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Abstract 

We consider fully coupled geochemical process systems, and show how they may be cast as 
differential algebraic systems amenable to numerical solution. 

Considering reactive transport within engineered barriers, we motivate problems: (1) involving 
(some) kinetic reactions; (2) in two or more spatial dimensions; (3) incorporating spatial 
heterogeneity; and (4) with full coupling. 

The examples considered illustrate the possible treatment of spatial heterogeneity (which 
causes both channelled flow and stagnant water); the treatment of air-water interfaces as 
moving-boundaries; corrosion at interfaces; nonlinear feedback when the geochemical and flow 
problems are full coupled, and the formation of fingering patterns. 

Our preliminary calculations indicate that such problems are numerically tractable. However, 
verification and the availability of suitable data remain outstanding issues. Even though these 
problems are nonlinear, there is range of analytical tools available, and some aspects of the 
solution can be known quantitatively as well as qualitatively. 

1. Introduction 

In modelling geochemical reactive transport processes, assumptions of instantaneous 
equilibration, pseudo steady states, or geometrical symmetry are common. For example, 
within performance assessment programmes, instantaneous elemental solubility limits or 
adsorption equilibrium partitions are often imposed at a conceptual level. Thus little if 
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any consideration is made of the transient behaviour and the timescales at which such 
concepts are invalid; or how these assumptions may bias the results of the assessment. In 
more complex geochemical systems, where invading water is in disequilibrium with 
rock minerals or emplaced barriers, and the suite of chemistry is very large, the 
imposition of equilibrium assumptions can be even more critical and the timescales 
associated with transients are significant. 

In many available models and codes, chemical reactions and transport phenomena are 
dealt with by a two-stage method in which the chemistry is equilibrated instantaneously 
following discrete perturbations, representing the transport fluxes of individual species. 
Chemical equilibrium databases are often accessed by such methods regardless of the 
timescales governing the particular phenomena under consideration. 

Recent studies have concluded (Bruno et al., 1992) that geochemical transport models 
must incorporate transient (kinetic) effects, as well as the full coupling of chemical 
processes to transport processes, via fluid displacement due to volumetric changes 
within the mineralogy of the host media. 

From a theoretical point of view, Grindrod (1991, 1993) and Ortoleva and Chen 
(1992) among others have long pointed out the restriction that ignoring such processes 
places upon the geochemical system models and their solutions. Indeed there is a large 
literature concerning reaction diffusion-advection systems detailing how the coupling of 
such processes can produce a wealth of structural pattern in both space and time. The 
key point is that there may be critical periods within the evolution of a system where 
some of the chemical reactions cannot be equilibrated instantaneously: instead they 
evolve on non-negligible timescales compared to those associated with the transport 
phenomena. Sharp transition layers, for example, may develop and propagate, with 
quiescent states to either side. 

Until recent years, this remained a largely academic subject owing to the computa- 
tional cost of solving the full equations, and the relative level of sophistication required 
of the spatially distributed chemical systems under consideration. Data availability was 
also a problem. However, more recently, and particularly within the environmental 
sciences, coupled processes and heterogeneous systems have begun to be considered. 

The complexibility of the environment calls for a detailed understanding of geochem- 
ical processes (fluid flow, solute transport, chemistry, and so on), yet some phenomena 
require coupling between such processes in order to be modelled adequately, or even at 
all. Thus there is a growing interest in reactive transport models allowing for disequilib- 
rium on model timescales where necessary. 

Recognizing this fact, JGC and Intera have jointly developed expertise and a code, 
ARASE (Rough Wave), as a tool for analyzing problems in the environmental sciences. 

The situation in two or more spatial dimensions is of central interest, since even for 
smooth initially distributions of solids and solutes, patterns can spontaneously arise and 
near plane waves can develop fingers (Ortoleva and Chen, 1992), as a result of the full 
coupling of the reactive transport to the fluid flow. 

The ability of coupled nonlinear models to exhibit spatial patterns is of key 
importance to performance assessment since implicit assumptions of symmetry can bias 
calculations and preclude behaviour such as fingering or pitting corrosion. This is made 
even more critical by the presence of spatial heterogeneities within the host media. All 
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materials are heterogeneous at some scales, and even, relatively uniform media may be 
subject to heterogeneous boundary conditions as a result of external features. Thus we 
must consider 

(1) natural heterogeneity, 
(2) dynamic (kinetic) mineral reactions, 
(3) solute transport, 
all coupled through flow, transport and mineral alteration. Hence, even for initially 

well-characterized media, assumptions of simple uniform geometry for flow, or homo- 
geneity, or equilibration, may be far from the reality, and can bias our thinking as well 
as results. 

Of course it is one thing to draw cartoons of coupled processes, but another to 
provide a mathematical model. Hence the spirit of this paper is to discuss what can be 
done (at present) and indicate the direction of our future research with ARASE. 

Looking ahead it is important to collect together a number of well-documented 
example applications. At some point a cross-model verification exercise would be 
useful, and examples exhibiting coupled process behaviour unavailable within one-di- 
mensional equilibrium models should be of central interest. 

Any attempts to treat the kinetic behaviour of reactions raises questions about the 
availability and reliability of data. Clearly models such as ARASE will ultimately need 
to be linked to referencable data. In the first place though it is most important to 
compare results to well-defined experiments and as to whether the models are adequate 
to explain the kinetic behaviour encountered. In this paper we wish to demonstrate the 
type of calculations which maybe made, by examining some specific examples. 

2. Some problems 

ARASE has been developed with a number of problems in mind. We briefly describe 
these. 

2.1. Fully coupled precipitation /dissolution problems 

Here the porous medium is characterized by a few key reactive mineral species. 
Interaction with incoming pore water causes porosity changes resulting in further fluid 
displacement and hence advection. Preliminary calculations have been run in order to 
verify the solution procedure. Previous one-dimensional calculations modelling the 
dissolution processes within cementitious environment (fully coupled to fluid flow) have 
been used for verification exercises. For example, in Noy (1990) such a nonlinear model 
for the reaction of anorthite with quartz to form laumontite is considered. ARASE 
obtained results, see Fig. 1 and 2, identical to those in Noy (1990) using a much smaller 
computer (owing to the efficiency of the variable order, variable time-stepping solver for 
systems of differential and algebraic equations; Thomas, 1993). 

It is known that in two dimensions, fully coupled systems can produce fingering 
patterns (Ortoleva and Chen, 1992; Grindrod, 1993). Hence, ARASE will be applied to 
model fully coupled problems in two-dimensional regions. 
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Fig. 1. Concentration of laumontite (CaA12Si,0Q.4H20) at times 1.106, 2.10h, 3.106, . ., 1 .107 s at 
positions x along the flow path. 

Scalloping or fingering happens when a reactive solute species invades some 
medium, and the reacted media formed has a lower permeability than the unreacted 
media. Hence if perturbations to the plane wave geometry form fingers, the flow can 
become channelled towards the fingertips, and the solute delivered preferentially to these 
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Fig. 2. Concentration of anorthite (CaAl,Si,O,) at times 1. IO’, 2. lo’, 3’ 106, , 1.10’ s at positions x 
along the flow path. 
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points. This results in further growth to the structure; however, such instability will be 
diffusion limited and has a characteristic spatial scale. 

2.2. Multibarrier geometry 

Here the solution domain is partitioned into subregions representing, for example host 
rock, a clay barrier, and a cement barrier. This results in a large suite of chemistry with 
spatially discontinuous mineralogy. Heterogeneous initial distributions and permeabili- 
ties are generated, along with the consequent channelled flow by employing statistically 
self-affine fractals (Grindrod and Impey, 1993). These can produce high-resolution 
details providing preferential flow paths for reactive transport. Hence there are regions 
of stagnant water; and regions of relatively high flow, which may give rise to 
geochemical disequilibrium. Since exterior heterogeneity within the host rock yields 
structured pressure fields, there can be such channelling even in the relatively homoge- 
neous barriers. 

Statistically self-affine fractals, defined over a two-dimensional region, yield surfaces 
which have noninteger dimension between 2 and 3. The higher the dimension, the less 
smooth are the distributions they represent. 

It can be shown that such fields of fractal dimension 3 - H (for H between 0 and 1) 
obey statistical scaling laws which imply the semivariogram behaves like the 2H-power 
at small values of separation. Typically permeability fields for crushed or fractured rock 
have fractal dimensions greater than 2.5, given their non-smoothness, whereas a 
homogeneous small grained medium like a clay will have a smoother permeability field 
of fractal dimension close to 2 (two-dimensional surfaces being differentiable). Of 
course, we only rely on the fractal scaling holding down to the scale of the resolution of 
the calculation, but not necessarily beyond this cut-off. Similarly, we do not impose it at 
large spatial scales. 

Fig. 3 depicts a typical flow field (modulus of the Darcy velocity) developed for a 
two-dimensional section through such a multibarrier domain. The outer layer is rock 
with conductivities between 103-lo4 m s-l, and is highly heterogeneous (of fractal 
dimension 2.75); the middle layer represents more homogeneous compacted clay with 
conductivities lo’-lo8 m s-l (fractal dimension 2.1); the inner layer represents 
concrete and is slightly heterogeneous with conductivities 101o-lO1l m s-l (fractal 
dimension 2.3). 

In examining such systems it is the aim to consider the relative timescales associated 
with the mineral reactions and the fast channelled flow. Hence it is expected that 
disequilibrium and the consequence of the coupled processes will be observed within the 
key flow paths, rather than uniformly throughout the medium. 

2.3. Geochemical transients during and after a buffer saturation phase 

Here reactive transport is driven by the saturating behaviour of an initially dry buffer 
region. Hence the wetting region is enlarging and more and more water is drawn from 
the exterior. 

As an example, let us consider the reactive transport of aqueous and mineral species 
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within the near field of a deep geological radioactive waste repository. We solve for 
solute and mineral species during and after the resaturation phase of a bentonite buffer. 
Thus the domain of solution changes in time as more bentonite becomes wetted, and 
gains access to the aqueous chemistry. 

At the moving air-water interface there is a source of both 0, and carbonate species 
due to dissolution. At the outer bentonite-rock boundary the aqueous chemistry is held 
constant (due to the relatively large permeability). Following resaturation both aerobic 
and anaerobic corrosion of the bentonite-steel interface is possible. The transport 
component allows for diffusion terms and (resaturation driven) advection. The geometry 
is assumed here to be radially symmetric, since we are primarily interested in the impact 
of a moving front end corrosion boundary conditions but this will not be the case in 
future calculations (Crompton et al., 19951, once we have reviewed the performance of 
the specified geochemical model. 

Examples of output from ABASE are shown in Fig. 4. In each case the chemical 
species are graphed against radial coordinate r, at times t = 8, 16, 24, . . . , 56 yr. 

The bentonite-steel overpack interface is located at r = 0.5 m, where corrosion can 
take place. The bentonite-rock interface is at r = 1.5 m. During resaturation (the first 35 
years) aqueous solutions are calculated and depicted only at those locations r, which are 
wet. Note how following resaturation the 0, plume both diffuses out of the buffer, and 
is also depleted rapidly at the buffer overpack interface. 

In this example we considered a total of 20 aqueous species, 9 mineral species, 13 
instantaneous reactions and 9 slow reactions. The relevant components and the chemical 
reactions are given in Appendix B. 

3. Model equations 

We shall consider reactive transport within a saturated region of a porous medium. 
Aqueous species are advected by the groundwater flow and may diffuse. Solid species 
are assumed immobile and the corresponding transport terms are zero. Generalizations to 
include a mobile solid phase (i.e. colloids) would be straightforward. 

We begin by specifying a system of reaction-diffusion-advection equations for n 
solute species, with concentrations (moles per unit fluid volume) denoted by u = 
(U r, . . . ,u,,)=, and m solid species, with concentrations (moles per unit in situ volume), 
w = (w,, . . .) IV,)=. Both and distributions depend upon spatial location, denoted by x, 
and time, t. Let the porosity be denoted by 8 = 0( x,t); u will denote the Darcy velocity 
(u/0 is the mean fluid velocity). 

We shall partition the chemical reactions into fast reactions and slow reactions. 
Formally, the definition of such terms means that they take place on fast or slow 
timescales relative to the timescales associated with the transport processes. In practice, 
the division may be taken to be between solute-solute reactions which rapidly equili- 

Fig. 3. Conductivity and modulus of the Darcy velocity for a three-component system: host rock (fractal 
dimension 2.7%clay buffer (2.1)-concrete (2.3). 
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brate, and precipitation/ dissolution reactions affecting, the mineralogy, w, which take 
place more slowly. 

Fast reactions will be assumed to be in instantaneous equilibrium whereas slow 
reactions will be treated kinetically. However, it is instructive to consider this situation 
as an asymptotic limit of the true dynamic system, since this motivates our set up of the 
problem, and is essential to obtain the correct set of equations which control the 
evolution of the resulting constrained system. 

We assume that there are p-fast reactions with reaction terms, F(u) = (F,, . . . ,FpjT 
and 4 slow reactions with reaction rates S(u,w) = (S,, . . . J,). 

For example, if the jth fast reaction is of the form: 

where (Y, p, y and 6 are stoichiometric constants, then the reaction proceeds to the 
right or to the left according to whether the term 

Fi = - a;afK + aTa,” (2) 

is positive or negative. Here ai = ai is the activity of species i (some given 
function). 

We assume that the rate of reaction is given by RjFj where R, is a large positive 
constant. The reaction becomes instantaneous in the limit Rj -+ ~0; consequently, the 
term Fi must tend to zero in this limit providing an equilibrium constraint. 

Instantaneous equilibration of fast reactions requires F = 0, identically. This is 
equivalent to assuming that the reactions have a rate which is infinite, so that F 
approaches zero more rapidly than any other process. 

If the jth slow reaction is precipitation/dissolution reaction of the form: 

(3) 

then the corresponding slow kinetic reaction term is 

Sj = kl,jaTa! + k,,jA( wl) (4) 

where k,,j and k,,j are the rates of the forward and back reactions, respectively; and A 
is the activity of the mineral species (w,>, which depends upon specific surface area 
(grain size, etc.). 

Conservation of mass implies that: 

(l9U), = T(U) + BB,S( W,U) + BB,RF( 24) (5) 

Here T(u) denotes the net rate of increase in mass per unit volume due to transport 
of solutes (diffusion and advection); 6 is the porosity of the porous medium; R = 
diag(R,, . . . , RP> is a (p X p) diagonal matrix of fast reaction rates, and B, and B, are 
(n Xp> and (n X q) matrices containing the stoichiometric coefficients of the fast and 

Fig. 4. Sample profiles derived from calculating groundwater-bentonite interaction during and after resatura- 
tion. 
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slow reactions, respectively. For example, assuming Fj is given by Eq. 2, the jth 
column of B, must be of the form ( (Y,P, - y, - 6,0, . . . ,OjT. 

We consider Eq. 5 in the limits R,, . . . , R, -+ 00. In doing so we must eliminate the 
RF terms and so obtain a new system governing the n - p degrees of freedom available 
in the limit. 

We introduce an it X (n -p> matrix C such that CTB, = 0. This is arranged by 
choosing columns of C to be an orthogonal set of vectors each of which is orthogonal to 
the p-dimensional space spanned by the columns of B,. Let ci denote the ith column of 
C. The quantities U, = {c}, . u, simple linear combinations of the solute species, are of 
central interest since these are conserved with respect to all of the fast reactions: notice 
that the c,‘s are completely determined by the stoichiometry of the fast reactions. Hence 
the Ui’s (i = 1, . . . , II - p) provide a set of coordinates within which then fast reactions 
are eliminated and the slow kinetics and transport processes can be considered. 
Premultiplying Eq. 5 by CT, and setting U = (U,, . . . ,U,_,> = CTu, we obtain: 

(8 + U), = CTT( 24) + N?B,S( w,u) (6) 
Thus the term RF(u) has been eliminated and Eq. 6 is valid as any Ri * to: that is in 

the limit that the fast reactions are considered as instantaneous. 
Hence at any time t > 0, we solve Eq. 6 together with the algebraic system: 

O=F(u) (7) 
O=CTu (8) 

which yields u in terms of U (and trivially vice versa). 
In general Eq. 6 must be coupled with the equations for the mineral species: 

w,=&S(w,u) (WlO) (9) 
where Es denotes the stoichiometry matrix for the mineral precipitation and dissolution 
reactions. 

Finally, the mineralogy distribution may be coupled back to the transport terms 
[T(u)] via the volumetric change in the medium and the displacement of pore water. We 
have: 

0=&w) (IO) 
where g is some known function describing porosity in terms of the current mineralogy, 
and conservation of mass for the pore water implies: 

0,t v.u=o (11) 
where the Darcy velocity Y satisfies Darcy’s law: 

o= -k(8)V7P (12) 
k is the permeability (porosity dependent) and P is the hydrostatic pressure. 

In these terms T(u) = (T,, . . . ,T,) can be written explicitly as: 

Ti = v, [ ODIVUiYUi] (13) 
where Di is the diffusion-dispersion tensor for the ich species. 

Our approach is to solve Eqs. 6-12, simultaneously employing a nonlinear solver 
with variable time stepping. In simple situations where 8 is assumed to be constant, then 
v is fixed a priori via Eqs. 11, 12 and 6 is solved with Eqs. 7-9. 
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Reaction and solute transport takes place within the saturated regions. At boundaries 
we must impose conditions on the solute species: flux conditions or constant concentra- 
tions, for example. At free boundaries where there is a water-gas interface the evolution 
of the boundary itself must be specified or calculated, as well as any gas dissolution or 
exsolution as a consequence of the saturation or desaturation of pore space. 

These problems fall within a class known as differential and algebraic systems 
(DAS). Much is known about the numerical solutions of DAS, in particular, that their 
solvability depends upon an internal classification or index (Brenan et al., 1989). For 
systems of the kind introduced here a solution method employing a variable time-step- 
ping backward difference formula is suitable (Gear, 1971). 

Fully coupled systems of equations have been considered analytically (Chadam et al., 
1987; Grindrod, 1993) as well as numerically (Chadam et al., 1987) in two spatially 
dimensions. The mineralogical (porosity) dependent permeability term can result in the 
spontaneous growth of fingering patterns: one-dimensional models preclude this by 
implicit imposition of symmetry. 

4. Conclusions 

We have examined coupled geochemical process systems, and shown how they may 
be cast as differential algebraic systems amenable to numerical solution. 

The examples considered here were chosen to highlight the impact of spatial 
heterogeneity in causing channelled flow and stagnant water; the treatment of air-water 
interfaces as moving-boundaries; nonlinear feedback when the geochemical and flow 
problems are full coupled, and the formation of fingering patterns. 

Preliminary calculations indicate that such problems are tractable (numerically). 
(However, verification is an issue. For this reason we are currently compiling some test 
problems which are either documented in the literature (e.g., Noy, 1990), or else are 
amenable to mathematical analysis. Even though these problems are nonlinear, there is 
range of analytical tools available, and some aspects of the solution can be known 
quantitatively as well as qualitatively. 

We stress the need to consider problems 
(1) involving (some) kinetic reactions; 
(2) in two or more spatial dimensions; 
(3) incorporating spatial heterogeneity; 
(4) with full coupling. 
In this way we can make detailed calculations unbiased by standard equilibration 

assumptions and so on. Hence we can indicate when and where such modelling can be 
defended, and how system behaviour can be critically modified in certain circumstances. 

Appendix A 

We briefly state the chemical system model for the anorthite-quartz reaction given in 
Noy (1990) and solved here using ARASE. 
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Space precludes the definition of parameters which are the same as in Noy (1990). 
Chemical reactions considered: 

SiO, + 2H,O + H,SiO, (A-1) 
(solid quartz) 

CaAl,Si,O, + 8H,O + Ca’++ 2H,SiOt + 2Al(OH), (A-2) 
(solid anorthite) 

CaAlzSi,O, .2.4H,O + 8H,O + Ca*+ + 4H,SiO, + 2Al( OH), (A-3) 
(solid laumontite) 

Kinetic rate laws are used for all three reactions. The porosity is a function of the 
mass concentrations of the various solid components. Conservation of fluid mass 
couples the porosity change to the fluid velocity term, advecting the solute species. 

Table 1 
List of reactants 

Variable Reactant Aqueous/solid Boundary value at r = 1.5 m 
(eq mol L- ’ ) 

Ul 
u2 

U-i 

U4 

% 

% 

U-i 

% 

u9 

UIO 

Ull 

u12 

u13 

U14 

u1s 

Ulh 

U17 

U18 

UlY 

%I 

u21 

u22 

u23 

U24 

u25 

46 

u27 

U28 

u29 

Z- 
Na+ 
ZNa 
Ca’+ 
Z,Ca 
co:- 
H+ 
HCO; 

02 

SO,z_ 
Fe2+ 
Fe”+ 
HS 

H2C03 

Fe(OH), 
OH- 
CaCO, 
FeS, 
Fe(OH), 
Fe304 
Fe 

H2S 

CaOH+ 
FeOH+ 
Fe(OH), 
FeOH’+ 
Fe(OH); 
Fe(OH), 
Fe(OH); 

solid 
aqueous 
solid 
aqueous 
solid 
aqueous 
aqueous 
aqueous 
aqueous 
aqueous 
aqueous 
aqueous 
aqueous 
aqueous 
solid 
aqueous 
solid 
solid 
solid 
solid 
solid 
aqueous 
aqueous 
aqueous 
aqueous 
aqueous 
aqueous 
aqueous 
aqueous 

0 
3.0.10-’ 
0 
2.84. lo- 5 
0 
1.4.10m4 
6.25. lo- ‘” 
lJm” 
0 
0 
1.07. lo- I4 
3.16.1or”7 
0 
2.68.10-6 
1 
1.58.10rn5 
1 
1 
0 
0 
0 
0 
9.71’ lo- 9 
1.13’10~‘5 
1.04. lo- ” 
3.26.10- *’ 
1.73. lomzo 
1.24.10- ” 
4.74.10m’8 
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Appendix B 

Here we list the reactants (Table 1) and the reactions (Table 2) modelled using 
AFCASE for the bentonite-resaturation and canister corrosion problem solved in Fig. 4 
are listed. 

Table 2 
Fast and slow reactions 

Reaction Class 

Z- + Na+ 2ZNa 

2Z- + Ca”+ Z,Ca 

Ca2+ + CO’- 3 3 CaCO, 
k, 

HCO; +H+ +CO,2 

2FeS, + 2H,O + 70, - ‘4H+ +4SO,2- +2Fe*’ 
k,, 

dynamic 

instantaneous 

dynamic 

instantaneous 

dynamic 

Fe(OH), + 2H +kgFe2+ +2H,O 
k,, 

H+ +HCO; + H&O3 

4Fe2+ +O, +4H +k$4Fe3+ +2H,O 
k,6 

dynamic 

instantaneous 

dynamic 

Fe3+ + 3H20kg Fe(OH), + 3H+ 
k,, 

Hz0 +H+ +OH- 

Fe,O, + 8H + k3Fe2+ +2Fe3+ +4H20 
k,, 

dynamic 

instantaneous 

dynamic 

FeS, + 8H,O+ 14Fe3+ 2 ISFez+ +2SO,2- + 16H’ dynamic 

H,S + H+ +HS- 
CaOH+ + H’ =+ Ca2+ +H,O 
FeOH+ + H+ + Fe’+ + Hz0 
Fe(OH), + 2H+ + Fe’+ + 2H20 
FeOH2++H++Fe3++H20 
Fe(OH): +2H+ + Fe3+ +2H,O 
Fe(OH), + 3H+ + Fe3+ + 3H,O 
Fe(OH), + 4H+ + Fe3+ + 4H,O 

instantaneous 
instantaneous 
instantaneous 

instantaneous 
instantaneous 
instantaneous 
instantaneous 

At the inner boundary: 

2Fe + 0, + H a0 + 2Fe(OH), 

3Fe+4H20kzFe30, +4H,(,,,) 

instantaneous 

dynamic 

Slow reactions are treated dynamically, whilst fast reactions are assumed to be equilibrated instantaneously, 
relative to the timescales associated with both the slow reactions and the transport processes. Reaction rates are 
denoted by lower case k’s, 
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