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Abstract 

The performance of a stochastic numerical modelling procedure to simulate dispersion of a 
conservative solute in two-dimensional heterogeneous hydraulic conductivity fields is investi- 
gated in a series of numerical experiments, the results of which are compared with theoretical 
predictions. Random hydraulic conductivity fields are generated with a prescribed statistical 
structure, a finite difference model is used to obtain the flow field and particle tracking repro- 
duces the dispersive properties. 

For  comparison between stochastic numerical methods and stochastic theories for solute 
transport, fulfilment of the ergodic requirement is necessary, consequently aspects of simulated 
solute plume behaviour are investigated with respect to ergodicity. Application of numerical 
stochastic methods is hampered by the large associated computational burden, which is affected 
by a range of factors, not least the level of discretisation of the hydraulic conductivity field. The 
experiments detailed here investigate the effects of hydraulic conductivity discretisation and the 
effects of initial solute source area for a range of log-permeability variances. An increasing 
deviation from Dagan's linear theory is observed for increasing coarseness of discretisation. A 
tendency to ergodic conditions is found for a smaller initial source area than previously 
reported. 
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I. Introduction 

The transport of solutes in groundwater systems is a complex process, and models 
have an important role to play, not only in predicting the fate of contaminants, but 
also in the interpretation of data and in system characterisation. 

An underlying problem in all field-scale model applications is that of system and 
parameter uncertainty. This applies to the geo-hydrological characterisation of a 
groundwater system, representation of boundary conditions, etc. but is a particular 
problem for the spatial characterisation of aquifer properties. Data collection costs 
are high and aquifer properties are subject to a high degree of spatial variability. 
It follows that appropriate modelling approaches must recognise the issue of 
uncertainty and allow for its representation. 

A second problem is a fundamental difficulty of appropriate representation of 
transport processes. The classical approach to modelling contaminant transport is 
based on the Bear-Bachmat advection-dispersion formulation (Bear, 1979), in which 
solute advection at the mean flow velocity is modified by spreading due to processes of 
local irregular advection and molecular diffusion, conventionally represented as a 
Fickian process and characterised by dispersivity (a tensor of second order with 
three principal directions). Several difficulties arise, often there are insufficient data 
to characterise the dispersivity tensor in anything other than a highly simplified form, 
and more fundamentally, there are problems concerning the Fickian representation. 
In practice, application of classical theory results in an apparent scale-dependence of 
dispersivity (Anderson, 1979; Gelhar, 1986). 

One response to the problem of uncertainty has been an increased interest in 
stochastic methods, which provide a formal framework for the treatment of 
uncertainty. Such methods can be combined with alternative approaches to the 
representation of dispersion which accommodate scale-dependence via a non- 
parametric framework. 

In this paper analytical and numerical stochastic approaches to ground-water 
modelling are briefly introduced. Two key issues concerning numerical model 
application and validation are discretisation scale and the fulfilment of the ergodic 
requirement. Criteria for these are evaluated through a series of synthetic numerical 
experiments. 

2. Stochastic approaches to groundwater flow 

It has been argued that the spatial variability of aquifer properties is such that their 
unique, deterministic, description is not feasible (Rubin, 1990), and this is formally 
recognised in the stochastic approach, in which aquifer properties are regarded as 
random variables with known distributions. It thus follows that the outputs from a 
stochastic model are probabilistic, characterised, for example, by the statistical 
moments or the full probability density function (p.d.f) of the variables of interest. 
Commonly such methods are based on modelling hydraulic conductivity as a spatial 
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random function, for which the lognormal distribution is generally accepted. This 
leads to the formulation of the velocity field as a spatial random function. 

Stochastic models may be classified as analytical or numerical. (A recent review of 
the former is given in Gelhar (1993).) Analytical solutions are generally based on 
linearisation of the governing, stochastic equations using spectral, perturbation or 
hybrid spectral-perturbation methods. In spectral methods (Bakr et al., 1978; Gutjahr 
et al., 1978; Gelhar et al., 1979; Gutjahr and Gelhar, 1981; Gelhar, 1986; inter alia) 
parameters are described in terms of their mean and a fluctuation about the mean; this 
produces deterministic equations for the means and equations for the fluctuations 
which can be solved using inverse Fourier transforms. The perturbation approach 
(Tang and Pinder, 1979; Winter et al., 1984; Neuman et al., 1987; inter alia) uses a 
Taylor series expansion of the flow-transport equations followed by the elimination 
of all non-linear terms in the perturbation. Gelhar and Axness (1983) developed a 
hybrid spectral-perturbation approach. 

A general theoretical approach to transport in heterogeneous formations was 
presented by Dagan (1982, 1984, 1987) based on a perturbation analysis. For the 
transport of passive solutes under steady uniform average flow conditions over 
an infinite domain in which hydraulic conductivity is represented as a stationary, 
log-normally distributed function of small variance (shown by Freeze (1975) and 
Hoeksema and Kitanidis (1985) to be upheld in field studies), the statistical moments 
of velocity and concentration were derived in terms of the statistical structure of the 
spatial conductivity heterogeneity. Thus, the time-dependent development of disper- 
sivity was modelled and was found to be consistent with the asymptotic results of 
Gelhar and Axness (1983). 

Analytical solutions have provided important theoretical insights into the disper- 
sion process, and provide tractable methods for estimation of the moments of the 
output distributions under idealised conditions. Application to field situations has 
been limited, although detailed experiments at the Borden site and Cape Cod aquifer 
have provided data for testing, with encouraging results (Freyberg, 1986; Mackay 
et al., 1986; Barry et al., 1988; Garabedian et al., 1991). 

However, analytical solutions have been developed for a restricted set of condi- 
tions, e.g. an infinite domain, steady, uniform flow, and spatially stationary and 
homogeneous properties (typically log-normally distributed hydraulic conductivity 
of low variance). For more general applications, numerical stochastic methods are 
required. In principle, these allow for simulation of complex systems, subject to a 
variety of boundary conditions, sources and sinks, unsteady flow and non-stationary 
material properties. Commonly, Monte Carlo simulations are used to generate 
alternative, equally likely, realisations of the system. The ensemble of realisations is 
then used to define the statistics of the required outputs. 

An increase in computational capability has led to a propagation of these stochastic 
numerical approaches to the representation of transport processes in groundwater 
systems (for example, Van Rooy, 1987; Varljen and Shafer, 1991; Tompson and 
Gelhar, 1990; Valocchi, 1990; Bellin et al., 1991). The objectives of these approaches 
include the validation of the existing analytical dispersion models, the definition of 
well capture zones and the delineation of potential or existing contaminant plumes. 
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These methodologies are based on the hypothesis that the use of finely discretised 
random fields to represent the heterogeneity of hydraulic conductivity will, in 
conjunction with particle tracking, account for hydrodynamic solute dispersion. 
Dispersion is most often represented by the variance of particle spatial positions 
relative to a plume centroid. 

These numerical methods are invaluable in that they augment the findings of the 
analytical methods and extend the range of prediction and solute modelling beyond 
the limitations imposed by the assumptions of the theoretical approaches. There are, 
however, several conceptual and practical points which have to be resolved before 
numerical stochastic models can be usefully applied to problems in the field. Primarily 
there needs to be a link between numerical methods and analytical stochastic theories, 
and in this respect the fulfilment of the ergodic requirement is important and needs to 
be investigated. Also, in practice, there is a need to balance computational efficiency 
with solution accuracy and in this respect the key issues relate to the dimensionality of 
the solution, the discretisation of the hydraulic conductivity field and the number 
of realisations used. 

This paper contains details of a series of stochastic numerical experiments which 
utilise a non-parametric approach to the representation of the dispersion of an inert 
solute in heterogeneous porous media. The nub of the numerical stochastic method- 
ology adopted is the assumption that the mechanical component of the dispersion 
process can be represented solely by small-scale velocity fluctuations and that these 
fluctuations can be attributed to local variations in hydraulic conductivity. Therefore, 
it is evident from the underlying hypothesis of the modelling approach that the 
discretisation of the hydraulic conductivity field plays an important role in the simu- 
lation of dispersion. 

Ergodicity is a mathematical concept which, in the case of spatial fields, implies that 
the properties of a realisation of a random function are representative of the ensemble 
properties of the underlying function. This effectively requires that there is sufficient 
sampling to ensure a correct representation of the underlying distribution. The valid- 
ity of stochastic theories concerning solute dispersion depends on the fulfilment of 
this hypothesis. 

For numerical approaches, the ergodic requirement has a bearing on the size of the 
domain to be modelled to facilitate valid comparison with theoretical results, while 
the conductivity scale determines its fineness of discretisation. Both aspects must be 
selected as a compromise between computational burden and solution accuracy, 
however, there are few guidelines at present in the literature. Unless the effects on 
results are known and quantified, practical application of the stochastic methodology 
will be hampered. 

3. The role of ergodicity in dispersion 

As mentioned above, the analytical approaches of Dagan (1982, 1984, 1987), 
Gelhar and Axness (1983) and Neuman et al. (1987) are all underlain by the assump- 
tion of ergodicity. A detailed statement of ergodicity can be found in most references 
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on probability or stochastic processes (e.g. Blum, 1982; Rosenblatt, 1985; Cressie, 
1991), and a consideration of the various formulations of the ergodic theory is given 
in Adler (1981). 

It is currently accepted (Dagan, 1989; Cressie, 1991; Gelhar, 1993) that in spatial 
applications the ergodic hypothesis holds for a spatial random field if the 
spatial covariance tends to zero over the spatial extent of the field; this will apply if 
the length scale of the field under consideration is much larger than the length scale 
of the field correlation. In terms of a stochastic representation of flow through 
porous media the fulfilment of the ergodic hypothesis can thus be taken to imply 
that each realisation of the random hydraulic conductivity field is fully representative 
of the ensemble of possible realisations. For solute transport, ergodicity of the 
concentration field associated with the underlying spatially random hydraulic 
conductivity field requires that the plume centroid moves at the mean field velocity 
(U) and that the effective longitudinal dispersion coefficient D L (and hence the rate of 
change of the spatial second moments) tends to a fixed value. However, if the ergodic 
requirement is not fulfilled, the attributes of plume movement will deviate from 
theoretical predictions. 

In general, if the spatial extent of a pulse of solute introduced into a heterogeneous 
velocity field is small compared with the hydraulic conductivity correlation scale it is 
subergodic, in which case estimates of its centre of mass and spatial variance relative 
to the plume centroid will differ from its ensemble counterparts and the ensemble 
longitudinal dispersion will be less than the asymptotic value predicted by Dagan 
(1982, 1984, 1987) or Gelhar and Axness (1983). The statistical moments of the plume 
will change as it moves through the heterogeneous velocity field, and its shape will 
vary erratically with time. As the plume continues to move, it will expand and become 
much larger than the hydraulic conductivity correlation scale. It is only beyond this 
point that moment measurements from individual simulations exhibit ensemble 
characteristics. This plume behaviour must be considered when comparing indi- 
vidual plume moments with the stochastic theoretical results. It is only meaningful 
to compare the moments of plumes generated under differing flow conditions when 
the ergodic requirement has been met. Thus, the range of validity of the hypothesis 
and its consequent effects on dispersion are of great importance in the numerical 
simulation of solute transport (Gelhar, 1993). An example of plume evolution from 
non-ergodic to ergodic conditions can be seen in Tompson and Gelhar (1990). 

A useful measure of the fulfilment of the ergodicity requirement is the comparison 
of the longitudinal plume variance with respect to the centroid trajectory ($11) and 
the longitudinal plume variance with respect to the expected flow trajectory (Xl 1)- The 
former refers to the observed spread about the plume centroid for an individual 
realisation, the latter to the spread about the expected ensemble centroid. 

These two terms (SI1 and "J(l|) are related through the following equation 
(Kitanidis, 1988; Dagan, 1989, 1990). 

Xll(t) +SII(O) = Sll(t ) +R l l ( t )  (1) 

where Xll (t) is the ensemble longitudinal variance with respect to the expected plume 
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centroid, SI1 (0) is the initial particle variance with respect to the source centroid for a 
given realisation, $11 (t) is the particle variance at time t with respect to the plume 
centroid for a given realisation, and Rll (t) is the variance of the plume centroid with 
respect to the expected plume centroid. 

As RI1 reduces, individual realisations become representative of the ensemble 
characteristics and there is a tendency toward ergodicity, because then the actual 
plume centroid approximates the expected. 

In practical terms for solute transport, ergodicity may be said to be achieved if one 
of the following criteria is fulfilled: 

(1) dR l l / d t  - -  O, which implies that the centroid moves at the average field velocity 
(G. Dagan, personal communication, 1992); 

(2) a match is obtained between the ensemble mean (Sll) and Sit for a single 
realisation (Gelhar, 1993); 

(3) a match is demonstrated between Sll for a single realisation and an analytically 
generated variance value (this is using the assumption that since the analytical approaches 
are underlain by the ergodic hypothesis, their results will be implicitly ergodic). 

There are several approaches which tackle the problem of the ergodic requirement. 
For example, Salandin and Rinaldo (1990) achieve ensemble statistics by releasing 
one particle for each random realisation of the hydraulic conductivity field, thus 
generating only uncorrelated paths. This implies that the plume resulting from the 
combined extent of the individual statistically-independent particle positions will 
cover several integral scales, therefore for a large number of realisations the resulting 
spatial moments from such single particle simulations will fulfil the ergodic assump- 
tion, and Salandin and Rinaldo (1990) have shown the results to be compatible with 
the analytical results of Dagan (1982, 1984, 1987). The spatial second moments in this 
case are calculated as the spatial moments of all particles taken about the mean 
centroid position (the variance here is equivalent to X11 in Eq. (1)). Alternatively 
Tompson and Gelhar (1990) used one single realisation of a large field and assumed 
that at large times the cloud would encounter sufficient hydraulic conductivity varia- 
tions to ensure ergodicity and thus tend to the asymptotic macrodispersion value. 
However, Salandin and Rinaldo (1990) express doubts as to whether the field used is 
sufficiently large to ensure full sampling. 

It can be seen from the various alternative numerical approaches that the ergodic 
requirement is fulfilled by ensuring that particles traverse a sufficiently large portion 
of the hydraulic conductivity domain, and that this ensures that the resulting plume 
statistics are representative of those for the ensemble. This can be done by using a 
large number of realisations, by increasing the travel time or distance, or by increasing 
the initial spatial extent of the plume source. Dagan (1991) investigated the effects of 
ergodicity on the behaviour of spatial moments. He showed that the controlling 
factor for the fulfilment of the ergodicity requirement in solute transport is the 
ratio of /2, the transverse dimension of the solute input area, to Av, the log- 
conductivity correlation scale, the longitudinal dimension l~ having no effect since 
in a steady flow field the streamlines will be aligned through the input area and thus 
the cloud particle paths are correlated. 

Dagan (1991) found analytically that if the ratio of 12 to Av is not larger than a given 
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threshold value, the ensemble spatial moments are smaller than those obtained at the 
ergodic limit and are controlled by the value of 12 irrespective of the relative value of Ay or 
the number of realisations. For increasing values of/2 the ensemble spatial moments will 
tend to their ergodic limit and then be controlled by the value of Ay. This means that for a 
cloud with an initial source area to integral scale ratio less than the required value, the 
solute body will disperse modestly around its centroid. However, the centroid itself is 
subjected to a random motion of increasing uncertainty. 

Numerical approaches are invaluable in the development of stochastic method- 
ologies for groundwater flow, however a heavy computational burden may be 
imposed by the large field size or high number of realisations required to fulfil the 
ergodic assumption, depending in part on solute source characteristics. Therefore, it 
is important to investigate the physical requirements for fulfilment of the hypothesis 
in order to provide guidelines for numerical simulations. 

4. Discretisation of hydraulic conductivity 

The issue of discretisation is extremely important for the application of numerical 
stochastic methods, both when considering theoretical comparisons and plume 
identification. The level of discretisation determines the plume variance and the 
magnitude of numerical effects influencing particle tracking. The discretisation of 
hydraulic conductivity is often arbitrarily chosen to match the solution grid, and it 
is generally perceived (e.g. Davis, 1986) that the smaller the hydraulic conductivity 
discretisation the better will be the subsequent reproduction of dispersion. However, 
owing to the computational expense invoked by the use of fine mesh grids to represent 
hydraulic conductivity fields a guide to the relationship between an increase in the 
level of spatial discretisation of hydraulic conductivity and the corresponding increase 
in the accuracy of the description of dispersion, would be useful. Although this has 
been considered analytically by Ababou et al. (1989), few detailed quantitative 
investigations of this hypothesis have been made. 

The salient issue is the number of hydraulic conductivity points per integral scale 
that are required to reproduce correctly the spatial second moments. Since dispersion 
is affected by the discretisation of both the hydraulic conductivity grid and the flow 
solution grid, it is necessary to separate these two components to assess the contri- 
bution from the hydraulic conductivity discretisation. 

5. Experimental aims 

The objectives of the experiments detailed herein are threefold: to provide a 
comparison with analytical solutions; to assess the effect on this relationship of the 
initial solute source dimensions, and hence fulfilment of the ergodic requirement; 
and to investigate the level of discretisation of the hydraulic conductivity field. 
The first comparison will also serve to verify the methodology, anchoring it to a 
theoretical base. 
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The experiments enable an investigation of the relative behaviour of the plume 
spatial second moments XI1 and S11 for a range of initial source dimensions. Checks 
on ergodicity are made through the observation of the behaviour of d R l l / d t ,  a 

comparison of individual and ensemble longitudinal variances ((S11) and $11), and 
through a comparison of theoretical and numerical results. The theoretical model 
used for prediction of Xll is that of Dagan (1982, 1984, 1987); despite the approxi- 
mations and simplifications used in the derivation of this approach it is generally 
believed that it provides an accurate model of longitudinal dispersion and it has been 
successfully fitted to the Borden aquifer plume (Freyberg, 1986; Barry et al., 1988). 
Since Dagan's model is implicitly ergodic we believe that a comparison of its predicted 
theoretical variances and numerical results in an appropriate indicator for ergodicity, 
although not a rigorous evaluation. 

The experiments also examine the role of hydraulic conductivity discretisation in 
the description of dispersion and indicate appropriate values for the practical appli- 
cation of stochastic dispersion models. The spatial discretisation of the finite differ- 
ence model grid was kept constant to eliminate variability of boundary and numerical 
effects, thus the combined effects of permeability and solution grid discretisation have 
not been considered. 

6. Experimental procedure 

The experiments consider the movement of a conservative tracer convected under 
steady-state conditions by a random velocity field arising from a heterogeneous 
hydraulic conductivity field. Both the velocity and log-hydraulic conductivity fields 
were treated as stationary spatial random functions. The field generation and flow 
and transport simulation were couched within a stochastic framework. Essentially the 
experimental procedure has no reliance on dispersion parameters and uses the sto- 
chastic simulation of hydraulic conductivity and the subsequent advective movement 
of particles over the resulting flow field to replicate dispersive processes. 

The turning bands method, developed by Matheron (1973), was used to generate 
random, stationary, isotropic, log-normally distributed two-dimensional hydraulic 
conductivity fields with prescribed mean, variance, and covariance function. The 
spectral method of Mantoglou and Wilson (1982) was used for line generation and 
50 evenly distributed lines were used. The number of spectral harmonics (150) and the 
width of the bands (one-half the discretisation spacing) were selected as a compromise 
between computing speed and accuracy. Generated hydraulic conductivity field 
statistics were reproduced to the same level of accuracy as that encountered in similar 
work in the literature. 

A regularly spaced block-centred finite difference grid was used. Measuring 
500 × 500 blocks, the node separation was 1 m, resulting in a modelled area 
of 500 m x 500 m. The nominal aquifer depth was 10 m. The flow situation was 
confined between two fixed head and two no-flow boundaries. A single porosity 
value of 0.3 was used for the whole domain. The head gradient across the field was 
0.5 m. Hydraulic conductivity was generated over the domain as a spatial random 
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variable with an exponential structure for which the natural log-mean conductivity 
value was 1.0 and the log-standard deviation ranged from 0.2 to 1.0. The resulting 
random field had a correlation length (Av) of 5 m. The resulting average field velocity 
was 9 x 10-3mday -1. 

The hydraulic conductivity field was simulated at several different levels of 
discretisation. The finite difference grid node spacing was kept constant and different 
sized blocks of hydraulic conductivity, centred upon the discrete point values and 
generated via turning bands, were superimposed upon this grid. Thus, the experiment 
was primarily influenced by the discretisation of hydraulic conductivity rather than 
numerical effects of the solution grid discretisation. The levels of discretisation used 
were I m (0.2 Ay), 2 m (0.4 Ay) and 5 m (Ay). Fifty simulations were carried out at each 
level of discretisation. For a source size of at least ten correlation lengths this was 
observed to be adequate. 

Over the discretised domain, the hydraulic heads were solved for prescribed 
boundary conditions using the preconditioned conjugate gradient option of the 
USGS finite difference model MODFLOW (McDonald and Harbaugh, 1988). 

The computed heads were differentiated to derive the velocity through each 
cell face which served as the input to the particle tracking software, MODPATH 
(US Geological Survey, 1989). This uses the semianalytical method of Pollock (1988) 
for the computation of particle pathlines. Velocities were interpolated linearly 
within a cell from the face velocities, and an analytical expression describing the 
flow path within a cell. Small-scale diffusion and microdispersion within the grid cell 
were ignored. 

As noted above, an important aspect of the approach is that the resulting solute 
dispersion is represented as entirely resulting from advective processes caused by 
small-scale velocity variations, with no additional dispersion terms being used. 

The solute source was represented by rectangular blocks of particles of variable 
size, with the longer axis oriented perpendicular to the direction of flow. The number 
of particles used in the representation of the source can also have an effect on 
dispersion, however this is only significant for small particle numbers (tens of 
particles). Here 1200 particles were used for each source size, evenly distributed 
within the source area, and it was found that an increase in this number had little 
effect on the dispersion characteristics. Five different source areas were considered. 
For each the longitudinal dimension (lj) was 1 m and the transverse dimensions (/2) 
were 50m, 100m, 200 m, 300 m and 400 m, respectively. Thus, these represent areas 
ranging from 0.2Ay x 80Ay to 0.2Ay x 10Ay. 

Bellin et al. (1991) estimated that velocity fields are affected by the boundary 
conditions for a region of up to 3 Ay (for medium-scale log-variances). Hence, to 
avoid boundary effects the source area was located 15 m from the edge of the domain, 
equivalent to three correlation lengths. It can therefore be assumed that the Dagan 
(1984, 1987) assumption of an infinite field holds for these simulations. 

The variance of each of the resulting plumes was calculated as it traversed a 
randomly generated hydraulic conductivity domain. The process is set in a stochastic 
framework and the individual variances were combined and averaged over each set of 
50 realisations. Both the individual particle variance from the actual plume centroid 
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Fig. I. Graph of dimensionless longitudinal variance (Xll/a2A~) vs. dimensionless time (tU/Av), for a 
hydraulic conductivity log standard deviation of  0.3 (a), 0.7 (b), 0.8 (c), and a range of initial source widths. 

Sll and the variance of the plume centroid with respect to the expected centroid R~I 
were recorded, then using the initial variance Sll(0), the longitudinal variance with 
respect to the expected centroid X1i could be computed via Eq. (1). 

7. Results 

Figures 1-5 show a comparison of theoretical and numerical results for source 
widths ranging from 80 Ay to 10 Ay and a range of variances (a~) of the hydraulic 
conductivity field. Results are presented for dimensionless longitudinal variance 
relative to the expected advective centroidal position 2 2 ( f~ ' l t / tYy/ky) ,  dimensionless 
longitudinal variance relative to the plume centroidal position (Sll/a2A2v) and 
dimensionless centroidal variance relative to the expected centroid (R1 2 2 l/CrvAv), as 
a function of dimensionless time (tU/Ay). Figures 1 3 and Fig. 5 show the averaged 
results of 50 simulations, any increase in the number of realisations having very little 
effect on the results, which can therefore be regarded as ensemble values. The results 
shown in Fig. 4 pertain to a single realisation. 

Figures l(a), (b) and (c) show a good match between the experimental variance and 
Dagan's linear theory for all source sizes considered, for log-standard deviations of 
the hydraulic conductivity field of 0.3, 0.7 and 0.8. Similar results were obtained for 
the full range of log-standard deviations considered (i.e. 0.2-1.0). More importantly, 
there is a consistency between the source area results. This is in agreement with theory 
and implies that the variance in the mean plume trajectory accounts for the difference 
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between Xll and Sll. Figures 2(a), (b) and (c) show the values of $11 for the full range 
of source sizes. It can be seen that the deviation from the expected theoretical variance 
increases as the source size decreases. However, the major point to notice here is that 
the change in SH is greatest between 10 Ay and 20 Av; the values from 20 Av to 80 Av, 
although deviating slightly from the theory, are very similar. Figure 3 augments the 
above results, showing only small-scale fluctuations of Rll for source widths ranging 
from 80 Ay to 20Av, indicating dRl] /dt  ~ O, but in comparison, the 10 A v source 
width gives rise to an increasing value of R~1 with time. 

When we consider the results of an individual realisation simulation for the 
same variances as the ensemble values (Fig. 4), deviations from the theoretically 
derived variance and the numerical results shown in Fig. l(a) are observed. However, 
the major features are reproduced and again the results for the 10Av manifest the 
greatest deviation from the theoretical variance. 

The results of varying the hydraulic conductivity discretisation are shown in 
Figs. 5(a), (b) and (c). Results are shown for the 80 Ay source width, however the 
results are replicated for all source sizes. The results are for log-standard deviations 
of the hydraulic conductivity field of 0.3, 0.7 and 0.8, respectively. It can be seen that 
there is a good match between the longitudinal variances for 1 m (0.2 Av) discretis- 

2 2 ation and Dagan's theoretical longitudinal variance (Xl]/crvAv). The 2m (0.4 Ay) 
discretisation also provides a reasonable match to the theory, having the same trend 
and behaviour as the 1 m results. However, as the discretisation becomes coarser, the 
solution is less stable and can be observed to converge at an overestimated longi- 
tudinal variance, the gradient of the line representing the 5 m (Ay) discretisation 
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differing markedly from that of the theory. In general, it can be seen that the fit 
deteriorates as the level of discretisation decreases and that this deterioration is 
augmented by an increase in the variance of field heterogeneity. 

8. Discussion and conclusions 

The results demonstrate a match between the numerical method and the main 
accepted analytical results, and this can be taken as a validation of the use of a 
numerical stochastic methodology in which transport processes are represented 
purely by small-scale advection, with no recourse to additional dispersion terms. 
They also show that in the subergodic range, plume variance manifests itself as 
both Sll and Rll, with their sum Xll remaining constant for various initial source 
widths 12. Thus, Xll can be considered as appropriate for the comparison of plume 
statistics in the subergodic range. A tendency to ergodicity was found for a source 
dimension 12 of only 20 A,¢ which is less than predicted in Dagan (1991) and Valocchi 
(1990) but is in keeping with the comments in Cvetkovic et al. (1992). 

Dagan (1991) derived an analytical expression for DL and investigated its 
dependence on 12/Ay and the point at which it tended to its ergodic limit. With 
reference to the work of Valocchi (1990), an /2 value of 102 times the correlation 
length was postulated as the value required to ensure ergodicity. The results in 
Fig. 4 pertaining to a single realisation are similar to those of Valocchi (1990) and 
show that even for a source size of 80 Ay there is failure to match the ensemble 
variance. Dagan (1991) also comments on the behaviour of D e with increasing 
source size, showing that the approach to the ergodic limit increases rapidly with 
increasing 12 and this is replicated in our ensemble results. However, although the 
value of 102 may be appropriate for an exact fulfilment of the ergodic requirement, 
the results have shown that for 12/Av ratios greater than 20 the difference between 
theoretical and numerical variances is relatively small and that dRl l /d t  ~ O. Cvetko- 
vic et al. (1992) derived expressions of the covariance of mass flux and the cumulative 
mass flux as functions of 12/Av and also showed (for both two- and three-dimensional 
conditions) that for an 12/Av of 20, near-ergodic conditions were achieved. It there- 
fore appears that an/2 of 20 Ay is sufficient to provide near-ergodic conditions. It may 
be possible (G. Dagan, personal communication, 1993) that the use of (Sll) rather 
than effective dispersion coefficients 1/2 (dSlt /dt)  accounts for this earlier stabilisa- 
tion, and this is currently under investigation. 

Ababou et al. (1989) suggested that discretisation effects may be avoided when the 
number of points per integral scale is greater than 1 + a2v. Bellin et al. (1991) obtained 
similar results, observing higher longitudinal variance for coarser grid discretisations, 
and a convergence of solutions for values of discretisation below 1 + a~. These 
findings are echoed in the results obtained here. For discretisations below this 
value the longitudinal variances tend to those of Dagan's theory, above this value 
the results are unstable and converge to incorrect asymptotic values. However, it was 
observed that although this criterion gives a good indication of the level at which 
deviation from the theory occurs, it is not a threshold value and degradation in 
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hydraulic conductivity log s tandard deviation of  0.3 (a), 0.7 (b), 0.8 (c), and a range of conductivity 
discretisation values. 

performance is gradual, with all changes in discretisation affecting the resulting 
longitudinal variances. 

The increased longitudinal variances for the coarser grids may be due to the poor 
description of the correlation structure causing abrupt changes in conductivity 
between adjacent cells. Also, the representation of the variogram of the spatial 
hydraulic conductivity field, specified a priori, may break down as the conductivity 
integral scale is exceeded by the discretisation, although the field will still yield the 
correct statistics. This may be the reason for the marked deviation from theory for the 
discretisations greater than the integral scale. 

Therefore the main specific conclusions are: 
(1) that the ratio of source size to characteristic length scale of conductivity 

correlation is e~eidently an important factor in dispersion; 
(2) that a source dimension 12 of 20 Av may be adequate to ensure near-ergodic 

conditions; 
(3) that the use of a grid resolution greater than 1 + ~r 2 is computationally wasteful 

in terms of increasing the accuracy of dispersion. 
More generally, the results validate the stochastic numerical procedure, but for a 

relatively simple case. More complex applications which better represent natural 
systems are required. Furthermore, investigations are needed of the extent to which 
incorporation of increasing levels of data availability, through the use of conditioning 
and screening algorithms, affects the computational efficiency of the Monte Carlo- 
based scheme. 
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