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Abstract-An algorithm for calculating the solution of coupled processes such as fluid flow through 
fractured porous media using dual-porosity conceptualization is presented. In the Laplace domain, 
instead of solving the coupled system of equations using special functions as practiced by most analyti- 
cal methodologies, this algorithm offers a direct solution technique using the method of differential op- 
erators. In modeling fluid flow through fractured porous media, this method maintains the rigor of 
fluid flow within the matrix blocks without the complications in assessing the values of special func- 
tions. This efficient algorithm is general and can be applied to any pertinent modeling of coupled pro- 
cesses. IQ 1997 Elsevier Science Ltd 
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INTRODUCHON 

Modeling of fluid flow and contaminant transport 
through fractured porous media has been a subject 
of intensive interest in numerous earth science disci- 
plines (Bai, Elsworth, and Roegiers, 1993; Bai, 
Roegiers, and Inyang, 1996). Because of significant 
differences in the characteristics of flow and trans- 
port between fractures and rock matrix, the flow 
and transport processes predicted by dual-porosity 
models are substantially different from conventional 
models using single-porosity models or homogeneous 
approaches (Bai, Elsworth, and Roegiers, 1993). 

As an initial approximation or in some simplified 
circumstances, analytical solutions become con- 
venient tools to achieve certain qualitative results. 
When studying fluid flow through fractured porous 
media, typical analytical solutions were obtained 
via decoupling technique by neglecting the fluid 
flow within the matrix blocks (Warren and Root, 
1963). 

The influence of matrix flow can be maintained 
in some rigorous solutions through solving eigen- 
value problems using special functions for radial or 
Cartesian geometries (Bai, Ma, and Roegiers, 1994; 
Bai, Roegiers, and Elsworth, 1994). Although these 
solutions are analytical, evaluation of the special 
functions with open series frequently becomes so 
tedious that their practical utilization is discour- 
aged. 

To avoid the inconvenience and complication 
without sacrificing the accurate representation of 
realistic physical processes, this paper presents an 

efficient algorithm to solve the system of equations 
within the Laplace domain using the method of 
differential operators. The closed form analytical 
solutions are obtained in relatively few steps with- 
out invoking any special functions. The computer 
implementation of this algorithm is straightforward. 
This algorithm is presented in a complete example 
of modeling fluid flow through a naturally fractured 
reservoir where the fluid flow within the dual-poros- 
ity media is fully coupled. 

DUAL-POROSITY FORMULATION 

In the literature, a typical dual-porosity formu- 
lation is usually written as (Barenblatt, Zheltov, 
and Kochina, 1960): 

;v2p: =““‘$-3; -p2*), (2) 

where subscripts 1 and 2 represent matrix and frac- 
tures, respectively; p* is the fluid pressure, k is the 
permeability, p is the dynamic viscosity, n is the 
porosity, c is the compressibility, t* is the time, 
r = crk,, and u is the geometric leakage factor 
indexing the interporosity flow between the frac- 
tures and the matrix blocks. It is noted from 
Equations (1) and (2) that the fluid flow is retained 
in both matrix blocks and fractures. 
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For the one-dimensional radial flow example, 

Equations (1) and (2) can be written as: 

a*$ * 
T+~~=- 
a@ 1 

““k’:’ 3 + a(p; -pi), (3) 

&ii2 1@2 
x + ;x = (1 + &+-‘$2 - A&@1 -p2), (10) 

where s is a Laplace parameter. 
Boundary conditions are changed to 

where r* is the radial distance from the well. 

Conventional application frequently invokes a 

dimensionless formulation, as described by the fol- 

lowing terms: 

4% - 

dr r=~ 

=o @ 

’ dr r=~ 
z-f, j, =j21,=,, =o. (11) 

SOLUTION TECHNIQUE 

(5) 

t = (kl + W* c2n2 

w$(clni + c2n2) 
, w= 

CI~I + c2n2 ’ 

It is noted that Equations (9) and (10) are coupled 
differential equations, which can be solved by the 
method of differential operators (Mathematical 
Handbook, 1979). The differential operators, D”, is 
applied as 

where h is the reservoir thickness, p. is the initial 

reservoir pressure, q is the flow rate at the well, and 

rw is the wellbore radius. Although the rate of flow 

at the well from the matrix may be proportional in 

any amount to that from the fractures, it is 

assumed that the fluid flows at the well only 

through the fractures in view of significantly higher 

fracture permeability, and for simplicity. 

The dimensionless form for fluid flow through a 

fractured porous formation can be written as 

where i indexes an arbitrary variable, and n is the 
order of the differential equations. 

Applying the differential operators to 
Equations (9) and (10) gives 

(D*+;- [,+ (1 +&)(l -o)s]]p, +A& =0, 

(6) 

$+;z= (1 +&)O~-h&(pl -p2), (7) 

where it is indicated that the fluid flow is character- 
ized by the reservoir equivalent storage ratio for the 

fractures w, the permeability ratio Rk and the inter- 

porosity coefficient 1. Substituting Equation (15) into Equation (13) 
results in 

(D4 + B1D3 + B2D2 + B3D + B4)p2 = 0, (16) 

For constant flow rate at the well (r* = r,) and 
constant pressure at the reservoir boundary 

(r* = r:), the boundary and initial conditions in where 
the dimensionless form are expressed as 

, 

apl 
ar r=l 

=o ap2 
’ ar r=l 

= -19 PI =Pzlr=r, 

=o, p1 =p21,=0 = 0, (8) 

where r, is the dimensionless reservoir radius. [)iR~+~s(l+R~)(l-co)]. 
Using the Laplace transform to Equations (6) 

and (7) results in the following ordinary differential 
equations: equations (Mathematical Handbook, 1979): 

Equation (16) has four roots from the following 

(l-o)@1 +~~I -j*), 

(9) 

D”f(xi) = F, 
I 

(13) 

D* +; - [A& + (1 + R&S] j2 + k&P, = 0. 

(14) 

The following relationship is derived from 
Equation (14): 

D2+$bRk+(~+Rk)Os] (15) 

(17) 
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D2+S1D+Cpl =O, (18) 

D2 + (2D+42 = 0, (19) 

where 

I 

Al = 8z+B: -4B2 
61 = OS@ + J%), 62 = OS(B1 -a), 

c#q =3fBy$ 
l&z-& 

42=z- Jz17 3 

(20) 

where z is any real root of the following equation: 

8z3 + 4E,z2 + E2z + E3 = 0, (21) 

and where 

I 

E, = -B2, 

E2 = 2BlB3 - 8B4, (22) 
E3 = B4(4B2 - Bf) -B;. 

Furthermore, assume 

El 
z=u--, 

6 

where the parameter ZA can be determined from the 
third-order equation 

U3+T1U+T2=o, (24) 

and where 

I T, = 0.12+ - y), (25) 

~2 =0.125 

The three roots of u may be described as 

I 

ul=F\-kF~, 

242 = 01Fl +&FL (26) 
243 = 6’2Fl + 01 F2, 

The solutions in the Laplace domain may become 
complicated as a result of uncertainty in the signs 
of Ai, A2, and A3. However, for a choice of limiting 
physical parameters: r(1 + co), $0 - co), 
A(0 --+ oo), o(0 -+ l), &(O -+ l), Ai is predomi- 
nantly positive. Although A2 and A3 are also most 
positive for the range of representative parameters 
in this paper, the complete solutions including those 
under simultaneously or alternately negative A2 and 
A3, along with the solution procedure, are described 
in Appendix A. The solutions in the real-time space 
may be recovered by using a numerical inversion 
technique. 

where A SIMPLE SOLUTION 

‘*‘=(g2+(f)‘, 

’ F++yl;;;)i, F2=(+@f, 
81 = -0.5 + fii 

2 ’ 
&=-O-s-Jsi 

2 . 
(27) 

Three possible solutions of the real root, z, exist 
depending upon the signs of A* in Equation (27), 
as indicated in the following. When A* > 0, the real 
root is 

El 
zI =Fl+F2-6. 

If A* = 0, then the real root becomes 

(28) 

ZI = -fi-~. 

However, if A* < 0, the real root is recovered in 
trigonometric form as 

a 0 4 
z1=2ficos -7, 

3 

where 

I 
3 

f= _ z! n-7 3 ’ 
(31) 

a = arccos 
( > 

- 2 
2r 

Once the real root, z, is determined for 
Equation (21), the four roots of Equations (18) and 
(19) can then be expressed as 

I 
2 

AZ =t-@,, : 
A3 =$-42, 

I lcIl =-g+Jdi. *2=_$_& (32) 

For the reservoir with relatively distant bound- 
ary, the solutions can be substantially simplified as 
a result of: (a) Ai, AZ, and A3 are all positive values 
within the changes of any physical parameters; and 
(b) some solution parameters are naturally deter- 
mined. 

In the Laplace domain, the pressure in fractures 
can be derived from Equation (16) as 

jj2 = &g,e*f’ 
i=l 

(33) 

where constants gi are determined by satisfying the 
boundary conditions. For the situations with finite 
fluid pressure and as a result of the fact that $s>O 
and J14> 0, it is readily known from the outer 
boundary conditions in Equation (11) that 
g3 = g4 = 0. As a result, 
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pz = -&&r. (34) 
i=I 

The fluid pressure in the matrix in the Laplace 
domain can be determined from Equation (15) as 

where 

0. = I@ + 5 - [k& + ~(1 + R 1 I k . )] (36) r 

The constants g, and g2 can be determined from 
the inner boundary conditions in Equation (1 l), 

which yields 

[“A;I “Ai][;;] = [;I, (37) 

where 

(38) 

Solving Equation (37) gives 

g,+4, g2=!4, 
A 

(39) 

where 

Table 1. Selected modeling parameters 

Figure & 0 I, 

Figure 1 0.1 0.01-0.5 1 
Figure 2 0.1 O-l 1 
Figure 3 0.05-0.5 0.5 1 
Figure 4 0.1 0.5 l-20 

* * * 
A =A,A2-AlA2. (40) 

The utility of the simple solution can be demon- 
strated in an illustrative example. In order to com- 
pare the solution with those of a finite reservoir 
boundary, the pumping rate at the well is modified 
to consider the steady-state discharge [proportional 
to ln(r,/r,)] from the reservoir with a finite bound- 
ary. The selected parameters are listed in Table 1. 

The comparison between this model and that by 
Bai, Ma, and Roegiers (1994) is shown in Figure 1. 
As a result of the difference in the assumed flow 
paths at the well, using identical parameters still 
leads to a time lag in the pressure development for 
the latter model (curve 2). However, this difference 
is reduced as the dimensionless storativity o 
decreases (curves 3 and 4). The latter curves depict 
pressure slope changes at later time, evidence of the 
dual-porosity behavior of the fractured reservoir. 

The sensitivities of three major parameters of this 
model are tested. The pressure variations for a few 
limiting examples of w are indicated in Figure 2. 

lo-’ lo-' lo+ lo-’ lo-’ 1 
Dimensionless tige 

10 = Id3 

Figure 1. Comparison of temporal pressures. 
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Figure 2. Temporal pressure for various w. 
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Figure 3. Temporal pressure for various Rk. 
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- 1. lambda=1 
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Figure 4. Temporal pressure for various 1. 

Smaller equivalent fracture storativity appears to 
result in earlier pressure changes. However, the time 
lag seems to be less significant for the instances of 
larger w. The changes of permeability ratio Rk cre- 
ate the differences in the pressure magnitudes, as 
shown in Figure 3. A smaller ratio represents a 
reduced matrix permeability, which leads to higher 
fracture pressure changes as a result of more domi- 
nant flow within the fractures. This effect diminishes 
as the ratio becomes larger. Similarly, the apparent 
variation of pressure magnitude is as a result of the 
changes of the interporosity coefficient 1, as 
depicted in Figure 4. The larger 1 represents more 
manifest fluid exchanges between the matrix blocks 
and the fractures, which shows a lower pressure 
magnitude, an indication of reduced flow in the 
fractures. 

CONCLUSIONS 

An efficient algorithm for evaluating the coupled 
processes which involve solving a simultaneous sys- 
tem of equations is presented. The application of 
this algorithm is given in the alternative modeling 
of fluid flow through fractured reservoirs conceptu- 
alized as the dual porosity media. The most signifi- 
cant advantage of using this method rests on its 
ability to analyze any coupled equations (e.g. solute 
transport in dual-porosity media) in a straightfor- 

ward fashion without resorting to complicated 
special functions. This feature is especially useful to 
practicing engineers whose knowledge in math- 
ematics is not far beyond fundamental calculus. 
Despite the simplicity of the algorithm along with 
its computer implementation, the utility using this 
method to study complex physical phenomena with- 
out excessive approximation has been demon- 
strated. 
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APPENDIX A 

Solution Procedure and Solutions 

General Procedure 

The following system of equations can be derived by satis- 
fying boundary conditions as expounded in Equation (11): 

where S is given in Equation (38). 
The solutions of Equation (Al) can be expressed as 

gi=: (i= 1,2,3,4), (A2) 

where 

J = &-l)‘-r& (43) 
r=l 

and where Ji can be described as 

J, = Bj(VcY, - MY,*) - Bk(YI*M - YjYjr) +Bl(q’Yk - yjYk*). 

(‘44) 

and it follows the rotation rule, that is, i # j # k # I. More 
specifically, 

( 

i = 1, j = 2, k = 3, I= 4; 
i = 2, j = 1, k = 3, 1= 4; 
i = 3, j = 1, k = 2, 1= 4. 645) 

Similarly. 

i = 4, j = 1, k = 2, I = 3. 

Ii = (-‘Ys[B,* (&Yl* - Y,*&) - S,* (BjY,* - q*Pl) 

+ d (BjYf - ylc&)], (‘46) 

where the rotation rule also applies. 

Analytical Solutions 

The solutions in the Laplace domain can be divided into 
four groups depending on the signs of 82 and As while 
A,>O. 

CaseI.A2>OandAs>O 
The solutions have been partially given previously, and 

are rewritten below: 

where vi is expressed in Equation (36). 

648) 

The parameters required in Equation (Al) are 

pi = eSrre, S* = %A, Yi = $$*I, Y,: = ??;Y;, 

where, again, i = 1, 2, 3, 4. 

(49) 

Case 2. AZ 2 0 and As < 0 

2 

jz = x&e”” + eW3’[g3 cos(W4r) + gq sin(Wdr)], (AlO) 
,=I 

where 

(All) 

- k: sin (W4r)] + g4[J.2* cos (W4r) 

+J..T sin (Whr)])}, G412) 

where 

I 

* 
A, =w:-w:+n,w,+n,, 

1: = w4(2w, + RI), (413) 

D, = ;, 122 = -[1& + (1 + &)WS]. 

For i = 1, 2, /Ii, fir, yi and y: are identical to those in 
case 1. However, for i = 3, 4: 

I 
7, = A: cos (WJr,) - ,I; sin (W4re), 

7p = it cos (W4re) + ,I: sin (Wdr,), 

B3 =e w3recos (W4re), 84 = eW3’csin (W.+re). 

/I: = t/3cw1rc, p,* = qdcW3’*, 

M = ew3[W3 cos (W4) - W4 sin (W4)], 

y4 = eWJ[W3 sin (W4) + W4 cos (W4)], (A141 

y: = ew3[lf cos (W4) - kf sin (Wd)], 

y,* = ew3 [AZ cos (W4) + AT sin ( W4)], 
* * * 

I, = W,k, - W4A2, 

* * * 
A, = W3A2 + w4A., 

Case 3. AZ < 0 and A3 2 0 

p2 = eW1’[g, cos (W2r) +g2 sin (Wzr)] + kgie’r, (415) 
id 

where 

w, z-f, wz=J--;55, 

& = - & eW1’[ gr[l, cos (Wzr) 
( 

- JQ sin (Wzr)] +g2[A2 cos (W2r) 

+ J-I sin (Wzr)]) + &?iVie”r} 1 

and where 

(‘416) 

(AJ7) 
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For i = 3, 4, j$, &, yi and y,T are identical to those in 
case 1. However, for i = 1, 2: 

PI =e wlGcos (Wzre), 82 = ew16sin (W2re), 

fir = q,ewNrc, & = q2eW2’c, 
y, = eWt[W, cos (W2) - WZ sin (Wz)]. 

y2 = ewl [W, sin (W2) + W2 cos (WZ)]. 

y: = ewl [& cos (W2) - k4 sin (Wz)], 

y,* = ewl [A4 cos (W2) + k3 sin (W2)], 
A3 = w,,i, - W2A2, 
A4 = W,k2 + W2A.1. 

(A19 

Case 4. A2 < 0 and A3 < 0 

j2 = ew"[gl cos (W99 +g2 sin (W2r)] 

+ eW1’[g3 cos (Wu) + g4 sin (W4r)], (A20) 

PI =-&[$Gi]. 6421) 

where 

. GI = gleW1’[I, cos (W2r) - A2 sin (W2r)], 

G2 = g2eWlr[k2 cos (W2r) + A_, sin (Wzr)], 

G3 = g3ew3’[lr cos (W4r) - hz sin (W4r)], 

, G4 = g4eW1’[I: cos (W4r) + AT sin (Wdr)]. 

(A221 

7~3 = A: cos (W4rC) - ,I; sin (W4re), 

~4 = AZ cos (W4rc) + A: sin (W4re), 
A,=W;-W;+n,w,+52*, 

A2 = w*(2w, + Q,), 
* 

1, =W~-W:+n,w,+S2*. 

A; = W4(2W3 + n,), 

61 = ew%os W2re , & = ew1’5in W2re , 
03 = eW%os W4r, , 84 = ew3%in W4re , I 1 t 1 

fi: = qlewlrc, & = r)2ewzrc, 

& = q3ewlrc, p,* = q4eW3’c, 6423) 
y, = ewl [W, cos (W2) - W2 sin (W2)], 

y2 = eWIIWl sin (W2) + W2 cos (Wz)]. 

)q = eW3[W3 cos (W4) - W4 sin (W4)]. 

y4 = ew3 [W3 sin (W4) + W4 cos (W4)]. 

y: = ewn [A3 cos (W2) - 14 sin (W2)], 

yt = ewi [A4 cos (W2) + A3 sin (Wz)]. 

y: = eW3[A: cos (W4) - ,I: sin (W4)], 

y,* = eW3[A4* cos (W4) + A: sin (W4)]. 
$3 = WI+ - W29, A.0 = Wd2*+ W2h* 

A, = W,k, - W4A2, b, = W3k2 + W,A, 


