-Ray flows through cylinders 
in cross-flow (Bergelin etal .  1949, 1950; Omohundro, 1949) 

were limited by the fact that the arrays were too short, and the 
flows were not fully developed. Furthermore, we could not find 
any experimental reports on low-ReD flows through inclined 
cylinder arrays. 

Apparatus 

The main features of the experimental apparatus are shown in 
Figure 10. We constructed an array with 12 cylinders across 
and 115 cylinders in the flow direction, with the cylinders 
arranged in the configuration indicated as orientation 1 in 
Figure 1. The length of the array was 60 cm. The cylinders were 
made of 0.07qnch (1.8-mm) rubber O-ring stock. They were 
7.4 cm long and spaced in equilateral triangles with side length 
of 6 mm. When the cylinders were oriented across the flow 
(~ = 0 °) the porosity of the array was 0 = 0.92. The channel 
height to cylinder diameter ratio was 420:1. To change the fiber 
angle, the wall of the lower channel was shifted longitudinally 
and upward, such that the total fiber length remained the same 
(7.4 cm), but the distance between the top and bottom of the 
channel changed, and the fiber angle changed. When/~ = 60 ° 
the channel height to cylinder ratio was 210:1 and the porosity 
was q~ = 0.84. 
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Figure 9 The angle effect on the Nusselt number when the array 
is dense and the Peclet number is fixed 
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Figure 10 The main components of the experimental apparatus 

The fiber channel was connected to a 2-m tall tank into which 
fluid could be pumped, thereby developing a pressure head to 
drive flow through the array. Six manometers were spaced 
along the channel so that pressure measurements could be 
made in the region of fully developed flow. The fluid drained 
out of an opening at the end of the fiber channel into a settling 
tank, from which it was siphoned into the pumping tank and 
repumped into the head tank. 

The pump operated at constant flow rate during each run, 
so that the height of the fluid column in the head tank adjusted 
itself until the flow rate through the fiber channel matched the 
flow rate into the head tank. We measured the flow rate by 
timing the filling of a container placed under the exit from the 
fiber channel. The fluid was a solution of corn syrup and water 
(ratio 1:3 by volume) with a kinematic viscosity between 
7-8 × 10 - 6  mZ/s. The viscosity depended on the temperature 
and the concentration of corn syrup, and varied from day 
to d a y  but was stable during a series of consecutive runs. It 
was measured after each run with a Cannon-Fenske-type 
viscometer. 

The pump was a variable speed Simer shallow well pump. 
The manometers were glass tubes with 4 mm inside diameter 
and 1 m height. The head tank and the walls of the fiber channel 
were made of Lexan. The fibers (total number ~ 1380) were 
tied on the back side of orifices drilled in the top and bottom 
walls of the fiber channel, and sealed with RTV silicone sealant. 
The fibers were pulled tight to prevent bending during opera- 
tion. No bending or vibration of the fibers was observed; 
however, only the outermost fibers could be seen because of 
the density of the fibers. 

Procedure 

The pump was set at a certain flow rate. After the pump had 
run for a few minutes, to let the bubbles flow out and to allow 
the head tank to reach its equilibrium height, the liquid levels 
in the manometers were read and recorded. Then the fill time 
for a I-gallon container collecting fluid at the fiber channel exit 
was measured 5 times. Finally, the manometer levels were read 
again to make sure that steady state had been achieved. 

Four  of the manometers were positioned in the region of 
fully developed flow. After a few runs it became clear that it 
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was going to be unusual to produce a run in which all four 
manometers were bubble-free at the time of measurement. To 
maintain consistency between runs, the reading of one manom- 
eter was discarded from every run. Pressure was determined 
by the relationship P = pgh, where p is the measured fluid 
density, g is gravitational acceleration, and h is the height of 
the column measured in the manometer. The fluid density was 
measured by weighing a 10-ml fluid sample. A 95 percent 
confidence interval was calculated based on the three pressure 
measurements. Only in the case of one run was the precision 
error found to be greater than 5 percent, and the run was 
discarded. All other runs for which all of the necessary measure- 
ments could be made were included in the reported results. 

The longest and shortest measured times for flow rate were  
discarded, and the remaining 3 times were averaged to find the 
flow rate and to calculate the precision error. The fluid velocity 
derived from this measurement was the average channel velo- 
city, which is equivalent to the inlet velocity U= used in the 
numerical simulations. 

Error analysis 

All errors were calculated using 2 standard deviations as the 
95 percent confidence interval. There were four sources of 
precision error in this experiment (random errors and unsteadi- 
ness): the height measurements in the manometers Ph, the 
kinematic viscosity measurements P,, the density measure- 
ments Pp, and the flow-rate measurements PF. The precision 
errors Ph and PF changed from run to run. The precision error 
for density (PJp ~ 0.07 percent) was negligible compared to 
other errors and did not vary from run to run. Repeated tests 
for kinematic viscosity in which fluid samples were taken 
from different tanks in the system indicated that P,/v--2.2 
percent. 

The bias, or the fixed errors for height and distance measure- 
ments, were calculated assuming that our ruler was accurate 
to within +0.Smm. Because the heights being measured 
changed depending on flow rate, Bh/h varied with each run, 
between 0.5-4 percent. The fixed error for the gallon container 
was estimated by repeated calibration against highly accurate 
volumetric measuring containers and was found to be 1 percent. 
Because of the extremely accurate containers, scales and 
viscometer calibration, the bias errors for those measurements 
were negligible compared with the height and gallon volume 
errors. The non-negligible bias and precision errors that did 
not vary from run to run are listed in Table 2. 

The 95 percent confidence was determined by combining all 
bias and precision errors using the root-sum-square method, 
and is indicated graphically for each point plotted in Figures 
11 and 12. The data scatter falls within the estimated errors. 

Results 

Figure 11 shows the experimental points for fl = 0 °, and the 
corresponding numerical results (the solid line). Note again that 
U is the volume averaged velocity, equivalent to Uoo of the 
numerical simulations. The Reynolds numbers covered by the 
data vary between 10-50. Our numerical solution becomes less 
accurate for ReD > 30. A possible explanation for this is that 
the experimental system enters the transition to the turbulent 

Table 2 Non-negligible bias and precision errors 

P,/v Bx/x By~ V P~p 
(percent) (percent) (percent) (percent) 

2.19 0.5 1 0.07 
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Figure 11 Comparison between the experimental and numerical 
results for cylinders in cross-flow 

regime for higher Re D . This behavior is suppressed in our 
numerical simulation by the assumption of impermeable side 
walls for the computational domain. These boundary condi- 
tions do not allow the flow to meander. The numerical and 
experimental results show very clearly that for low ReD the flow 
is approximately Darcy flow and that the numerical simulation 
predicts the permeability of the array extremely well. 

Figure 12a shows the experimental results for/~ = 60 ° com- 
pared with the numerical solution that corresponds to the 
experimental geometry. The number of elements, the boundary 
conditions and general configuration used in the simulation 
were the same as those used in our earlier numerical work (see 
earlier discussion). An adjustment was made to account for the 
specific geometry of the experimental system. Unlike our earlier 
numerical work, in the experiment the porosity is a function 
of the angle ~, and the fibers are no longer arranged in 
equilateral triangles when ,8 ~ 0. The two curves in Figure 
12a show the numerical solution for the experimental geometry 
at ~ = 0 ° and 60 °. The agreement between the experimental 
and numerical results is excellent. 

The results illustrated in Figure 12a cover the Re D range 
10-50. In the p = 60 ° array, where the porosity is lower than 
w h e n / / =  0 °, the Darcy regime covers a wider Rev range, and 
our numerical results agree with the measurements reasonably 
well over the entire Re n domain. 

Figure 12b shows the experimental data for/~ = 60 ° next to 
the prediction based on the porous medium flow model (Equa- 
tion 12). In this model we combined the permeability from 
Equation 13 with the angle effect documented in Figures 2b 
and d. The agreement between the proposed model and the 
experimental data is excellent. We cannot make a similar 
comparison for j~---0 ° because it falls outside the Darcy 
regime (the array orientation is 1, and the porosity is 
greater than 0.9). 

Figure 13 shows the experimental and numerical re- 
suits for /~ = 45 °. There are no error bars on these data 
points because in this configuration we could not verify the 
precision error: the angle was such that the entrance and end 
region effects penetrated to two of the central pressure taps 
that were supposed to be in the fully developed flow region. 
Thus only two pressure taps were in the fully developed region, 
and only one pressure gradient measurement was possible. The 
pumping mechanism was not precise enough to duplicate 
exactly the flow conditions for two successive runs, and, there- 
fore, to repeat runs while holding the velocity constant was not 
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possible. Instead the experiment was run repeatedly at approx- 
imately the same flow rate. If repeated pressure gradient mea- 
surements indicated that the first run was not corrupted by an 
unseen bubble or other anomaly (i.e., if two runs of roughly 
the same flow rate showed roughly the same pressure drop, the 
measurement produced by the first run was plotted). The 
consistency of the data plotted in Figure 13 is strong evidence 
that the measurements are sufficiently accurate, and they agree 
very well with the numerical prediction. 

Conclusion 

In this article we documented the pressure drop and heat 
transfer characteristics of flows through bundles of parallel 
cylinders when 

1. The Reynolds number is low. 
2. The flow is hydrodynamically and thermally fully developed. 
3. The cylinders may be inclined relative to the flow direction. 

These three aspects had not been documented before, yet they 
are very important in applications with length scales smaller 
than the scales of conventional heat exchanger technology. 

The results of this study demonstrate that the parametric 
domain represented by aspects 1-3 requires special attention 
and that significant errors may occur if the available large-scale 
(heat exchanger-type) information is extrapolated to smaller 
scales. For  this reason, a useful direction for future research 
would be to generate more data for pressure drop and heat 
transfer in the domain 1-3. Another direction would be to 
widen the Reynolds number range to ReD values as high as 
100, that is, to cover the transitional regime where the flow 
behind each cylinder meanders (e.g., Minakami et al. 1993) and 
the symmetry assumed in Figure 1 (top) breaks down. 

Acknowledgments 

The present study was supported by the Air Force Office of 
Scientific Research. The experimental apparatus was construc- 
ted by Michael Gunter. The computational work was made 
possible by a grant from the North Carolina Supercomputing 
Center. The computational assistance received from Professor 
Laurens Howle is gratefully acknowledged. 

Banks of inclined cylinders: A. J. Fowler and A. Bejan 

References 

Ikrgelin, O. P., Davis, E. S. and Hull, H. L. 1949. A study of three tube 
arrangements in unbaffled tubular heat exchangers, Trans. ~4SME, 
71, 369-374 

Bergelin, O. P., Brown, G. A., Hull, H. L. and Sullivan F. W. 1950. 
Heat transfer and fluid friction during viscous flow across banks of 
tubes: III. Trans. ASME, 72, 881-888 

Carman, P. C. 1937. Fluid flow through granular beds. Trans. Inst. 
Chem. Eno., 15, 150-166 

Chang, Y., Beris, A. N. and Michaelides, E. E. 1989. A numerical 
study of heat and momentum transfer for tube bundles in crossflow. 
Int. J. Num. Meth. Fluids, 9, 1381-1394 

Cheng, P. 1978. Heat transfer in geothermal systems. Adv. Heat 
Transfer, 14, 1-105 

FIDAP Theoretical Manual, 1991. Fluid Dynamics International, 
Evanston, IL, V.6.02 

Groehn, H. G., 1981. Thermal hydraulic investigation of yawed tube 
bundle heat exchangers. Heat Exchangers Thermal-Hydraulic Fanda. 
menials and Design, S. Kakac, A. E. Bergles and F. Mayinger, (eds.). 
Hemisphere, Washington, DC, 97-109 

Kays, W. M. and London, A. L. 1984. Compact Heat Exchangers, 
3rd ed., McGraw Hill, New York 

Minakami, K., Mochizuki, S., Murata, A., Yagi, Y. and Iwasaki, H. 
1993. Heat transfer characteristics of the pin-fin heat sink (mechan- 
ism and effect of turbulence in the pin array). The 6th Int. Symposium 
on Transport Phenomena in Thermal Engineering, Seoul, Korea, 
67-72 

Moreno, A. A. Y. and Sparrow, E. M. 1987. Heat transfer, pressure 
drop, and fluid flow patterns in yawed tube banks. Int. J. Heat Mass 
Transfer, 30, 1979-1995 

Nield, D. A. and Bejan, A. 1992. Convection in Porous Media. 
Springer-Verlag, New York 

Omohundro, G. A., Bergelin, O. P. and Colburn, A. P. 1949. Heat 
transfer and fluid friction during viscous flow across banks of tubes. 
Trans. ASME, 71, 27-34 

Willins, R. E. and Griskey, ~ G. 1975. Mass transfer from cylinders 
at various orientations to flowing gas streams. Canadian J. Chemical 
Eng., 53, 500-504 

Zukauskas, A. 1972. Heat transfer from tubes in cross flow. Adv. 
Heat Transfer, 8, 93-160 

Zukauskas, A., 1987a. Heat transfer from tubes in crossflow. Adv. 
Heat Transfer, 18, 87-159 

Zukauskas, A. 1987b. Convective heat transfer in cross flow. Hand- 
book of Single-Phase Convective Heat Transfer, S. Kakac, R. K. Shah 
and W. Aung, (eds.). Wiley, New York, chap. 6 

Int. J. Heat and Fluid Flow, Vol. 15, No. 2, April 1994 99 


