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Ecosys tem process, biosphere-atmosphere transfer, and 
carbon exchange models all require parameterization of 
the land surface, including land vegetation cover and 
soil moisture. Although not yet a demonstrated global 
capability, the most feasible method for obtaining these 
parameters and updating them periodically, is satellite 
remote sensing. In this paper we will summarize our 
understanding of the desired land surface parameters, 
including soil moisture, and provide an assessment of the 
state of the art of surface state remote sensing algorithms 
to infer those parameters on a global basis. 

First, we will consider a) modeling requirements for 
land cover parameters, including vegetation community 
composition and biophysical parameters, for example, 
leaf area index (LAI), biomass density, fraction of photo- 
synthetically active radiation (Fpar) absorbed by the vege- 
tated land surface, and b) modeling requirements for soil 
moisture. 

We will then review the status of remote sensing 
algorithms for obtaining these parameters and examine 
a number of  issues involved in the global implementation 
and testing of these algorithms. Finally, we will look 
at future needs to make global mapping of land cover 
parameters a reality. 

INTRODUCTION 

To define the land cover parameter requirements for 
modeling, both the parameter set as well as the temporal 
and spatial resolution requirements for these parameters 
must be specified. The spatial and temporal requir e - 
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ments for these parameters are not as well understood 
as are the parameters needs, because issues of scale 
invariance are involved. In this section, we will discuss 
both issues in turn. 

Model Requirements; Land Cover 

A number of assessments of the requirements for land 
cover information have been compiled, for example, 
Bolle (1991), Skole (1992), Sellers and Schimel (1993), 
Rasool (1992). More recently, a comprehensive assess- 
ment of required land cover parameters were developed 
at the International Satellite Land Surface Climatology 
Project (ISLSCP) meeting at Columbia, Maryland. At 
this meeting, involving over 200 participants, including 
the land-process modeling and the remote sensing com- 
munities, an integrated set of parameter requirements 
was developed for ecosystem process, biosphere-atmo- 
sphere transfer, and carbon exchange models. A sum- 
mary of the proceedings can be found in Sellers (1992). 
The general categories of parametric inputs specified at 
that meeting are as follows: Community composition (see 
Table 1), vegetation structure such as leaf area index 
(LAI), biomass density, phenology, vegetation condition, 
net primary productivity, fraction of incident photosyn- 
thetically active radiation absorbed by the canopy (Fpar), 
canopy roughness. 

These parameters are controlling variables in land- 
atmosphere carbon, energy and water exchange models 
characterizing the state of the land surface and represent 
the thermodynamic, chemical, and biological processes 
inherent in the interaction between the land surface 
and the lower atmosphere. 

The process models utilize community composition 
information to partition the global landscape into func- 
tionally different strata. Each strata differs in terms of 
the biological, thermodynamic, or chemical pathways 
inherent to the different vegetation associations and 
incorporated into the process models. For example, 
coniferous and deciduous communities give rise to 
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differences in biological processes affecting the relation- 
ship between incident solar radiation, photosynthesis, 
and evapotranspiration. Seasonal variations inherent to 
differences in these communities influence patterns of 
latent heat flux throughout the year by effecting differ- 
ences in turbulent exchange parameters such as surface 
roughness, and radiation exchange variables such as 
albedo. See for example, Sellers et al. (1986), Sato et 
al. (1989). The way water is used varies within different 
ecosystems as a function of whole plant and xylem water 
potentials, leaf area and stomatal closure, rooting depth, 
and canopy structure across the soil-plant-atmosphere 
continuum. 

Community composition differences also effect func- 
tional differences in biogeochemical cycling of carbon, 
nitrogen, and other elements at regional to global scales 
(Houghton and Skole, 1990; Houghton et al., 1987; 
Moore et al., 1981), thus are critical to understanding 
the dynamics of net ecosystem production and nutrient 
interactions. 

In additional to the functional differences in process 
rates and pathways implied by community composition 
and structure, the release of several important atmo- 
spheric constituents ,;uch as CH4 and N20 are condi- 
tioned by community type and mode of disturbance 
(e.g., logging versus burning). For example, conversion 
of tropical forest to pasture appears to be important in 
trace gas dynamics for years after pasture formation 
Luizao et al. (1989), Matson et al. (1987), Goreau and 
de Mello (1988). The conversion of land in the tropics 
often occurs with biomass burning, which may be an 
important source of CH4, CO, and other radiatively 
important trace gases. Uncertainties in current estimates 
of trace gas dynamic,; result from the lack of data on 
events such as the rate and distribution of biomass 
burning events, the t),pe and condition of the biomass, 
and emission factors of trace gases. Detailed land cover 
assessments from satellites can contribute in the provi- 
sion of all of these data sets. Thus land cover categoriza- 
tions are needed in which the categories are defined by 
functional characteristics relating directly to properties 
such as energy, water:, and nutrient cycling rather than 
by purely species cha:~acteristics. 

Spatial and Temporal Requirements of 
Land Cover Parameters 
Parametric inputs cart be used by the process models 
at a variety of spatial scales ranging from 0.01 to 200 
km. For example, general circulation models use input 
levels of 50 to 200 kilometers, whereas estimates of 
land cover change in the tropics for carbon modeling 
may require much finer resolution data from Landsat 
or similar systems (Skole and Tucker, 1993). Precisely 
how process model accuracies depend on the spatial 

scale of their inputs is a matter of ongoing investigation. 
At coarser resolutions, vegetation communities are mixed, 
but most of the physiological relationships on which 
land surface process models depend were developed 
from studies of homogeneous vegetation communities. 
Thus the quality of the process model predictions should 
improve with increasing spatial resolution of the para- 
metric inputs, but at a cost of processing increasingly 
large quantities of data. Processing global data sets at 
scales as fine as 0.01 km may be prohibitive for some 
models and algorithms. There are two general ap- 
proaches to dealing with this problem. One is to coarsen 
spatial resolution of the satellites producing the parame- 
ter maps; however, many of the remote sensing algo- 
rithms are also valid only for homogeneous community 
types. Thus coarsening resolution to include mixed com- 
munity types could complicate, or in some cases seri- 
ously degrade the quality of the spectral-biophysical 
relationships. An alternate approach, is the use of statis- 
tical sampling of the satellite data with subsequent ag- 
gregation to the process model grid scale to reduce 
processing loads. Utilization of a small, well-designed 
statistical sample of 1 km or 30 m resolution data to 
estimate parameters within the larger modeling grid 
scales by aggregation, can produce parametric estimates 
at the larger scale with very small sampling error. With 
this latter sampling approach the remote sensing spatial 
resolution requirements are effectively decoupled from 
those of the process models and processing loads are 
defined entirely by the desired parameter input accura- 
cies at the larger scales. 

Temporal requirements for the parameter sets differ 
by parameter and application. Land cover changes on 
an annual basis may be sufficient, but for some land 
cover classes, biophysical parameters will be required 
on a much more frequent basis. The leaf are index for 
grasslands, for example, can change over the course of 
a few days (Hall et al., 1992a), whereas conifer commu- 
nities are relatively stable throughout a season (Hall et 
al., 1992b). Of course, given a single satellite to observe 
all parameters, the acquisition frequency requirement 
is driven by the most frequently needed parameter. For 
grassland and crop land communities, changes of 5 days 
can reasonably be considered to define the maximum 
temporal frequency requirement. 

The previous summary of requirements should make 
it clear that a single categorization of land cover type 
is unlikely to meet all modeling requirements. Neverthe- 
less at the ISLSCP meeting at Columbia, Maryland 
(Sellers et al., 1992) it was apparent that a relatively 
simple scheme of cover types would satisfy many re- 
quirements (Table 1). Different needs will demand 
different land surface categorizations and will require 
data bases with different spatial and temporal resolu- 
tions. 
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Table 1. Simple Scheme of Functional Classes / 
Ecosystem Requirements for Global Land Cover 
Maps Proposed at the ISLSCP Workshop Report, 
June 23rd-26th 1992 

1. Coniferous forest 
2. Deciduous forest 
3. Broadleaf evergreen forest 
4. Tundra 
5. Woodland (discontinuous tree cover) 
6. Savanna 
7. Grassland 
8. Desert 
9. Shrubland 

10. Cultivated (with subdivisions of crops / grasslands / irrigated 
versus nonirrigated / tilled vs non-tilled) 

1 l. Wetlands 
12. Freshwater areas 
13. Ice cover 
14. Built areas 

Modeling Requirements; Soil Moisture 
Soil moisture is an environmental descriptor that inte- 
grates much of the land surface hydrology and plays a 
crucial role in the interface between the earth surface 
and the atmosphere. As important as this seems to 
our understanding of hydrology, the related ecosystem 
dynamics, and biogeochemical cycles, it is a descriptor 
that has not had widespread application in the modeling 
of these processes. There are two important reasons for 
this. First, soil moisture is a difficult variable to measure 
on a consistent and spatially comprehensive basis. The 
large spatial and temporal variability that soil moisture 
exhibits in the natural environment is precisely the 
characteristic that makes it difficult to measure and use 
in earth science applications. Second, our understanding 
of the role of soil moisture in hydrology, ecosystems 
processes, and biogeochemistry has been developed 
from point studies where the emphasis has been on the 
variability of soil moisture with depth. As a parallel 
consequence, most models have been designed around 
the available point data and do not reflect the spatial 
variability. 

Point-Level Soil Moisture 

At a point, moisture on the surface and within the root 
zone controls hydrologic processes and energy balance 
in three quite different modes depending on soil mois- 
ture levels. 

1. Surface saturation. At surface saturation, and to 
some point below field capacity, soil pores are 
water filled; for moisture levels greater than this, 
free evaporation dominates the surface parti- 
tioning of radiation, heat, and evaporation. 

2. Moisture stress onset: When the root zone dries 
sufficiently, soil moisture becomes the dominant 

control on evapotranspiration; for moisture levels 
below stress onset, stomatal conductance and 
thus evaporation is reduced precipitously. 

3. Transition range: For moisture levels within the 
bounds of (1) and (2) surface and root-zone soil 
moisture does not play a dominant role in evapo- 
transpiration; in this soil moisture range evapo- 
transpiration is under stomatal control, which in 
turn is regulated by light, temperature, and hu- 
midity. 

The sensitivity requirements for microwave sensing 
of these three soil moisture levels will depend on the 
soil type and associated physical properties. Volumetric 
moisture values at which moisture stress onset occurs 
can vary from 2% to 20% between coarse sandy soils, 
which hold water much less tightly than finer-grained 
loamy soils. Saturation levels vary somewhat less with 
soil type in the range of 30% to 40% volumetric. 

Scaling from Point to Regional Level 

In terms of regional moisture-energy balance relations, 
it is of crucial importance to know how the point-level 
relations scale. That is, are the regional-scale soil mois- 
ture-energy balance relations similar to the point-level 
ones? For these relations to be similar among all scales, 
it is sufficient that the relations are linear or that the 
spatial variability is small. In mode (1), the point level 
moisture-evapotranspiration relations should scale to 
the region because free evaporation dominates and spa- 
tial variability plays a very minor role. In mode (2) the 
point-level relations are nonlinear but soil moisture is 
not a dominant control on evapotranspiration; rather it 
is controlled primarily by spatial variations in light and 
humidity. However, as the region dries toward onset of 
moisture stress, mode (3), the relations become highly 
non-linear and spatial variability becomes extremely 
important. For example, with a regional average soil 
moisture slightly above moisture stress onset, the re- 
gional average can be a poor indicator of regional evapo- 
transpiration because a substantial fraction of the point 
values can be below moisture stress onset, yielding 
evapotranspiration rates significantly different than the 
regional average would imply. 

In the context of this general discussion of soil 
moisture requirements, a number of specific soil mois- 
ture parameter requirements emerge. The moisture al- 
gorithm must define whether the soil moisture level at 
each point in the region is at saturation, at moisture 
stress onset, or in the transition range. Within the transi- 
tion range the moisture algorithm must specify a mini- 
mum of three soil moisture levels (high, medium, and 
low); five levels would be desirable. In a region following 
a large scale precipitation event, daily maps would be 
desirable, particularly for regions dominated by well- 
drained soils and relatively infrequent rainfall; however, 



Estimation of Land Surface Parameters 141 

given data processing volumes on a global scale, weekly 
or even monthly obselvations might be more practical. 
The minimum spatial resolution at which point soil 
moisture can be estimated to permit scale invariance of 
the remote sensing algorithms is still an open question. 

STATUS OF COMMUNITY COMPOSITION 
ALGORITHMS 

A number of factors determine the ability of remote 
sensing algorithms to distinguish between and permit 
the identification of different community composition 
classes: (1) the type and quality of the remote sensing 
and ancillary data sources, (2) the manner in which the 
remote sensing data are calibrated and corrected for 
atmospheric effects, and (3) the type of classification 
algorithm used. The remote sensing data source can 
consist of spectral information, view, and illumination 
(bidirectional) information, spatial information, tempo- 
ral information, and polarization information. Most com- 
monly, spectral information is the main source used to 
distinguish among and identify community composition 
classes, however, algorithms exist to utilize all aspects 
of the remote sensing images. In this section we will 
focus on the evaluation of classification algorithms as 
they have been variously applied to different types of 
remote sensing information. 

A variety of pattern recognition methods have com- 
monly been used for community composition mapping 
and monitoring, for example, Swain and Davis (1978), 
Mather (1987), Townshend et al. (1991). Many methods 
incorporate a supervised classification algorithm based 
on statistical maximum likelihood decision theory. This 
class of procedures uses training data, that is, remote 
sensing measurements acquired from ground-identified 
land cover classes, to optimize the likelihood of correctly 
classifying these land cover classes based on their multi- 
spectral reflectance characteristics. Alternative proce- 
dures based on unsupervised classification algorithms 

have been used. These algorithms cluster the multispec- 
tral remote sensing data. The user then generates a 
cluster map of a region and labels these clusters by 
comparison to areas of known land cover. Whether 
the procedure chosen is supervised, unsupervised, or 
hybrids of the two, ground observations of land cover 
are required to associate the remote sensing data with 
land cover classes. It is not possible at this point in time 
to use atmospheric and radiative transfer models to 
accurately enough compute which remote sensing data 
values correspond with which land cover classes. How- 
ever, use of these models and atmospheric correction 
algorithms can reduce greatly the dependence on 
ground observations for classifier training. 

Classification algorithms that rely on methods other 
than maximum likelihood have been used to improve 
on the use of spectral data. In addition these methods, 
including maximum likelihood, incorporate spatial and 
temporal data in an attempt to improve discrimination 
power. Some of these methods are summarized in Table 
2. One approach for reducing the volume of training 
data is the use of neural network procedures (Hepner 
et al., 1990). An additional important approach has been 
to use decision-tree approaches in which rules are used 
successively. For example, Lloyd (1990) used a binary 
decision tree classifier based on summary indices de- 
rived from time series NDVI data. Mixture decomposi- 
tion algorithms (Horowitz et al., 1975) are designed to 
infer the areal proportions of spectrally distinct elements 
composing the land cover in each pixel-for  example, 
shadow, sunlit canopy, and sunlit background. The 
choice of these elements is driven by the particular 
application; however, they must be spectrally distinct 
from each other (so-called "end-members") and their 
number equal or less than the number of available 
spectral bands. Mixture decomposition algorithms have 
been used, for example, to measure the regional abun- 
dance of vegetation in deserts (Smith et al., 1990a, 
1990b). 

Table 2. Examples of Methods Used to Improve upon Per-Pixel Classifications of Remotely Sensed Data 

Procedure Applied Example of Application 

Spatial filtering of spectral data prior to classification 
Reclassification of data aJfter application of a standard per-pixel 

classifier 
Modelling the statistical areal variability of image data in terms 

of Markov models 
Image segmentation and then classifying the images based on 

the "objects" which are extracted 
Use of external data in tile form of boundaries from digital 

topographic data 
Integrated use of remotely sensed data with digital terrain data 
Characterization of pixels as mixtures of basic components 

(end-members) 
Use of neural networks 

Atkinson et al., 1985 
Gurney and Townshend, 1983; Booth and Oldfield, 1989 

Settle, 1989; Besag, 1986 

Kettig and Landgrebe, 1976; Quegan et al., 1992; Beaudoin 
et ah, 1990 

Wooding, 1985; Mason et al., 1988 

Strahler et al., 1978; Jones et al., 1988 
Smith et al., 1990a; Lennington et al., 1984; Quarmby et al., 

1992; Hall et al., 1995 
Benediktsson et al., 1990; Hepner et al., 1990; Kanellopoulos 

et al., 1992; Key et al., 1989 
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Other approaches have been developed to exploit 
the temporal variation in spectral properties of vegeta- 
tion types through the growing season. This has mainly 
been applied to changes in the greenness, as measured 
by various indices and has been applied to multi- 
temporal Landsat data, for example, Hall and Badhwar 
(1987), coarse resolution Advanced Very High Resolu- 
tion Radiometer data, for example, Townshend et al. 
(1991) and to radar data, for example, Foody et al. 
(1989). 

Algorithms to extend the use of Landsat data over 
years, or within a season have also been developed and 
tested (Hall et al., 1991b). The algorithms permit a 
Landsat data series, consisting of both MSS and TM 
data, to be radiometrically rectified to each other so 
that the series appears to have been taken by the same 
sensor, under the same atmospheric conditions and at 
the same phenological stage. Thus, training statistics 
acquired at one date, can be applied to Landsat scenes 
acquired earlier or later to infer change in land cover 
status with time. These algorithms have been tested 
using FIFE data (Hall et al., 1991b) and were shown 
to correct relative calibration and atmospheric differ- 
ences to within 1% absolute reflectance. 

In the case of microwave data, multiple frequencies 
look angles and polarizations have been used in similar 
ways to the use of spectral bands in optical remote 
sensing for the classification of land cover classes (Dok- 
tor and Kuhbauch, 1990; Paris, 1982; Hoogeboom, 
1983), though most experience has been gained in dis- 
tinguishing crop and forest types. 

For classification procedures that rely solely on the 
spectral reflectance properties of each pixel, classifica- 
tion accuracies depend on the spectral differences be- 
tween classes. Generally speaking, broad cover classes 
such as soils, vegetation, and water can be discriminated 
from each other with accuracies well above 90%. How- 
ever, among vegetation types, classification accuracies 
using spectral data alone can be much lower. Spectral 
differences depend primarily on class differences in (1) 
canopy structure, that is, sunlit canopy fraction, shadow 
fraction, sunlit background fraction and (2) the spectral 
signatures of the structural elements. Precisely what 
accuracy levels are acceptable has not been established. 
Even with classification accuracies in the 80% range, 
classification maps generally agree visually with actual 
land cover. Misclassified pixels usually appear as spa- 
tially random noise in the image, preserving to a large 
degree the spatial integrity of the landscape information. 
In using the classified pixels to compute areal propor- 
tions of classes, canceling errors of omission and com- 
mission between classes can significantly reduce the 
bias in estimates of class proportions. 

In the regional and global application of pattern 
recognition techniques, most work has been carried out 
using high resolution satellite data, such as those from 

Landsat and SPOT, relying primarily on the multispec- 
tral distinctiveness of different land cover types. Numer- 
ous studies show that a variety of land cover classes can 
be distinguished using satellite data, however, these 
studies are usually at relatively local scales and only 
infrequently at regional and continental scales (though 
see Hall and Badhwar, 1987; Skole and Tucker, 1993). 
Some indication of the success of the procedures has 
been already provided and numerous papers have ap- 
peared on this topic in this journal as well as Photogram- 
metric Engineering and Remote Sensing and the Interna- 
tional Journal of Remote Sensing. 

Coarse resolution satellite data such as those from 
the Advanced Very High Resolution Radiometer 
(AVHRR) have also been used in land cover classifica- 
tion at continental and global scales. Using multi- 
temporal data sets, the seasonal variation in spectral 
vegetation indices has also been used to discriminate 
between vegetative cover types. Using the NOAA Global 
Vegetation Index product, with a resolution of approxi- 
mately 15 km, maps of African land cover (Tucker et 
al., 1985), and South American land cover have been 
produced (Townshend et al., 1987). More detailed map 
products have been produced using a similar approach 
applied to AVHRR data, the most notable example of 
which is the land cover characterization of the contermi- 
nous United States at 1 km resolution (Loveland et al., 
1991). A statistical estimate of global land cover was 
derived (Shimoda et al., 1986) and maps of global land 
cover have been generated at coarse resolutions, for 
example, Koomanoff (1989), Defries and Townshend 
(1994a, 1994b). 

Certain inherent problems remain in distinguishing 
land cover types using existing data sources. Current 
procedures reliant on data from the visible and short- 
wave infrared depend on reflectance properties mainly 
related to leaf properties such as pigments, leaf struc- 
ture, and foliar moisture. Hence discrimination of cover 
types on the basis of bulk properties will be indirect 
and may well be difficult. For example discrimination 
between shrub and tree cover types with similar propor- 
tional coverage is inherently problematic, unless the 
optical properties of their canopies are also different 
and this may not occur. To distinguish between such 
cover types two possibilities appear to have the most 
prospects, namely the use of radar and exploitation of the 
bidirectional properties of canopies that are related to 
vegetation structure. In terms of exploitation of bidirec- 
tional properties, their potential has been demonstrated 
in numerous aircraft experiments and modeling studies, 
but as yet we are unaware of any convincing demonstra- 
tions using satellite derived data; quite likely this stems 
from the absence of suitable multiple look data sets. In 
the case of radar data, encouraging experimental results 
have been reported. The previous methods described 
have largely been applied to visible and near infrared 
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data. Various experiments have demonstrated the poten- 
tial of single frequency: single polarization data (Paloscia 
and Pampaloni, 1987), multi-polarization observations 
(Le Toan et al., 1989), and multi-frequency multi- 
polarizing images (Foody et al., 1989), for distinguishing 
between different agricultural crops. Similarly the use 
of radar imagery in the recognition of forests and in 
distinguishing between different forest types has been 
established in several studies (e.g., Evans et al., 1989; 
Beaudoin et al, 1990; Hallikainen et al., 1990). 

One of the challenges in the use of data from 
existing satellites, notably ERS-1 and some planned 
satellites, stems from the sensors having only a single 
frequency and polari;:ation, since the discriminatory 
power of radar imagery has often been shown to depend 
on the use of multiple frequencies and polarizations. 
Achieving satisfactory discrimination will probably de- 
pend on the use of multitemporal remote sensing to 
exploit the information available in the phenological 
changes of vegetation, as well as producing improved 
signal-to-noise ratios (Beaudoin et al., 1990; Moreira, 
1990). Also with current microwave frequencies, dis- 
crimination becomes difficult as woody biomass in- 
creases. The extreme]ly accurate height estimates ob- 
tained from radar interferometry also suggest the 
possibility of either directly estimating canopy roughness 
or of incorporating such information into improved land 
cover classification (Hartl et al., 1994). 

Consideration of the various evaluations that have 
been carried out shows that classification of land cover 
using remote sensing is very rarely likely to occur with- 
out error. Consequently to carry out thorough evalua- 
tions of the usefulness of satellite data, it is essential for 
the various modeling activities to state their require- 
ments as precisely a:~ possible in terms of accuracy 
and precision. Without this there can be no definitive 
statement of whether the use of remote sensing can 
match modeling needs. 

STATUS OF LAND COVER BIOPHYSICAL 
PROPERTIES ALGORITHMS 

Two general classes of approaches have been applied to 
infer biophysical properties of land cover: 1) Empirical 
approaches that rely primarily on curve-fitting to corre- 
late various measures of surface reflectance, including 
vegetation indices, to the biophysical characteristics of 
interest and 2) Physical modeling approaches that at- 
tempt to forward model the relationship between leaf, 
canopy, and stand-level biophysical characteristics and 
reflected and emitted radiation. These models are re- 
ferred to generally as canopy reflectance models. Once 
developed and tested, the understanding gained from 
the models can then be used to either develop algo- 
rithms to relate biophysical characteristics to reflectance 
or the reflectance models can be used directly in the 

so-called inverse model, that is, solved for the biophysi- 
cal parameters given an input of reflectance. The empiri- 
cal approaches have utilized "spectral vegetation indices 
(SVI)," that is, various linear and nonlinear combinations 
of spectral bands, that maximize sensitivity of the index 
to the canopy characteristic of interest (e.g., fraction of 
photosynthetically active radiation absorbed Fpar) while 
minimizing the sensitivity to the unknown and unwanted 
canopy characteristics (e.g., background reflectance). A 
popular index of this type is the Normalized Difference 
Vegetation Index (NDVI), which reduces the effects of 
canopy structural shadowing on reflectance. 

The SVI have also been used to follow seasonal 
dynamics of vegetation. From analysis of the temporal 
shape of the NDVI, inferences can be made regarding 
phenology and condition of the vegetation. Parameters 
such as beginning of leaf flush, peak greenness, and 
width of the growing season have been estimated from 
the use of temporal profile analysis (Badhwar and Hen- 
derson, 1982; Henderson and Badhwar, 1984). The sea- 
sonally integrated SVI have also been used as a measure 
of accumulated photosynthetically active radiation ab- 
sorbed by a canopy, and have been shown to be corre- 
lated with above-ground gross primary production on 
an annual basis (Goward and Dye, 1987). 

In this section, we will review first, an empirical 
approach, which has been applied to a global 1 ° x  1° 
AVHRR data set to estimate Fpar, LAI, and canopy 
roughness; then we will survey the status of the physi- 
cally based modeling algorithms, none of which have 
been applied globally. 

Empirical Algorithms 
The potential of empirical algorithms can be illustrated 
by recent work in estimating surface vegetation proper- 
ties for an atmosphere-biosphere model. Figure 1 pres- 
ents a graphic overview of the components of FASIR 
(Sellers et al., 1994), a global algorithm to estimate a 
number of canopy biophysical parameters. FASIR relies 
on composited 1 x 1 o NDVI data set from the AVHRR 
and uses a stratified, global vegetation composition map 
with different NDVI-Fpar relationships between the 
different strata. 

The primary value of NDVI is the reduction of 
sun-angle induced variations in structural shadowing 
within a canopy. Additional techniques are applied in 
FASIR to reduce other sources of variation such as 
atmospheric effects including clouds, and variations in 
background reflectance. As can be seen in Figure 1 an 
empirical temporal filtering is applied to remove resid- 
ual cloud or snow contamination following compositing. 
In the boreal regions where snow contamination is a 
problem in establishing realistic winter values for NDVI, 
FASIR assigns a constant winter value as the NDVI 
observed in the brief period following snow melt but 
before spring leaf emergence has begun. In tropical 
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Figure 1. Graphic overview of the components of FASIR, a 
global algorithm to estimate a number of canopy biophysical 
parameters. 

environments, the FASIR algorithm simply assumes that 
tropical NDVI is constant over the season and adjusts 
"low" values of NDVI to a constant value for the reason. 

Although NDVI reduces the effects of solar illumi- 
nation angle, it is still somewhat sensitive. To further 
reduce this sensitivity, a number of nearly identical 
landscape elements are found along an orbital track. 
These are illuminated by the range of solar elevation 
angles encountered on an orbit, and thus the average 
dependence of NDVI on illumination angle can be com- 
puted. An empirical function is fit through the NDVI 
versus sun angle curve and used to correct each vegeta- 
tion type separately. 

The next steps shown in Figure 1 are to infer Fpar 
from NDVI. For horizontally homogeneous, closed can- 
opies with small amounts of nonphotosynthetic biomass, 
both theory and measurements have confirmed that 
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NDVI, as well as other vegetation indices, are monotoni- 
cally increasing functions of canopy Fpar. FASIR as- 
sumes that simple ratio (SR) is linear in Fpar and uses 
a two-stream radiative transfer model to derive other 
biophysical variables of interest, for example, leaf area 
index and albedo from Fpar. FASIR also derives surface 
roughness from LAI based on canopy roughness models, 
and derives photosynthesis and transpiration from Fpar 
using canopy physiology models. 

Although FASIR is the first attempt to produce 
global Fpar, LAI and surface roughness maps, it has 
not been quantitatively evaluated. A global data set of 
biophysical parameters simply does not exist to do so. 
There are such data from field experiments for local 
areas such as FIFE and HAPEX; however, these data 
have not been used yet in an evaluation. 

It is clear, however, from an examination of the 
assumptions underlying FASIR, a number of improve- 
ments are possible. Among these are alternative vegeta- 
tion indices, improved techniques for filtering the data 
for atmosphere and cloud effects, different compositing 
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approaches, and inversion of canopy reflectance models 
to infer biophysical properties from NDVI. But these 
would be more-or-less tune ups to FASIR. Even more 
radical approaches might be considered, particularly 
with the EOS AM platform, where data from MODIS 
and MISR will be available. Landsat and SPOT could 
provide useful synergy with the EOS sensors, associated 
with the improved spatial resolution. 

It is proverbial that the better is the enemy of the 
good. In producing a second-generation Fpar product, 
we need to be guided by two principles: (a) How much 
improvement in the global Fpar estimates is needed 
and (b) What are the relative contributions to the total 
error for each of the algorithmic components of the 
existing approach. Regarding (a), no sensitivity analysis 
has been done that specifies the required accuracy of 
the Fpar products. It would be very helpful to conduct 
such an analysis to specify the acceptable tolerances 
from the pixel, the grid, the regional, and the global 
scales. For example, we know that the NDVI-Fpar rela- 
tionship is sensitive to background (Huete et al., 1985; 

Goward and Huemmrich, 1992). However, where evap- 
oration and photosynthesis are most important in heavily 
vegetated regions, the fraction of visible background is 
small, perhaps reducing greatly the impact of this error. 
Regarding (b) we do not at this time have a quantitative 
evaluation of the FASIR product at any scale. FASIR 
could be evaluated using in-situ collected data from a 
number of field experiments, such as FIFE, but this 
evaluation has not been carried out. Until it is, it will 
be more difficult to concentrate the research effort on 
those components most badly in need of improvement. 

Physically Based Algorithms 
An important problem in using remotely sensed mea- 
sures of surface reflectance to infer canopy level struc- 
tural and biophysical characteristics is the problem of 
scaling. That is, transferring reflectance and biophysical 
property relationships from the leaf level, where they 
can be easily measured and related to leaf composition 
and structure, to the pixel level, where leaf optics inter- 
act with canopy structure, under story characteristics, 
view and illumination geometry to produce a compli- 
cated relationship among pixel-level reflectance, stand 
structural, biophysical and leaf optical properties. In 
general, when extrapolating leaf-level optical properties 
to the stand level, the physical assumptions used for 
horizontal layers of leaves (Allen and Richardson, 1968) 
do not hold, yielding unrealistic solutions. Modeling 
efforts that have addressed this problem are numerous, 
and can be placed into four general classes of models 
(Goel, 1988): (i) turbid medium models, for example 
(Suits, 1972; Verhoef, 1984), (ii) geometric models (Li 
and Strahler, 1985), (iii) hybrid combinations of (i) and 
(ii) (Rosema et al., 1972), and (iv) complex computer, 
simulation models, for example (Goel, 1991). These 
models compute canopy and pixel-level reflectance in 
terms of not only leaf optical properties, but other 
biophysical parameters such as over story and under 
story leaf area index, leaf angle distribution, bark area 
index, crown shape and spacing, etc. The models have 
been used to infer biophysical characteristics, from 
pixel-level measures of reflectance by numerical itera- 
tion and convergence, that is, matching reflectance val- 
ues to parameter sets, a process referred to as "inver- 
sion" (Goel, 1989). The problems with inversion are 
that: (i) the dimensionality of the remote sensing mea- 
surement space must equal or exceed the number of 
parameters being estimated, and (ii) in the more com- 
plex models, the number of parameters that must be 
estimated is large, and the dimensionality requirements 
for their "inversion" often exceeds the intrinsic dimen- 
sionality of the remotely sensed data. The intrinsic di- 
mensionality of the remotely sensed data for a single 
viewing angle and date is determined by the number 
of physically independent (uncorrelated) wave bands, 
generally no more than three to four. At the leaf level, 
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the visible wave band reflectances all respond to the 
same physical absorption and scattering process by plant 
pigments, thus these reflectances are highly correlated 
and do not form a linearly independent set. The near- 
infrared bands are generally uncorrelated with the visi- 
ble wavelengths, but near infrared reflectance is largely 
driven by leaf cell structure and thus different near 
infrared bands are correlated with each other. Excep- 
tions are the near and middle infrared regions where 
protein, lignin, and starch molecules absorb strongly at 
certain frequencies. These regions have been investi- 
gated for their ability to provide information on canopy 
chemical composition (Wessman et al., 1988, 1989). 
Thermal infrared bands are sensitive primarily to canopy 
radiative temperature and thus are independent of the 
visible, near and mid-infrared bands, however, their use 
adds additional parameters to be estimated, parameters 
related to turbulent heat and long-wave radiative trans- 
fer within the canopy. Finally, mid-infrared reflective 
bands, which respond to plant water content are, in live 
vegetation, highly correlated to plant chlorophyll (Hall, 
1994). At the canopy and stand level, all bands are 
sensitive to shadowing and canopy background that can 
induce correlation among them providing information 
on canopy structural variables and morphology. Thus, 
at most, three to four independent bands are available to 
estimate the many biophysical parameters that populate 
complex canopy reflectance models, and two of these, 
the visible and near infrared, seem to provide most of the 
information about canopy structure and leaf properties. 

These complications have necessitated the investi- 
gation of approaches that hold some of the unknown 
parameters fixed, estimating them from nonremote sens- 
ing data, or approaches that attempt to reduce the influ- 
ence on reflectance of canopy biophysical parameters 
that are of little interest to a particular application, for 
example, leaf-angle distribution. Three frequently cited 
indices in this vein are the Normalized Difference Vege- 
tation Index (NDVI), or its closely related index, Simple 
Ratio (SR), and the Kauth-Thomas (KT) greenness index 
(Kauth and Thomas, 1976). A number of studies have 
shown that these indices are sensitive to biomass, LAI, 
and Fpar (Tucker et al., 1983; Hatfield et al., 1984; 
Sellers, 1985), but relatively insensitive to shadowing 
effects, and thus view and illumination angles. However, 
they are also sensitive to under story reflectance (Huete 
et al., 1985; Goward and Huemmrich, 1992), canopy 
structure and atmospheric absorption and scattering. 
More recently, other vegetation indices have been pro- 
posed to deal with variations induced by atmospheric 
aerosols (Kaufman and Tanre, 1992) and variations in 
background reflectance (Hall et al., 1990; Huete et al., 
1994). 

What is known, is that stand-level reflectance for 
canopies exhibiting distinct geometric features, such as 
conifers, is strongly related to shadow fraction, sunlit 

canopy fraction and sunlit background fraction and their 
reflectance (Li and Strahler, 1985; Jasinski, 1990). Li 
and Strahler performed Monte-Carlo simulations, ran- 
domly placing cones within a pixel, over a snow back- 
ground, to examine the relationships between pixel-level 
KT greenness and brightness and the fraction of illumi- 
nated cone area, fraction of illuminated background 
area and shadow area. They showed that as canopies 
were randomly added to the pixel field of view, the KT 
greenness-brightness followed a 2-dimensional trajec- 
tory, originating in the illuminated bare snow point and 
terminating at a different point in the KT space, whose 
greenness-brightness value was defined by the average 
reflectance of sunlit and shadowed canopy. The shape of 
this trajectory, and the position along it, were uniquely 
determined by the height:width ratio of the canopy, the 
number of canopies and the reflectance of the sunlit 
canopy, shadows and the sunlit background. Thus they 
were able to "invert" or solve their geometric model 
using as input, multispectral measures of KT greenness 
and brightness for (i) the number of canopies within a 
pixel, (ii) the average height of the canopies, and (iii) 
the average cone angle for the canopies. They applied 
this inversion technique to KT greenness and brightness 
data collected from red fir canopies, but found that the 
errors in determining the canopy parameters were large, 
ranging up to + 100%. 

Jasinski (1990) examined the dependence of NDVI 
on canopy fraction using a simple geometric shadowing 
model consisting of randomly placed opaque blocks 
within a pixel. He assigned arbitrary reflectance values 
to the blocks, the background, and the shadows and 
showed that NDVI is a monotonically increasing func- 
tion of the fraction of sunlit canopy cover within the 
pixel, and was strongly sensitive to background re- 
flectance. He compared the NDVI predictions from his 
simple model to actual NDVI measurements taken over 
a pecan orchard and juniper forests, and showed that 
indeed, the predicted NDVI increase with increasing 
canopy cover was observed. 

Thus we see that physically based algorithms have 
not been widely used to estimate biophysical parameters 
from satellite multispectral data. However, a number of 
field studies have been conducted to investigate the 
feasibility of inverting canopy radiative transfer models 
to estimate such parameters. 

In theory the values of N parameters that character- 
ize the canopy reflectance models can be inferred from 
a set of N independent reflectance measurements over 
the canopy. In practice, such measures are difficult to 
obtain. As was mentioned earlier in this paper, only 
three or four spectral bands are sufficiently independent 
for canopy parameter inference, therefore, these must 
be augmented by multi-angle measurements. From sat- 
ellite measurements from Landsat TM and NOAA 
AVHRR independent measures of canopy reflectance 
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can only be obtained using multiple satellite acquisi- 
tions. Given the cloud cover frequencies in most vege- 
tated regions of the earth, even three cloud free looks 
are unlikely within a 10-day period when the canopy 
can be considered relatively unchanged (Hall et al., 
1992a). These practical difficulties usually require that 
most of the free parameters in the radiative transfer 
model must be known (e.g., leaf optical properties, 
canopy structure parameters, etc.), with only one param- 
eter subject to estimation. At any rate, field studies 
over homogeneous crop canopies using these inversion 
techniques, where only leaf area index was the free 
parameter, resulted in errors varying between 5: 10% 
and + 20 %, where at least four observation angles were 
available (Goel and T[tompson, 1985). More work needs 
to be done in this area, including testing using actual 
satellite data, where atmospheric effects are important, 
and with heterogeneous canopies, where structural pa- 
rameters are important. 

STATUS OF SOIL MOISTURE ALGORITHMS 

Recent advances in remote sensing technology have 
shown that soil moisture can be measured by a variety 
of techniques using all parts of the electromagnetic 
spectrum. However, only those using microwave tech- 
nology have demonstrated the ability to quantitatively 
measure soil moisture under a variety of topographic and 
vegetation cover conditions. The depth of the surface 
moisture layer to which the microwave signal responds 
is a function of the frequency of the sensor, and the 
moisture content. (Newton et al., 1982) found that for 
L-band (21-cm wavelength) the sampling depth was 
about two-tenths of the wavelength. A number of experi- 
ments using truck mounted sensors, aircraft, and space- 
borne sensors have shown that a thin layer, on the order 
of 5 cm, of the soil can be accurately measured. 

Microwave techniques for measuring soil moisture 
include both the passive and active microwave ap- 
proaches, with each having distinct advantages. The 
theoretical basis for measuring soil by microwave tech- 
niques is based on the large contrast between the dielec- 
tric properties of liquid water and of dry soil. The large 
dielectric constant for water is the result of the water 
molecule's alignment of the electric dipole in response 
to an applied electromagnetic field. For example, at 
L-band frequency the dielectric constant of water is 
approximately 80 corapared to that of dry soils, which 
is on the order of 3--5. Thus, as the soil moisture in- 
creases, the dielectric constant can increase to a value 
of 20, or greater (Schmugge, 1983). 

For passive microwave remote sensing of soil mois- 
ture from a bare su~fface, a radiometer measures the 
intensity of emission from the soil surface. This emission 
is proportional to the product of the surface temperature 
and the surface emis,;ivity, which is commonly referred 

to as the microwave brightness temperature, which is 
given approximately by, 

TB = (1 - r)Tsoil = eTsoil (1) 

where r is the reflectivity and e -- (1 - r) is the emissivity, 
which is dependent on dielectric constant of the soil 
and the surface roughness. Thus over the normal range 
of soil moisture, a decrease in the emissivity from about 
0.95 to 0.60 or lower can be expected, This translates 
to a change in brightness temperature on the order of 
50 degrees K or more. The theoretical relationship 
between emissivity and brightness temperature is ap- 
proximately linear even though the empirical relation- 
ships show that dielectric constant has a nonlinear depen- 
dence on soil moisture. Thus, though the brightness 
temperature-soil moisture relation has a strong theoreti- 
cal basis, most algorithms are empirical in that they 
depend on ground data for the relationship. 

For the active microwave approach over a bare soil, 
the measured radar back scatter, trs can be related 
directly to soil moisture by 

a~ = f(61a,M~) (2) 

where 6t is a surface roughness term, a is a soil moisture 
sensitivity term, and M, is the volumetric soil moisture. 
Although 61 and a are known to vary with wavelength, 
polarization, and incidence angle, there is no satisfactory 
theoretical model suitable for estimating these terms 
independently. Thus, as is the case for the passive micro- 
wave approach, the relationship between measured back 
scatter and soil moisture requires an empirical relation- 
ship with ground data, even for bare soils. 

To use the microwave signal to infer surface soil 
moisture, a number of other surface-related effects must 
be taken into account. The major effects are surface 
roughness, and vegetation cover. The effect of a rough 
surface is to increase the surface emissivity and thus to 
decrease the sensitivity to soil moisture (Newton and 
Rouse, 1988). Theis et al. (1984) have demonstrated the 
possibility of using a multisensor approach for improving 
the estimates of soil moisture under field conditions. In 
this case, the effects of surface roughness were accounted 
for with scatterometer measurements. These were then 
used in a soil moisture equation that included terms 
related to the emissivity measured by the radiometer 
and to the scatterometer roughness term. Inclusion of 
the roughness term improved the r 2 values from 0.22 
to 0.65 for C-band and from 0.69 to 0.95 for L-band. 
Although roughness may not be a serious limitation for 
passive sensors, at least for most natural surfaces, it is 
a major factor for radar. In many cases the effects of 
roughness may be equal or greater than the effects of 
soil moisture on the back scatter. Thus the soil moisture 
problem becomes one of determining the roughness 
effect independently so that a model can be inverted to 
yield a measure of soil moisture. A number of investiga- 
tions are underway to sort out these separate effects. For 
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example, (Oh et al., 1992) have developed an empirical 
model in terms of the rms roughness height, the wave 
number, and the relative dielectric constant. By using 
this model with multipolarized radar data, the soil mois- 
ture content and the surface roughness can be deter- 
mined. The key to this approach is that the copolariza- 
tion ratios (hh/vv) and cross-polarization ratios (hv/vv) 
are given explicitly in the terms of the roughness and 
the soil dielectric constant. Results from this model look 
very good and if further testing proves this approach as 
valid, it will be a major step forward in determining soil 
moisture from radar back scatter. Furthermore, this 
model appears to work well in the roughness domains 
that the more classical methods have failed in the past. 

The effect of vegetation is to attenuate the micro- 
wave emission from the soil; it also adds to the total 
radiative flux with its own emission. The degree to which 
vegetation affects the determination of soil moisture 
depends on the mass of vegetation and the wavelength. 
Barton (1978) used an aircraft mounted 2.8 cm radiome- 
ter to measure soil moisture over bare soils and uniform 
grass cover. Although he demonstrated a strong relation- 
ship between brightness temperature and moisture for 
the bare fields, no relationship for the grass sites could 
be perceived. In studies over bare soil and sorghum, 
Newton and Rouse (1988) found no sensitivity to soil 
moisture with the 2.8 cm measurements over the sor- 
ghum, but with the 21 cm data the radiometer was 
sensitive to soil moisture even under the tallest sorghum. 
Basharinov and Shutko (1975) and Kirdiashev et al. 
(1979) studied a variety of crops in the USSR with 
wavelengths varying from 3 cm to 30 cm, which con- 
firmed theoretical predictions that longer wavelengths 
are less sensitive to vegetation cover. For wavelengths 
greater than 10 cm, their results indicate that one can 
expect a decrease in sensitivity to soil moisture of about 
10%-20% for vegetation cover consisting of small 
grains. With broad leaf crops such as corn, the sensitivity 
could decrease by as much as 80% for wavelengths 
shorter than 10 cm, and 40% for a 30 cm wavelength. 
However, models that treat the vegetation cover as an 
absorbing layer, for example, Jackson et al. (1982), per- 
mit the vegetation moisture contribution to the surface 
signal to be removed given estimates of vegetation bio- 
mass and thus water content. Wang et al. (1992) investi- 
gated the passive L-band remote sensing of surface 
soil moisture in FIFE. Their studies showed a linear 
decrease in brightness temperature across the full range 
of volumetric soil moisture (20%-40%) observed in 
FIFE, except for unburned portions where a surface 
thatch layer had accumulated. They hypothesized that 
moisture held in the thatch layer is highly absorptive at 
L-band frequencies, thus increasing microwave surface 
emissivity and brightness temperature, thus obscuring 
the subsurface soil moisture signal. 

To account for the influence of vegetation cover on 

passive microwave soil moisture measurements, remote 
sensing estimates of surface biomass can be used to 
quantify the cover amount and correct for its effect. 
Theis et al. (1984) demonstrated the use of visible and 
infrared data to calculate a perpendicular vegetation 
index (PVI), which in turn was used to correct the 
L-band emissivity determined with a passive microwave 
radiometer. They found as long as the PVI was less than 
4.3, good results could be obtained. More recently, 
Jackson and Schmugge (1991) have analyzed a large 
amount of published data to verify previous findings. In 
addition, they have defined a vegetation parameter that 
is based on the optical depth of the canopy. This parame- 
ter appears to be inversely related to the wave length 
and can represent four types of vegetation classes (leaf 
dominated, stem dominated, grasses and trees and 
shrubs). However, at longer wavelengths, a single value 
of the parameter might be used for any cover type. 
Furthermore they speculate on how this parameter 
could be estimated using visible and near infrared satel- 
lite data in an operational sense. These studies point up 
the possibility of a total satellite remote sensing ap- 
proach for soil moisture without any ground sampling. 

With radar, both canopy structure and canopy water 
content affect the back scatter, thus adding more com- 
plexity to the problem of soil moisture estimation. A 
number of theoretical models have been developed to 
account separately for these effects. Most models repre- 
sent the vegetation as a random medium whose statisti- 
cal characteristics are related to physical quantities of 
the vegetation layer. Of these types of models, two 
types of parametric representations are generally used: 
continuous and discrete. In the continuous case, the 
vegetation layer is modeled by assuming that its dielec- 
tric constant or permittivity is a random process whose 
moments such as the mean and correlation function, 
are known. The continuous models were introduced to 
treat the problems in turbulence (Tatarskii, 1971), but 
later on they have been employed for vegetation model- 
ing (Fung and Fung, 1977; Tsang and Kong, 1979). In 
the discrete case vegetation is represented as a collec- 
tion of dielectric scatterers whose position and orienta- 
tion statistics are given, for example, the individual 
leaves and stems and the total scattering cross-section 
of the canopy is expressed in terms of the scattering 
cross-sections of the individual scatterers. The advan- 
tage of discrete approach is that the results are ex- 
pressed in terms of quantities (plant geometry and orien- 
tation statistics) that are easily related to the biophysical 
properties of individual plants. The discrete model ap- 
proach for a random layer of vegetation was first used 
by Du and Peake (1969) to compute the attenuation 
through a layer of leaves. Later, Lang (1981); Karam 
and Fung (1983); Ulaby et al. (1990) have used them 
to develop more rigorous theoretical models for back 
scattering from a layer of vegetation over soil surface. 
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Over the years, the discrete scatter approach seems to 
have gained favor as a preferred approach for vegetation 
modeling. 

These models, using iterative inversion methods, 
can form the basis for soil moisture algorithms. The 
algorithms use the measured scattering cross-sections 
or brightness temperatures as input and attempt to 
invert the models for the vegetation and soil parameters. 
The relationship between the vegetation and soil param- 
eters and model parameters is complicated, which 
makes the problem ill-posed. In such problems, a small 
error in the data can produce a large error in the 
solution. A number o;f techniques based on either in- 
creasing the information contents of the system, for 
example, statistical inversion (Njoku and Kong, 1977), 
neural networks (Benediktsson et al., 1990), or restricting 
the solution space of the problem, for example, Twomey- 
Phillips method (Chauhan et al., 1993), Twomey- 
Tikhonov method (Twomey, 1963), have been proposed. 
All of the above methods have achieved limited success 
due to numerical instabilities to the solution of retrieved 
parameter obtained from active or passive data sets. 

Change detection is an alternate approach for using 
soil moisture data derived with microwave measure- 
ments that minimize the problems discussed directly 
above. Change detection can be used for either passive 
and active microwave data. This method minimizes the 
impact of target variables such as soil texture, roughness, 
and vegetation because these tend to change slowly, if 
at all, with time. 

GOING GLOBAL: SATEIJJTE, REFERENCE 
DATA AND IMPLE/VlENTATION ISSUES 

Satellite and Reference Data 

Enormous volumes of satellite data have been suitable 
for land cover discrimination. Their use has been inhib- 
ited by a number of factors: 

1. Lack of continuity of data sets. Data are often 
not generated irt spatially or temporally consis- 
tent forms. For example, following commercial- 
ization of Landsat, the spatial coverage declined 
substantially (Justice and Townshend, 1994) and 
for many parts of the world many years may pass 
without a single acquisition. Data sets may be 
processed in different ways at different times hin- 
dering longitudinal studies of land cover change. 
For example NOAA's widely used Global Vegeta- 
tion Index product has been altered a number of 
times (Kidwell, 1990). 

2. User overhead. Considerable effort may be 
needed by the user to process the data for actual 
application. Suc]fi preprocessing can include geo- 
metric registration and resampling, and even cali- 
bration of the DN values. 

3. Unwanted signal distortion. Many effects cause 
the received signal at the sensor to have confus- 
ing distortions. One set of effects relates to those 
induced by the atmosphere, primarily as a result 
of water vapor and aerosols, which are the most 
variable components. Even well-understood 
effects such as Rayleigh scattering may not be 
corrected that vary spatially with topographic ele- 
vation. A further problem is related to view and 
sun angle effects. Images of large areas are nor- 
mally created by compositing procedures 
whereby images are generated from several days 
selecting the pixel, which seems least affected by 
clouds and other atmospheric effects. Although 
generating visually acceptable images, embedded 
in the data are problems associated with the fact 
that pixels are derived from very different look 
angles, and hence the same canopy may be rep- 
resented by different DN values as a result of bi- 
directional effects. 

4. Large volume of data sets. The large volume of 
many satellite data sets makes substantial de- 
mands on computing systems. This problem is 
being enhanced rather than reduced by the new 
data sets that are starting to become available 
(see below). 

5. Cost of data. High-resolution data such as those 
obtained from Landsat and SPOT is expensive es- 
pecially when large areas are being investigated. 
These problems may diminish in the future. For 
example, recently the Committee of Earth Obser- 
vation Satellites and IGBP-DIS have been coordi- 
nating efforts to supply the scientific community 
with lower cost data for research purposes. 

6. Expense and difficulty of collecting reference 
data. All classificatory procedures require some 
ground reference data either for training of classi- 
fiers in supervised classification or for labeling of 
classes derived from unsupervised approaches. 
Moreover reference data are also needed for vali- 
dation. Unfortunately collecting reference data is 
a costly time-consuming process especially when 
large areas are being considered. Consequently 
there is an absence of sufficiently comprehensive 
testing, and there is often uncertainty about the 
regional or global applicability of the procedures. 
In relation to validation of data sets at continen- 
tal and global scales there are obvious logistical 
constraints in acquiring sufficient data for testing 
the results. Current efforts to create global series 
of test sites by a number of groups including the 
MODIS Science Team as part of the EOS proj- 
ect, the IGBP Global Change and Terrestrial 
Ecology core project, and the Global Terrestrial 
Observing System (Heal et al., 1993), is expected 
to provide data sets suitable for much-improved 
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validation and improvement of the procedures. 
Creation of data sets in which there has been 
some atmospheric correction and standardization 
of the processing over large areas should do 
much to reduce the need for reference data  

In response to the problems of acquiring data sets 
in forms suitable for use for many global studies, major 
efforts have been made to reprocess existing data sets 
into forms more suitable for scientific use. The Path- 
finder projects of the EOSDIS version 0 include the 
generation of long term data sets from NOAA's AVHRR 
(James and Kalluri, 1994). These will include calibrated, 
georegistered, partially atmospherically corrected data 
sets of the NDVI and the individual spectral bands at 
a spatial resolution of 8 km from 1982 to the present 
(Table 3). 

A global data set of the AVHRR data is also being 
assembled at the basic resolution of 1.1 km by the 
EROS Data Center, largely part in response to the 
scientific needs of the IGBP (Townshend, 1992) using 
data collected at several ground-receiving stations 
throughout the world (Eidenshink and Faundeen, 1994). 
This will be processed in a similar way to the Pathfinder 
data sets. Because there has never been a global archive 
at this resolution the global data sets will only be avail- 
able from March 1992. 

Globally comprehensive collections of finer resolu- 
tion data sets have not been systematically created. 
Nevertheless it has proved possible to carry out regional 
analyses of large areas using high-resolution data. For 
example, large volumes of Landsat data are being ac- 
quired through the Landsat Pathfinder project (Law- 
rence and Chomentowski, 1992). Especially in recent 
years there has been little attempt to collect globally 

comprehensive data sets from high-resolution sensors 
such as the Thematic Mapper of Landsat. Coverage of 
microwave data from satellites such as ERS-1 and 
JERS-1 is not global and many acquired data remain to 
be processed. Various ancillary data sets needed for 
land cover discrimination are  also not in forms suitable 
for use. These include global topographic data and fields 
of atmospheric constituents, especially water and aero- 
sols, needed for atmospheric correction. 

Data from a number of new systems will prove of 
considerable value for land cover classification. These 
include the coarse resolution instrument of SPOT 4 
(Achard et al., 1992), the ATSR-2 (Along Track Scanning 
Radiometer) of ERS-2, the Moderate Resolution Im- 
aging Spectrometer (Running et al., 1994) and several 
other EOS instruments including ASTER and MISR. It 
needs to be stressed though that existing high-resolution 
optical sensors, on board the Landsat and SPOT plat- 
forms already provide high quality land cover informa- 
tion suitable for investigation of many aspects of global 
change: ensuring continuity of these data, though with 
much more spatially comprehensive coverage is of the 
highest importance for observations of land cover. 

As promising as microwave remote sensing for soil 
moisture appears to be, the future for using microwave 
data for operational use is somewhat uncertain. For the 
next few years, researchers will be limited by the lack 
of suitable data. Currently the ERS-1 SAR from the 
European Space Agency and the JERS-1 SAR from the 
Japanese are the only operational microwave satellites 
with frequencies suitable for soil moisture. Although 
these instruments should be valuable data sources for 
extending our knowledge of SAR for measuring soil 
moisture, to date very little data have been available 
for this purpose. Fortunately there have been some 

Table 3. Characteristics of the AVHRR Land Pathfinder Data Set 

Band Units Valid Range Quantization 

1. NDVI - 1.0 to 1.0 8 bit 
2. CLAVR a flag b 8 bit 
3. QC flag b 8 bit 
4. Scan angle radians - 1.04719- + 1.04719 ( + 54 °) 16 bit 
5. Solar Z radians 0-1.3962 (0- 0 90 °) 16 bit 
6. Relative azimuth radians 0-6.2832 (0- 0 360 °) 16 bit 
7. Chl reflectance c % reflectance 0-100% 16 bit 
8. Ch2 reflectance C % reflectance 0-100% 16 bit 
9. Ch3 btemp d degrees K 160-340 degrees K 16 bit 

10. Ch4 btemp a degrees K 160-340 degrees K 16 bit 
11. Ch5 btemp 't degrees K 160-340 degrees K 16 bit 
12. Day of year DDD.HH 0-366.23 16 bit 

Cloud flag (Stowe et al., 1991). 
b Numeric values from lookup tables. 
c Using calibration from Rao, 1993. 
a Using calibration from Rao, 1993. 
From (James and Kalluri, 1994). Data are available as 10-day composites derived by maximum value compositing (Holben 1986) and also as 

daily products. A similar 1-km data set is also being created but without QC and CLAVR flags (Eidenshink and Faundeen 1994). 
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intensive and science-driven aircraft experiments con- 
ducted in the last several years and these data are 
beginning to become available to the scientific commu- 
nity. These should be invaluable for providing sample 
data for developing and testing algorithms as well as 
answering some of the target-sensor questions. 

Looking ahead to when there may be more micro- 
wave sensors on orbiting platforms, one confronts the 
basic differences between passive and active instruments 
and the intended use of the data. Comparing the instru- 
ments simplistically, the active sensors have the capabil- 
ity to provide high spatial resolution data (on the order 
of tens of meters) but their sensitivity to soil moisture 
may he confused more by roughness, topographic fea- 
tures, and vegetation than the passive systems. On the 
other hand, the passiw~ systems, although less sensitive 
to target features, can provide spatial resolutions only 
on the order of tens of kilometers. One then must 
consider how the data will be used. Meteorological and 
climate models currently use computational cells on the 
order of 10-100 km, which may be well within the 
capacity of future pas,;ive systems. However, if one is 
interested in more detailed hydrologic process studies 
and partial area hydrology, the passive data would ap- 
pear to be of little use. It is in this context that the 
active systems appear 'promising. For example, existing 
and planned SARs can provide at least 20-30 m resolu- 
tion over a swath width of 100 km. Some SARs also 
have the capability of a scanning mode (SCANSAR) to 
cover a much wider swath (300-500 km) at a reduced 
resolution (250 m). Future space launch manifests in- 
clude several SARs hut no passive systems other than 
the MIMR have frequencies low enough to be useful 
for soil moisture. 

Scale Invariance of Models and Algorithms: 
Implementation Issues 
To produce a timely, affordable regional or global pa- 
rameter map requires the acquisition, preprocessing, 
and application of lancl cover inference algorithms and 
process models to large volumes of data. Many models 
that use these parameter sets do not require them at 
the same spatial resolution at which the remote sensing 
algorithms are required to operate. For example, general 
circulation models and the associated subprocess mod- 
els, are implemented at a spatial resolution of 100 x 100 
kin, and could not currently use land cover parameters 
below that resolution. Some remote sensing algorithms, 
particularly those producing atmospheric radiation pa- 
rameters, can operate at similarly coarse grid scales. 
However, as we have discussed, many of the land cover 
remote sensing algorit]ams are a function of the type of 
vegetation being observed. In many regions, vegetated 
landscapes have patch sizes of a few hundred meters or 

less; for such landscapes the algorithms must be applied 
at spatial resolutions much finer than the models to 
which they supply the parameters. Because roughly 133 
million, 1 km AVHRR pixels are required to cover the 
earth's land surface, global application of remote sensing 
algorithms requiring spatial resolutions of I km or smaller 
could involve uncomfortably large data processing and 
storage rates. 

This fact represents one of two opportunities to 
reduce data processing volumes: 

1. Spatial averaging-Where remote sensing algo- 
rithms are valid at coarse spatial resolutions the 
satellite radiance data can be spatially averaged 
before applying the algorithm to reduce pro- 
cessing throughput. 

2. Spatial sampling-Where remote sensing algo- 
rithms are valid only for homogeneous vegeta- 
tion types, the grid cell can be sampled to re- 
duce processing throughput and the finer 
resolution data processed. 

To utilize option (1), spatial averaging, the algo- 
rithms must be scale invariant, that is, the algorithm 
applied to a spatial average of the satellite pixels must 
produce parameters equivalent to those produced when 
that algorithm is applied to the individual pixels. The 
effect of spatial resolution on satellite parameter esti- 
mates and energy balance process model relationships 
has been investigated to some extent by Mahrt (1987), 
Hall et al. (1992a), and Desjardins et al. (1992). Gener- 
ally, these studies demonstrate that the algorithms relat- 
ing satellite data to evaporation can be scale invariant 
under a wide range of conditions; However, the theoreti- 
cal analysis of Hall et al. (1992a) shows that situations 
can arise when the algorithms will not be scale invariant 
and must be applied pixel by pixel. The importance and 
frequency of occurrence of these situations is unknown 
operationally and needs further investigation. 

Where algorithms or subprocess models are not 
scale-invariant, spatial sampling may present an option 
to greatly reduce data processing loads. As a cautionary 
note, spatial sampling may not be applicable to all 
parameters and process models, particularly those that 
require keeping track of spatially contiguous interac- 
tions between adjacent landscape units such as is the 
case with certain hydrological models. But for model 
inputs that require only the average value of a parameter 
over a grid cell, and for which the remote sensing 
algorithm is applicable only at a much smaller spatial 
resolutions, sampling can greatly reduce satellite data 
and model processing loads. Yet the sampling approach 
can still produce "wall-to-wall" parameter estimates for 
each model grid cell. 

To remind ourselves of the kinds of processing load 
reductions that may be achieved, we recall a well-known 
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result from statistical sampling theory. The theorem 
states that to obtain an estimate of a normally distributed 
parameter, to within + C % of its true value for the cell, 
with a confidence of 95%, requires n sample units where 
n is given by (Hansen et al., 1953), 

n = 4a 2 / C 2 (3) 

and a is the between sample unit coefficient of variation 
in the parameter within the grid cell due to both natural 
variation and random error from the processing algo- 
rithm. Thus, for example, if a is + 50% within a 100 
x 100 km grid cell, and the accuracy requirement C, is 
that the estimated parameter mean for that grid cell 
lies within + 5% of the true value, then from (3) only 
400, 1 km sample units are required within the 100 × 
100 km grid cell to achieve this result. This amounts to 
processing only 4% of the total data within the grid 
cell. Of course, the processing algorithm can itself add 
random error which will inflate a in equation (3) requir- 
ing additional sample units to achieve the same accu- 
racy. In other words, processing the remainder of the 
AVHRR data within the cell can reduce sampling error 
by at most only 5%. Because some of the algorithms 
will require manual intervention, processing the huge 
volumes of data can actually lead to higher error rates, 
not to mention costs, thus reducing the accuracy of the 
estimates. Of course, as can be seen from equation (3), 
the achievable data load reduction for a given accuracy 
depends on the variability of the parameter within the 
sampling strata or grid cell, thus a stratified sampling 
design will be required to achieve the kinds of efficien- 
cies illustrated above. 

Again, sampling may not be useful for all parameters 
and processes. However, where it is appropriate, other 
advantages accrue. For example, one can use a tech- 
nique referred to as double sampling, in which a small 
fraction of the sample units are measured for biophysical 
parameters using in-situ methods, then regression used 
to correct the satellite algorithm estimates for bias intro- 
duced by classification and other types of errors. An- 
other advantage of a sampling approach would be reduc- 
ing errors arising from missing data; primarily data lost 
to cloud cover or poor data quality. Suspect samples 
could be eliminated, and the parameter for that sample 
estimated using statistical inference techniques in which 
the parameter of the missing sample is inferred from 
relationships to adjacent cloud-free samples, established 
on the basis of previous surveys. The design of such a 
sampling strategy would require careful consideration, 
keeping in mind the requirements of the model that 
would use the parameter maps. Primary issues would 
be the size and number of the sampling units, the 
stratification approach and its congruence with grid 
cells, and the sample allocation strategy and required 
sample frequency. However, the design issues are rela- 
tively straightforward and could be addressed given ade- 
quate resources and expertise. 

FUTURE NEEDS 

Several important requirements for improving the qual- 
ity of land cover data have been identified in the previ- 
ous sections. Of these the most are important as follows: 

1. Improved validation using well-characterized test 
areas from a wide variety of areas throughout 
the world. 

2. Continued efforts in improving the algorithms: 
the potential of such work is clearly demon- 
strated by the fact that for many applications vi- 
sual analysis still produces better results than au- 
tomated methods. 

3. Improved data sets: in particular there is a major 
requirement for data sets based on the visible 
and near infrared in which atmospheric effects 
due to water vapor and aerosols are much re- 
duced; also microwave data sets need to be 
much more readily available. 

4. Improvements in the capacity of computer sys- 
tems available to environmental scientists to pro- 
cess the very large global data sets currently be- 
ing generated. On line storage needs of c. 50 
gigabytes are already required: improvements in 
computing power will almost certainly need the 
application of parallel cemputer processing. 

5. Continued acquisition of high spatial resolution 
data especially from the Landsat and SPOT satel- 
lites with their known high capabilities, though 
with more spatially comprehensive coverage is of 
the highest importance for observations of land 
c o v e r .  

Most importantly, none of these can happen without 
a coordinated, focused, intensive effort. The coordina- 
tion should involve the simultaneous development and 
testing of processing strategies (sampling versus averag- 
ing), algorithms, and the production and use of the 
regional and global parameter data sets. Development 
cannot proceed in the dark, divorced from the produc- 
tion problems, use of parameters in the models, and 
continuous feedback to the developers. The focus should 
be the sequential deliveries of improved regional and 
global data sets to users. Initially, this can involve the 
intelligent, combined use of conventional Landsat, SPOT 
and AVHRR. As the EOS AM platform comes on line, 
Modis and MISR can be added and should greatly im- 
prove the quality of the data sets. In terms of intensity 
of the effort, few, if any, additional resources will likely 
be required to develop and test the algorithms; perhaps 
additional resources will be required to actually push 
the data through. 

Finally, to insure coordination between the algo- 
rithm developers and the modelers, a functional, infor- 
mation system must be in place. It must be able to 
anticipate the data sets, be prepared to document them 
fully, and able to organize and distribute them. CD 
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ROMS are an excellent vehicle for this purpose. For 
example, the FIFE information system (Strebel et al., 
1990) captured over 120 gigabytes of electronic data, 
including meteorological, biophysical, topographic, and 
satellite images, as well as a soft-copy library consisting 
of photo images, and data documentation and published 
articles. The "best" of the FIFE data, as deemed by the 
FIFE science team, was organized and published on a 
five-volume set of CD ROMS. The five-volume FIFE 
CD ROM user interface software prompts the user with 
menus that permits them to find material about the 
overall design of the FIFE experiment and data set, 
search and view common format data files, read docu- 
mentation on how each data set was prepared, photo 
documentation on the scientific instruments, and the 
theory behind the individual measurements. In the fu- 
ture, electronic versions of scientific papers that derive 
from the data can be presented on the CD ROM vol- 
umes. 
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