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Abstract A theoretical model for the 
dynamic surface tension of an air 
bubble expanding in micellar 
surfactant solution is proposed. The 
model accounts for the effect of 
expansion of the bubble surface 
during the adsorption of surfactant 
molecules (monomers) and the effect 
of disintegration of polydisperse 
micelles on the surfactant diffusion. 
Assuming small deviations from 
equilibrium and constant rate of 
expansion analytical expression for 
the surface tension and the subsurface 
concentration of monomers as 
a function of time is derived. The 
characteristic time of micellization is 
computed from the experimental data 
for two surfactants (sodium dodecyl 

sulfate and nonylphenol polyglycol 
ether) obtained by the maximum 
bubble pressure method. 
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Introduction 

Micellar surfactant solutions are widely used in many 
practical processes accompanied by deformation of 
a single bubble or of foam bubbles. Since the surface 
properties of a bubble markedly change during these pro- 
cesses, the equilibrium between micelles and monomers 
(single surfactant molecules) is disturbed. The effect of 
micelles on the dynamic surface tension o-(t) was studied 
experimentally in ref. [1] by means of the maximum 
bubble pressure (MBP) method. Two surfactants were 
investigated: sodium dodecyl sulfate (SDS) and nonyl- 
phenol polyglycol ether with 10 mol ethylene oxide, com- 
mercially known as Veranol HIO. The experiment showed 
that for both surfactants the micelles appreciably acceler- 

ate the surface tension relaxation. In our present study, we 
propose a theoretical model for the adsorption and diffu- 
sion of surfactant species toward an air bubble expanding 
in a micellar solution which allows to calculate the dy- 
namic surface tension tr(t). Our treatment is based on the 
results of ref. [2] where we considered the simpler case of 
surfactant solutions without micelles. 

To account for the effect of the micelles on the dynamic 
surface tension one should understand first the micel- 
lization kinetics in homogeneous solutions, where the 
surfactant concentration is uniform at each point of the 
solution I-3-6]. Two subsequent processes of micelle relax- 
ation, fast and slow, are observed experimentally in such 
systems. To explain their nature, Aniansson and Wall [-5, 
6] have considered the micelles as polydisperse species of 
mean aggregation number m and dispersion (variance)co. 
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During the fast relaxation process the micelles release 
monomers and decrease their (average) size keeping the 
total micelle concentration, c,,, constant. During the slow 
process some of the micelles disintegrate in order to restore 
the equilibrium with the free monomers. Fast and slow 
relaxation processes results in an exponential decay of the 
concentration of free monomers with time t with decay 
constant rF and ~sL respectively (rv ~ ZSL). Aniansson and 
Wall have derived the following expressions for the time 
constants zv and ZSL: 

Fast relaxation process: 

1 _k.T ( (D 2 ) 
"/TF 0) 2 1 + ~ 0 , (1.1) 

where k,~ is mean dissociation rate constant of the 
micelles; 0 is excess concentration of monomers, aggreg- 
ated in micelles 

0 - - - -  (1.2) 

~i is the concentration of free monomers which is equal to 
the critical micelle concentration (CMC); ~ is the total 
surfactant concentration, ~ = ~1 + mg,, (bar above the let- 
ter denotes equilibrium quantity). Equation (1.1) allows to 
calculate m and 0) from experimental data, e.g., for SDS 
m = 64 and co = 13 [6]. 

Slow relaxation process: 

l _t_m2 0 
1 m m 

0)2 , (1.3) 
ZSL RMga O 1 + - - 0  

m 

where m E = m E q- 0)2;  RM is the so-called resistance of the 
premicellar aggregates (rare micelles). RM is a complicated 
function of 0 and the temperature. For  example, for SDS 
solution RM = 1.8 x 105 cmE.s/mol at 0 = 1 and temper- 
ature 25 ~ [6]. 

In view of Eqs. (1.1) and (1.3) the time constant zr and 
ZsL depend on the parameters of miceUe size distribution, 
the reaction path-way and the amount of monomers ag- 
gregated in micelles (0). While z i  1 increases linearly with 
0, ZsL 1 can be more complicated function of 0, observed 
also experimentally [6]. 

The micellization kinetics seems rather different in 
nonhomogeneous solutions, where diffusion of surfactant 
takes place simultaneously in the solution [7]. In this case 
the diffusion is coupled with the micellization. If the equi- 
librium between the adsorption layer and the subsurface 
layer is perturbed, free surfactant monomers are transfer- 
red by diffusion from the bulk of solution to the interface. 
Since this disturbs the local equilibrium between free 
monomers and micelles, the micelles diffuse, too. However, 

it is not clear in advance which type of relaxation, fast or 
slow, affects the surfactant diffusion. 

Recently, Feinerman and Rakita [8] published MBP- 
data for micellar solutions of SDS containing 0.1 M NaC1. 
They calculated micellization time constant ZM using for 
the dynamic surface tension 

a(v) = ~ Rg TaF2 . (1.4) 

1 + 2WM 

Here, R o = 8.314 x 107 dyn.cm/K.mol; T, is the absolute 
temperature; Fo~ is the saturation adsorption; v ,~ t -1  is 
the bubbling frequency; D1 is the monomer diffusivity. In 
deriving Eq. (1.4) it is not specified to which micellization 
process, fast or slow, corresponds the time constant 
rM. Feinerman and Rakita have obtained two values of 
ZM of the order of several seconds: ZM= 12S 
at ~ = 2 x 10 - 6  mol/cm 3, and ZM = 3.7 S at ~ = 
4 x  10-6mol /cm 3 (CMC of SDS plus 0.1 M NaC1 is 
1.16 x 10 -6 mol/cm3). The authors have attributed TM to 
the slow relation process although their diffusion model 
seems too simplified to include all features of the kinetics 
of micellization as described in the theory of Aniansson 
and Wall [5, 6]. 

The other models for the adsorption kinetics in the 
presence of micelles, available in literature, consider qui- 
escent solution with constant surface area. Moreover, 
most of them oversimplify the micellization kinetics (for 
a review see ref. [7]). Bearing in mind that the diffusion of 
monomers can be characterized by its own time constant 
zo, one can expect that only one of the micelle relaxation 
processes considered above could affect the dynamic sur- 
face tension. This is that process, whose time constant (zv 
or ZSL) is comparable with to. The diffusion time ~D is 
a measure for the speed the concentration gradients spread 
in the solution. That is why only a micellization process 
commensurable to the diffusion could be observed experi- 
mentally. Knowing the micellization time constants, taken 
from independent kinetic experiment, and the diffusion 
time constant, measured in MBP-experiment below CMC, 
one can conclude which micellization process could influ- 
ence the dynamic surface tension. 

The same idea was used independently by Noskov [9] 
whose approach to the adsorption kinetics from micellar 
solutions is quite similar to the approach used in ref. [7]. 

In Section 2 we derive new equations for the convective 
diffusion of polydisperse micelles. This equations are sol- 
ved in Section 3 to obtain expressions for the dynamic 
surface tension and for the subsurface concentration. Us- 
ing these expressions we compute in Section 4 the micelliz- 
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ation time constant from MBP-data for SDS and Veranol 
H10 published in ref. [1]. 

Diffusion model 

To account for the effect of micelles, one should postulate 
first the way they form. Following Aniansson and Wall we 
consider a step-wise reaction mechanism of formation of 
one s-mer As, an aggregate containing s monomers, 

k3 
A l + A s - l ~  ~ A s ,  s = 2 , 3 , 4 , . . . ,  (2.1) 

k7 

k + and k7 are the rate constants of association and dis- 
sociation, respectively. Expression (2.1) describes shift in 
the equilibrium between the aggregates caused by any 
local disturbance in their bulk concentrations, e.g., due to 
concentration gradients in the vicinity of expanding air 
bubble. Based on (2.1) the convective diffusion of species is 
described by the following set of equations: 

~[ + V ~ x  = D1 ~2x2 + 2Jz  + ~ Js (2.2a) 
s = 3  

OCs des  (~ 2 C s 
c~+  V ~ x = D s ~ x Z + J ~ - J s + ~ ,  s = 2 , 3 , 4  . . . .  (2.2b) 

J~=k~ + c a c ~ - x - k j c s ,  s = 2 , 3 , 4  .. . .  (2.3) 

~ c~ = c (2.4) 
s = l  

The bubble surface is considered as a flat interface with 
space variable x because the characteristic diffusion length 
is much smaller than the bubble radius [2]. c~(x, t) is the 
s-mer concentration; V(x, t) is the hydrodynamic velocity; 
Ds is the s-mer diffusivity; J~(x, t) is the total rate of s-th 
elementary reaction (2.1), called reaction flux [6]. Equa- 
tion (2.2a) describes the diffusion of the free monomers 
with source terms, containing Js, which give the influx of 
monomers released by the aggregates at the s-th reaction. 
The source terms J~ and J~+t in (2.2b) account for that 
s-mers produced at the s-th reaction are consumed at the 
(s + 1)-th reaction respectively. The local conservation of 
monomers, Eq. (2.4), shows that the total surfactant con- 
centration c(x, t) is no longer constant as accepted in the 
usual micellization kinetics [6]. The reason is the adsorp- 
tion and diffusion of monomers creating local concentra- 
tion gradients which can lead in turn to c ~ & 

The boundary and initial conditions for the concentra- 
tions of species are 

I d t3cl ~=o (2.5a) 
A dt ( A t )  = O~--~x 

0cs = 0, s = 2, 3, 4,.. .  (2.5b) 
X= 0 

c~ (0, t) = ~(t) (2.5c) 

c~(oo, t )=~s ,  s = 1 , 2 , 3  . . . .  (2.5d) 

cs(x, 0) = gs, s = 1, 2, 3,... (2.5e) 

C 1 (0, O) = ~ 0 ,  ( 2 . 5 f )  

F(t) = Fo (2.5g) 

Here, F(t) is the adsorption; 45(t) is the subsurface concen- 
tration of free monomers; Fo and ~o are the respective 
initial values (if a(0) is equal to the surface tension of pure 
water, then Fo = 0 and 4~o = 0). Equation (2.5a) is the 
conservation of monomers on an expanding bubble sur- 
face of area A (t). Equations (2.5b) state that the aggregates 
(s > 2) do not adsorb onto the bubble surface. On the 
other hand, the concentrations of species far from the 
bubble should be equal to their equilibrium values cs - Eqs. 
(2.5d). 

Since the mathematical problem formulated above 
cannot be solved analytically in its general form, we sim- 
plify the set of differential equations (2.2) by taking into 
account the contribution of fluxes J~ during the micelle 
relaxation. Following the procedure developed in ref. [7], 
we substantially reduce the number of equations. Assum- 
ing small deviations from equilibrium the relative concen- 
trations of s-mers, ~(x,  t), obey the conditions 

c s - g ~  4 1 ,  s = 1 , 2 , 3  . . . .  , 

so that the fluxes (2.3) become 

Js = ks- gs(~a + is-  ~ - ~), s = 2, 3, 4,.. .  (2.6) 

Three large groups of s-mers which determine the behavior 
of the micellar system as a whole can be distinguished: 
oligomers (s = 1 ,3  . . . . .  sl), premicellar aggregates 
(s = sl + 1, Sl + 2, sl + 3 . . . . .  s2) and abundant micelles 
(s = s2 + 1, sz + 2, s2 + 3 . . . . .  s3; s3 ~ m). The fluxes Js 
in the oligomer and micelte regions, important during the 
fast relaxation process, are scaled by the characteristic flux 
Je = gl/~v. The fluxes in the premicellar region, important 
during the slow relaxation process, are scaled by 
JsL = cl/~si~. When the diffusion is affected by the slow 
relaxation process (vD ~ rsL), the fluxes in the regions of 
oligomers and of micelles are neglected. In the opposite 
case of diffusion influenced by the fast relaxation process 
(to ~ ~v) the respective fluxes in the premicellar region are 
disregarded. Hence, the number of source terms is greatly 
decreased which allows to sum up the respective diffusion 
equations for s-mers introducing average quantities de- 
scribing the cooperative behavior of the species. 
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Finally, we obtain two pairs of diffusion equations for 
the free monomers and the micelles valid for diffusion 
affected either by the slow relaxation process or by the fast 
process: 

1) z v  ~ r s z .  In this case, 

c3r a{i  a2r m 
a~- + V ~ x  = D* ax 2 RMgl 

1 
- -  ( m { 1  - -  4 , . )  (.O2 

1 + - - 0  
m 

a{m a~m a2~ m 
a ~  § V - ~ x  ~" Dm a x  2 RMCl 0 

Here, {,(x, t) is relative deviation 
concentration from equilibrium 

r cA_C,.-e,. 
c - ~ + l  em ' 

(2.7a) 

- -  (m~ - r (2.7b) 

of the total micelle 

where 

$3 

Cm ~- 2 Cs " 
s 2 +  1 

D~ is the mean diffusivity of micelles if all the abundant 
miceUes are supposed to be of approximately equal dif- 
fusivities (i.e., Ds ~- D,.). D* is an effective diffusivity of the 
free monomers defined by [7] 

D m o) 2 
l + ~ m O  

D~" = D1 col (2.8) 
1 + - - 0  

m 

D~ accounts for the polydispersity of micelles and is equal 
to D1 for monodisperse micelles, where co = 0, or below 
CMC, where 0 = 0. Equation (2.8) differs from the respec- 
tive equation of Joos and Van Hunsel [10], which reads in 
our notations, 

D* = DI(1 + m0)(1 + ~ m O ) .  (2.9) 

Equation (2.9) is derived for monodisperse micelles (co = 0) 
assuming a local equilibrium between monomers and 
micelles, i.e., zero reaction flux (see also ref. [11]). This 
assumption is valid only if the micellization is much faster 
than the diffusion, which is not the case zo ~ TSL con- 
sidered by us. 

2) zo ~ ~v. The final diffusion equations read 

a~l a~l ~z~l k,2 0 (41 - -  ~z  ~,,) (2.10a) a--T + V~-x = D1 ax 2 m 

a~+ V =D=~x2 +k~  41--; (,, , (2.10b) 

where ff,,(x, t) is relative deviation of the total amount of 
monomers aggregated in micelles 

Cm s 2 +  1 

Equation (2.10b) is a counterpart of Eq. (2.7b) for the case 
zD ~ ZF, since the total micelle concentration remains con- 
stant (4,, = 0) as during the fast process in homogeneous 
solutions [5, 6]. However, the micelles belonging to each 
s-mer fraction can diffuse which leads to variation of (,,. 
An appropriate boundary condition for .~,, can be derived 
from Eqs. (2.5b, d, e). 

To further simplify Eqs. (2.5), (2.7) and (2.10), we ex- 
pand in series the adsorption and the surface tension 

d :  
r( t )  = F + ~c~ g141(o, t) (2.11a) 

d8 
a(t) = # + ~ gl 41 (0, t). (2.1 lb) 

In view of (2.11a) it is appropriate to scale the space 
variable x by the characteristic diffusion length 

dF  
6v - (2.12a) 

while time t is scaled by the diffusion time 

1 ( d f f ~  2 
ZD = ~ \ ~ }  �9 (2.12b) 

The convective terms are scaled by an appropriate charac- 
teristic velocity to make them of the same order as the 
diffusion terms. Here, we use the velocity profile proposed 
in ref. [2] 

V = - ~x _-__ - ~3o,  (2.13) 

where 

1 dA 
- ~ const 

A dt 

is the rate of bubble expansion. As motivated in ref. [2] 
can be considered constant throughout the bubble 

growth. 
Finally, we assume that the total surfactant concentra- 

tion remains constant 

c(x, t) ~- ~ (2.14) 

which is equivalent to the assumption D1 ~ D,,, i.e. the 
micelles and the free monomers are of equal rate of diffu- 
sion. In view of Eqs. (2.13) and (2.14) both (2.7a) and (2.10a) 
reduce to one and the same equation 

&3o ar = D~ a2~  1 4, (2.15) 
at ax ax z VM ' 
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where vM is either vv or ZSL. Equation (2.15) can be postu- 
lated directly, if the micellization kinetics is considered as 
a reaction of pseudo-first order. Such an equation has 
already been used (without convective term) by Rillaerts 
and Joos [12] to find an expression for F(t )  (see below Eq. 
(B.1)). We reveal the meaning of the coefficient 1/rM in Eq. 
(2.15) which is the (reverse) micellization time constant 
given by (1.1) or (1.3) rather than the demicellization rate 
constant [12]. 

In the next section we solve Eq. (2.15) to obtain the 
dynamic surface tension of the solution. 

Dynamic surface tension 

Based on Section 2, we can write Eqs. (2.15) and (2.5) in 
a dimensionless form 
a~1 a~1 a2~i 

a - -  - Da~l  (3.1a) 
OT ~3X OX 2 

~3~x ~ ~=o (3.1b) - - f  + a(b + ~1) = 

~1 ( oe, T) = 0 (3.1c) 

~, (0, O) = ~,o,  (3.1d) 

where X = x /6o ,  T =  t/~o, a = a~o, b = F/O~fD; 
~1o = (40 -- ~) /c l ;  Da = rO/rM is the Damk6hler number 
giving the ratio between the diffusion term and the micel- 
lization source term in Eq. (2.15). 

The mathematical problem described by Eqs. (3.1) is 
solved by means of Laplace transformation to obtain the 
respective image of free monomers concentration. After 
that, this image is inverted in Appendix A to finally yield 

~(T) r T) 
Aao ~1o 

1 (a2+4Da) T 

- 2 d e -  * {(1- t -G)E[(1 + G)-~-~2T 1 

EG a { 
+ 2Aa--~o 2a  z - D a  3a - x / ( a  z + 4Da) 

E ? ( a 2  2 4 D a )  TI}  

(1 - -  G - -  3 a ) ( 1  + G)  

E l ( l +  G ) ~ J - ( I + G - 3 a ) ( 1 - G )  

(a2+4Da) T 

x l - e -  4 

1 (a 2 + 4- D a) T 

+ ~--~e 4 

(3.2) 

Here, A a  = a ( T )  - if, Aao = 6(0) - if, 

G = ~/1 - a(6 - a) + 4Da (3.3a) 

E(z) = e z~ erfc(z) (3.3b) 

2 ~ r2  
eft(z) = - -  ] e dy = 1 - erfc(z) . (3.3c) 

Ea is the Gibbs elasticity, Eo = -df f /d( lnF) .  Equation 
(3.2) represents the dynamic surface tension affected by the 
convection and the expansion of bubble surface which are 
accounted for by the dimensionless parameter a = ~ 0 .  
The other parameter, Da  = zo/zu, accounts for the effect 
of micellization kinetics on the diffusion of monomers. 
Depending on the magnitude of a and Da there are special 
cases of Eq. (3.2): 

i) If the surfactant concentration is below CMC, i.e., no 
micelles are present in the solution, the limit rM ~ 
(Da = 0) should be carried out in (3.2) to give Eq. (2.18) 

from ref. [2] at G = ~/1 - a(6 - a). 
ii) When a quiescent liquid and nonexpanding surface 

is considered (a = 0) Eq. (3.2) transforms into 

Aao ~ l ~ - 2 G e  D~r ( I + G ) E  I + G )  

- ( 1 - G ) E I ( 1 -  G ) - - ~ J }  (3.4) 

derived first in ref. [7] at G = ,,/1 + 4Da. 
iii) There is a peculiar point in Eq. (3.2) at 

1 - a(6 - a) + 4Da  = 0. This case, together with the case 
of negative values of the quantity under the radical sign in 
(3.3a), can be treated as in Appendix A of ref. [2]. 

An alternative procedure for deriving Eq. (3.2) by 
means of a model subsurface concentration is proposed in 
Appendix B. 

A a ( T )  ~1(0, T )  

Results and discussion 

To check the applicability of our theory, we process ex- 
perimental data for the dynamic surface tension of micellar 
surfactant solutions measured in ref. [1]. The expansion 
rate & was not measured in our experiment, however, as 
shown in ref. [2], a seems always close to zero. Since the 
initial value of the surface tension a(0) is not exactly 
known, we first transform the data for a (t) into data for the 
subsurface concentration 4 (t) - see Fig. 1. Bearing in mind 
that o-((3) should be close to the surface tension of pure 
water one can expect that 4o ~ 0. Hence, it follows from 
Eq. (3.4) that the subsurface concentration of free m o n o -  
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mers is given by 

cl - ~ e (1 + G)E 

t 
Special case of (4.1) is Eq. (3.2) from ref. [2-1 for solution 
without micelles (Da = 0, G = 1). 

Below we apply Eq. (4.1) to fit l:wo series of experi- 
mental data for solutions of SDS and of Veranol H10. 

SDS solutions 

There are two unknown parameters in Eq. (4.1): "co and 
Da, i.e. rM. Fortunately, the diffusion time zo is constant 
above CMC, because the concentration of free monomers 
does not change (61 = CMC). That  is why we chose for 
SDS the value "co = 8.1 x 10- 3 s obtamed at concentration 
61 = 8 x 10-6 mol/cm 3 [2]. Hence, there is only one ad- 
justable parameter, z~t, which was obtained by fitting 
experimental points using the numerical method described 
in ref. [2]. 

Figure 1 compares the experimental data for micellar 
solutions of SDS with the theoretical fits drawn by 
Eq. (4.1) (solid lines). It is seen that the micelles enhance 
substantially the relaxation of the surface tension in com- 
parison with the case without micelles (dashed line). The 
coincidence between theory and experiment looks fairly 
good for the lowest surfactant concentration 
1.2x 10 -5 mol/cm 3 (empty circles) and satisfactory for 
concentration 1.6 x 10 -5 mol/cm 3 (solid circles). At the 
same time, the theoretical curves deviate from the experi- 
mental data for the other two concentrations (2.4 x 10-s  
and 3.2 x 10 -5 mol/cm 3) represented by empty and solid 
boxes. This discrepancy can be explained primarily by very 
fast relaxation of surface tension at so high surfactant 
concentrations which cannot be followed adequately due 
to experimental uncertainty at high bubbling frequencies. 
This results in only a few experimental points being suit- 
able for theoretical treatment (each point in Fig. 1 corre- 
sponds to a single frequency v). 

Nevertheless, the computed values of zM for different 
surfactant concentration listed in Table 1 seem quite rea- 
sonable. All of them are in the millisecond region in sim- 
ilarity with the diffusion time "co. The same values of zM are 
plotted as squares in Fig. 2 versus the excess surfactant 
concentration 0 defined by Eq. (1.2). With increasing of the 
micellar concentration ~m, i.e., 0, the reverse time constant 
z~ 1 increases since the micellization time z~, computed by 
us, decreases. This means that the micellization kinetics 
becomes faster. Our  results for vM are compared in Fig. 2 

1.0 --- 

0.9 

0.8 

0.7 

0.6 

0.5 

0 2 4 6 8 10 

t% 
Fig. 1 Subsurface concentration q~(t) of micellar SDS solutions with 
different surfactant concentration in mol/cm3:1.2• -5 ((3); 
1.6 • 10- 5 (�9 2.4 x 10- 5 ([]); 3.2 • 10 - s (�9 Data are measured by 
the MBP-method at 25 ~ [1]. The solid lines are drawn by Eq. (4.1), 
while the dashed line corresponds to the case below CMC I-2] 
(% = 8.1 x 10 -3 s) 

Table 1 Parameters of micellar SDS solutions 

X 10 5 0 ZM X 10 3 D a  
(mol/cm 3) (s) 

1.2 0.5 4.5 1.82 
1.6 1.0 3.6 2.26 
2.4 2.0 2.1 3.96 
3.2 3.0 1.1 7.11 

Fig. 2 Concentration dependence of the reverse relaxation time of 
micellization z~l of SDS solutions computed from the data in Fig. 
1 (�9 The experimental data of other authors are obtained by means 
of the p-jump method at 25~ in ref. [-3] (�9 and ref, [4] (�9 
respectively 

1.5 

"~lq I x 10 3 

(~-1) 1.o 

0.5 

- 0  
O cc9o 

o 

I . . . .  q 

0 1 

[] 

[] 

, , , , I , , , , I , , , , 

2 3 

8 



376 Colloid & Polymer Science, Vol. 273, No. 4 (1995) 
�9 Steinkopff Verlag 1995 

with experimental data of other authors for the slow 
relaxation time Zsr [3, 4]. These data are measured by 
p-jump relation method at the same temperature (25 ~ 

One can conclude from the results in Fig. 2 that the 
values of ZM obtained by the MBP-method, a sort of 
surface stress relaxation experiment, are of the same order 
of magnitude as the values of Zsr, obtained by the p-jump 
method which is a bulk relaxation technique. In the former 
method the concentration of species in the solution, except 
with time, varies also with the distance from the air/water 
interface thus creating concentration gradients which can 
affect in turn the micellization kinetics. In the latter 
method the concentration remains one and the same at 
any point of the solution varying only with time. The 
different way the micellization kinetics is influenced by the 
surfactant concentration can explain the difference in the 
values of zg obtained by the MBP-method and the values 
of'rsL measured by other bulk relaxation methods. Besides, 
even values of rM measured by one and the same chemical 
relaxation technique, e.g. p-jump, can differ appreciably. 
The slow relaxation time, ZsL, can exhibit a complicated 
concentration dependence (cf. (1.3)) because the resistance 
of the premicelle region, RM, is also a function of 0. As seen 
from Fig. 2 zM, obtained in MBP-experiment, increases 
with 0 in a similar way as rsL measured by p-jump tech- 
nique. At the same time, the magnitude of z~ differs 
appreciably from the characteristic time of fast relaxation 
rv which lays for SDS in the microsecond region (Ti I ~ 
1 0 L 1 0  6 S -1  [6]). 

The lack of exact coincidence between zM and ZsL can 
be due also to the approximations made in our theory. For 
example, disregarding of convection and expansion of the 
bubble surface can lead to smaller diffusion time ~ than in 
the case of immobile surface. Hence, the values of zM can 
be smaller than the expected ones, i.e., z~ 1 will be larger. 
On the other hand, the diffusivities of micelles and free 
monomers are not equal as accepted in our model. For 
SDS they are D1 = 5.7 • 10 - 6  cm2/s and D in -  
10 -6 cm2/s [13]. Finally, the disregard of the surface ten- 
sion gradient along the bubble surface (effect of Maran- 
goni) can also influence the calculated values of ZM, like 
that of ZM (for comments see ref. [2]). 

Nevertheless, one can conclude that the diffusion in 
SDS solutions is most probably affected by the slow relax- 
ation process of micellization. 

Veranol H10 solutions 

The MBP-data for the dynamic surface tension of Veranol 
H10 solutions [1] are processed in the same way as the 
data for SDS. We obtained first diffusion time constant 
ZD = 14.66 S at concentration cl = 3.16 x 10 -8 mol/cm 3 
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i t . . . . . . . .  i . . . . . . . . .  J 

0 100 200 

0 
Fig, 3 Concentration dependence of the reverse relaxation time of 
micellization z~t I of Veranol H10 solutions computed from the data 
measured by the MBP-method at 25 ~ [1] (z  D = 14.66 s). Dashed 
line is drawn as a guide for the eye 

(close to CMC which is about 5 x 10 -8 mol/cmS). Figure 
3 shows the reverse micellization time z~ 1 vs the excess 
concentration of micelles 0. The values of rM at concentra- 
tions 10-7 and 10-6 mol/cm 3 are calculated by means of 
Eq. (4.1). The other two values, at concentrations 
3.16 x 10 .6  and 10 -5 mol/cm 3, are computed by the ap- 
proximate equation 

~(t) 
- 1 - e - O a  t~ ( 4 . 2 )  

Equation (4.2) is applicable at large Damk6hler numbers 
(Da >> 1) [7] and reflects a change in the way the mono- 
mers have been transported to the bubble surface. At the 
smaller surfactant concentrations the monomers (and the 
micelles) can diffuse to supply the bubble surface with 
material. At the higher concentrations, however, the 
amount of micelles becomes so large that they can ex- 
change monomers directly with the surface adsorption 
layer. As seen from Fig. 3, z~ 1 is an almost linear function 
of 0 following the general trend to increase (zM to decrease) 
with increasing the concentration of micelles. Since rM for 
Veranol H10 varies in a fairly large limits (from 0.005 to 
1 s) it is not clear which of the relaxation processes (fast or 
slow) affects the dynami6 surface tension. Besides, data for 
the micellization kinetics of this surfactant are not avail- 
able from an independent bulk experiment. 

Qualitatively, Veranol H10 exhibits slower mass trans- 
fer than SDS. However, diffusion and micellization of 
Veranol H10 seems faster than in the case of another 
nonionic surfactant Brij 58. Recently, we obtained in inde- 
pendent experiment [14] zM = 18.9 s and zM = 5.9s at two 
different rates of expansion of an oil drop in Brij 58 
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solution of concentration 7.5 x 10-gmol /cm 3 (CMC is 
3.16 x 10 -6 mol/crn3). The diffusion ~ime constant in this 
case is zo = 180 s. 

One can conclude from the theoretical fits of the dy- 
namic surface tension of micellar SDS and Veranol H10 
that the MBP-method may serve as a sensitive tool for 
direct observation of the micellization kinetics in the solu- 
tion. 
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Appendix A 

Solving Eqs. (3.1) we obtain the Laplace image of subsur- 
face concentration 

(lo /" a 2 3a 
p +  / p + ~ - + D a + - ~ -  

aEG 1 

p p +  + ~ - + D a +  

where p is parameter of transformation. To invert the 
image (AA), we replace p by a new parameter, 
q = p + a2/4 + Da, so that 

~1 (0, p) 1 aEa 1 
- -  - -  . A f -  _ _  

~ q--  (q + x/q + K) 

(A.2) 

where K = a(6 - a)/4 - Da. The first term on the right- 
hand side of (A.2) can be expressed as 

q + x / ~ + g - r  7 +, , fq  ~+- ' (A.3) 

where fl = (1 - G)/2, 7 = (1 + G)/2 and G = ~/1 - 4K. 
The second term in (A.2) can be expanded as 

1 1 1 1 1 
( a Z )  =a--ia 2a2a x//~ 

q - --~ ( q + v /  q + K ) -~ + x//-q ~ - 

3a 
1 B 

2 1 -k 
(2a ~ - Oa)( /~  - ~) ~ + , j ~  

3a 
1 7 

2 1 

(2~: -Da)(/~ - e)~ + , f~" 

(A.4) 

Finally, we insert (A.3) and (A.4) into (A.2) and invert it to 
its original (3.2). 

Appendix B 

Here, we aim to derive Eq. (3.4) by using a model profile 
for the subsurface concentration O(t). Starting point is the 
equation for the adsorption F(t) derived in ref. 1-12] if the 
micellization kinetics is described by Eq. (2.15) at ~ = 0 

= + erf + e-r.~ 

Da t t - z  
- X/~z~ [ !  ~(z) erf ( ~ )  dr 

+ / - - j e  ~,, . (B.1) 

To obtain an explicit time dependence of F one should 
know ~(t). Based on Eq. (4.1), we propose that 

~ ( t ) = c l { 1 - e - ~ - , [ b l E ( x ~ l t ) - b 2 E ( x ~ z t ) ] } ,  (B.2) 

where the constants bj = bj(ro, rM) and )~j = Zj(zo, ru)  
( j  = 1, 2) will be determined thereafter. 

Let us combine (B.1) and (B.2) and calculate respective 
integrals: 

eft dr = t -  erf + e-r~ 

e ~- - -  - ~ erf 
o x / t  -- r 

I(0 = o  ( , / - 7 -~  - - E t 

I~(t) = o  ~ - - ~  - E1 - E(,/Z/~t)], 

!e@M erf E (x/~jz) dr 

_ TM erf + e - ~  1(0 
1 - -  rM Zj 

,j~rM/~(t) , j = 1, 2 

(B.3) 

(B.4) 

(B.5) 

j = 1 , 2  

(B.6) 

(B.7) 
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In view of (B.3)-(B.7) the equat ion for the adsorpt ion  
becomes 

ff ~ 1 - ZMZ1 1 - -  ZMZ2 f 

+ x / O a  k-1 - -  T, M Z  1 1 - -  T M Z 2 f  \ ~ /  T M f  

1 -- ZMZa 

b2 ZX//~M Z2 E (x / /~2 t ) l  e -  t,~ (B.8) 
+ i 77;77 

To define the pa ramete r  D a  in (B.8), we introduce a new 
diffusion time 

1 ( ~ 2  (B.9) 
TD "~" D1 \ c i /  

(cf. Eq. (2.12b)) and a new diffusion length 6o = ff/81 in- 
stead of (2.12a). 

It  is seen that  (B.8) obeys the initial condit ion F(0) = 0 
because eft(0) = 0 and E (0) = 1. To  calculate constants  Zj 

we use that  the coefficients at the functions E ( x / ~ j t  ) in 
(B.8) must  be equal  to by, i.e.: 

- x / ~ ,  j =  1, 2 .  (B.10) 
1 - Z M Tj 

Solving Eq. (B.IO), we obtain  the following expression 

(1 + G) 2 (B.11) 
TM~j 4 D a  ' 

G =  x/q- + 4 D a ,  

where sign " + " in (B.11) refers t o j  = 1 and sign " - " is 
f o r j  = 2. 

The other  two constants,  ba and b2, should be chosen 
in a way to satisfy the final equil ibrium condition,  
F (  oo ) = ff at erf( oo ) = 1 and E(  oo ) = 0. Therefore,  the 
coefficient at the error  function in Eq. (B.8) must  be equal 
to zero 

bl b2 
- 0 ,  (B.12a) 

1 - T M ~  1 1 - -  TMZ 2 

whereas the constant  term should be unity 

b2 x/ZM Z2 b, ZX//~MZ~ + x / ~ .  (B.12b) 
1 - ZMZ1 1 - -  TM)~2 

The solutions of  Eqs. (B.12) are 

l -- zM Zj 
bj= ~ / ~  ~ _ x / Z M Z 1 ,  j =  l, 2 (B.13) 

Combin ing  (B.11) and (B.13), we obtain  

I _ + G  
b j -  2G ' j = 1 ' 2 '  (B.14) 

where again " + " is for j = 1 and " - '" for j = 2. 
Finally, by introducing (B.11) and (B.14) into (B.8) the 

adsorpt ion  becomes 

I" ~ e2oar (1 + G)E (1 + G) 

- ( 1 - G ) E [ ( 1 -  G ) - - ~ I }  (B.15) 

which, in view of (2.11), allows to write for the surface 
tension Eq. (3.4). 
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