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Lubrication Theory Analysis of the 
Permeability of Rough-walled Fractures 
R. W. ZIMMERMANt 
S. KUMAR~ 
G. S. BODVARSSONt 

Lubrication theory is used to study the permeability of rough-walled rock 
fractures. In this approximation, which is valid for low Reynolds numbers 
and under certain restrictions on the magnitude of the roughness, the 
Navier-Stokes equations that govern fluid flow are reduced to the more 
tractable Reynolds equation. An idealized model of a fracture, in which the 
roughness follows a sinusoidal variation, is studied in detail. This fracture is 
considered to consist of a random mixture of elements in which the fluid flows 
either parallel or transverse to the sinusoidal bumps. The overall permeability 
is then found by a suitable averaging procedure. The results are similar to those 
found by other researchers from numerical analysis of the Reynolds equation, 
in that the ratio of the hydraulic aperture to the mean aperture correlates well 
with the ratio of the mean aperture to the standard deviation of the aperture. 
Higher-order approximations to the Navier-Stokes equations for flow between 
sinusoidal walls are then studied, and it is concluded that in order for the 
lubrication approximation to be valid, the fracture walls must be smooth over 
lengths on the order of one standard deviation of the aperture, which is much 
less restrictive a condition than had previously been thought to apply. 

INTRODUCTION 

The flow of a fluid between the rough surfaces of a rock 
fracture is very complex, due to the tortuous paths fol- 
lowed by the fluid particles. Exact analytical modelling 
of these flows is made difficult by the irregular geometry 
of rock fracture surfaces, while full 3-D numerical 
simulations of these flows are as yet still impractical. To 
overcome the difficulties of working with the 3-D 
Navier-Stokes equations, the simpler Reynolds lubrica- 
tion equation has sometimes been used to model flow in 
fractures [1,2]. This paper focuses on two aspects of 
lubrication theory. First, lubrication theory is applied to 
two simplified aperture profiles, sinusoidal and "saw- 
tooth", and analytical expressions are found for the 
permeabilities. These results are then compared with 
numerical results [2,3] obtained by solving the lubri- 
cation equation for fractures with "random" surfaces. 
Secondly, the validity of the lubrication equations for 
modelling flow in rough fractures is studied by examining 
higher-order perturbation solutions, as well as numerical 
solutions, to the Navier-Stokes equations for flow in 
fractures with sinusoidally-varying apertures. 
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LUBRICATION THEORY MODEL FOR 
FRACTURE FLOW 

The flow of a Newtonian fluid through a rock fracture 
is governed by the Navier-Stokes equations of fluid 
mechanics [4,5]. These are a set of three coupled, 
nonlinear partial differential equations, and only for 
very simplified cases can they be solved analytically. One 
such case is that of flow under a uniform pressure 
gradient in the channel between two parallel, smooth 
surfaces. For this problem only one component of the 
velocity vector is nonzero, and the equations simplify 
greatly. The result is the well-known parabolic velocity 
profile, with the volumetric flow rate per unit width 
perpendicular to the direction of flow given by 
Q = d3AP/12ltL, (the so-called "'cubic law"), in which 
d is the aperture of the channel, /a is the dynamic 
viscosity of the fluid, and AP/L is the magnitude of the 
pressure gradient [6]. If the aperture is not constant 
along the channel, the equations cannot-be solved 
analytically, and one must resort to approximate 
methods of some sort. 

Under certain geometric and kinematic conditions 
which usually are assumed to hold for rock fractures, 
the Navier-Stokes equations can be reduced (locally) to 
the simpler Reynolds equation. One requirement for the 
Reynolds equation to be valid is that viscous forces 
dominate the inertial forces. A quantitative statement of 
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this criterion is that [4, p. 109] the "'reduced Reynolds 
number", Re*, be very small, i.e. 

pUd~ 
Re* - << 1, (1) 

pA 

where p is the fluid density, U is the average velocity 
along the fracture, d,, is the mean aperture, # is the fluid 
viscosity and A is some characteristic length of the 
fracture in the direction of the flow. There are also geo- 
metric conditions which specify that, in some sense, the 
aperture does not change too abruptly; these geometric 
conditions will be examined more closely below. If these 
dynamical and geometric conditions hold, the flow can 
be described by Reynolds equation: 

i.e. 

V.(d~VP) = 0, 

~--~ ( d~ ( x ' Y ) -~x ) + P \ O ( d 3 ( x ' )' ) cy ) = 0 ,  (2) 

where (x, y )  are orthogonal coordinates in the plane of 
the fracture and d(x,y)  is the local aperture of the 
fracture. Equation (2) is a single, linear partial differen- 
tial equation that describes the pressure field in the 
fracture plane. The volumetric flow of liquid is then 
related to the pressure by: 

Q = - d  ~(x.y) VP. (3) 
12/, 

Milne-Thomson [7] derived the Reynolds equation from 
the Navier-Stokes equations through an order-of-mag- 
nitude analysis to allow the elimination of certain terms. 
Walsh [I] derived (2) by merely assuming that the cubic 
law holds locally at each point in the fracture, and then 
invoking the principle of conservation of mass. Since the 
conditions under which equation (2) is valid usually hold 
for "'lubrication" flows, this is sometimes known as the 
lubrication approximation. 

EFFECT OF APERTURE VARIATIONS 

Brown [2, 8] solved (2) numerically for a fracture 
with a randomly-generated fractal aperture distribution, 
and plotted the fracture permeability as a function of 
the ratio of the mean aperture dm to its standard 
deviation a. The permeability was quantified in terms of 
the hydraulic aperture dh, which is that value of d 
that would allow the flow rate to exactly satisfy the 
cubic law. The permeability was found to decrease 
as the standard deviation of the aperture increased 
(for fixed mean aperture), and was also found to 
be insensitive to the fractal dimension of the fracture 
surface. These results are remarkably similar to 
those of Patir and Cheng [3], who performed a 
similar analysis of lubrication flow between surfaces 
whose profiles obeyed a Gaussian distribution with 
linearly-decreasing autocorrelation functions. Figure ! 
shows the normalized permeabilities, in the form of 
(dh/dm) 3. computed by Brown [8] for a surface fractal 
dimension of D = 2.5, along with the calculations of 
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Fig. I. Plot showing the effect of roughness on permeability. The 
hydraulic aperture is d,, the mean aperture is dr. and the standard 
deviation of the aperture is a. The curve labelled "Patir and Cheng'" 
is from (4), which was fit by them to their numerical results, while the 
data points labelled "Brown" each represent the mean of 10 different 

realizations of surfaces with fractal dimensions of 2.5. 

Patir and Cheng [3]. Each one of Brown's data points 
represents the mean of 10 different realizations. The solid 
curve, which was found by Patir and Cheng to provide 
a reasonable fit to their numerical results, can be 
expressed by: 

(d~ "~3 0 90e -°~6~':" 
dmm,} = 1 -  . . (4) 

The similarity between the results of Brown [8] 
and Patir and Cheng [3] suggests some universal 
(approximate) validity of the correlation (4) between 
the dimensionless parameters dh/d,, and dm/a that 
is otherwise independent of the statistics of the aperture 
distribution. (The results found by Brown [8] for differ- 
ent fractal dimensions very nearly coincided. The 
data shown in Fig. ! were for the case in which 
"conservation of volume" was imposed on the fracture 
during its deformation. The details of this constraint are 
not relevant to the present discussion, since its impo- 
sition had little influence on the calculated permeability.) 
In order to lend further support to this hypothesis, we 
will study the Reynolds equation for a fracture geometry 
that is simple enough to allow analytical treatment, but 
which still captures some of the flavour of "rough- 
walled" fractures. To accomplish this, we first restrict 
equation (2) to one dimension. Although this is an 
approximation, note that the flow will always be locally 
I-D (see Fig. 5 of [8]); furthermore, the 2-D character of 
the flow field will be accounted for by an averaging 
procedure. If the x axis is chosen so as to coincide with 
the macroscopic pressure gradient, then the I-D version 
of (2) is simply: 

d 3(x)  . = 0 .  (5) 
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A single integration of (5) yields: 

dP 
d 3 (x) ~ = C, (6) 

where C is a constant of integration. Comparison of  (3) 
and (6) shows that the constant of  integration is merely 
12/~ I Q I, where Q is the volumetric flow rate. A second 
integration yields: 

f~z dx (7) P : - P ,  = 12/JIQ I j.,, d3(x)" 

This result expresses the pressure drop between two 
points x~ and x., in terms of a certain integral of the 
aperture function d(x). If (7) is expressed in terms of  the 
hydraulic aperture dh, the result is: 

d~ Ap 
Q =  

12# L '  

where 

dh = L,  ~ _ ]  ' (8) 

and L = x 2 - x ~ .  Using brackets to denote the "mean 
value", (8) can be expressed as d h = <d-3> -t/~ (cf. [9]). It 
is worth noting that although (8) was derived as a 
solution of the approximate Reynolds equation, it can 
also be derived (see [10, i l]) as a rigorous "first approxi- 
mation" to the full Navier-Stokes equations. 

SINUSOIDAL APERTURE VARIATION MODEL 

One of the simplest aperture profile functions that 
captures some of the geometrical properties of  a "rough- 
walled" fracture is a constant aperture with a sinusoidal 
perturbation (Fig. 2): 

d(x) = dm[l + 3 sin(2rcx/2)], (9) 

where dm is the mean aperture, 6 is the magnitude of  the 
"roughness" and ,;. is the wavelength of the aperture 
oscillations. For now, we imagine that all cross-sections 
parallel to the plane of Fig. 2 are identical. If the flow 
is in the direction transverse to the aperture oscillations 
(i.e. the x direction), then the hydraulic aperture can 

_ d_= 

Fig. 2. Fracture with a sinusoidal variation in aperture, d= Is the mean 
aperture. 6 is the (relative) amplitude of the aperture variation and 2 

is the wavelength of the aperture variation. 

be found by considering (8) over one period of the 
oscillation: 

I I~ dx (10) 
d~3 = 2 d~(l  + 6 sin 2nx/2) 3" 

A simple change of  variables, ~ = 2rex~A, reduces (10) to: 

1 .f~" d~ (11) dh-3 = ~ d~(l + 6 sin ~ )3, 

which shows that, within the framework of the lubrica- 
tion approximation, the wavelength of the roughness 
does not affect the hydraulic aperture. (The wavelength 
does enter into higher-order approximations to the 
Navier-Stokes equations, as might be expected; see [11] 
and below.) Evaluation of (1 I) gives [12, p. 383]: 

(1 - 6 2 )  5/2 
d.' = d',. l + (6 2/2)' (12) 

The above l-D model assumes, in a sense, that the 
resistances due to each aperture element are in series, 
since the flow through each element is the same. If each 
aperture d is thought of  as having a resistance pro- 
portional to d -3, then (7) corresponds to all of the 
resistances being placed in series. The other "extreme" 
assumption would be that all of the resistances are in 
parallel. This would correspond to flow "into the page" 
of Fig. 2, and would be equivalent (cf. [13]) to hydraulic 
aperture given by d~ = <d3>, i.e. 

'f: d~ = -: d3(x) dx 
t. 

i fo 2" -- 2---n d~(l + 6 sin ~)3 d( 

-- d~[ i  + (362/2)1 . (13) 

Note that while (12) shows that dh <dm for flow trans- 
verse to the roughness, (13) indicates that dh>dm for 
flow parallel to the roughness. 

It is known from network theory [14] that the assump- 
tion that all of the resistors in a random resistor network 
are in series (or parallel) provides lower (or upper) 
bounds respectively to the actual effective conductivity. 
In our problem, we know that at some points the fluid 
will be flowing parallel to the aperture oscillations, while 
in some cases it will be flowing transverse to the oscil- 
lations. One simple way to arrive at an estimate of the 
effective conductivity of a "random mixture" of these 
two cases is to use the geometric mean of the conduc- 
tivities given by (12) and (13): 

d~ = ~/d~ (series) x d~ (parallel) - 

= ~/<d-3) -t <d 3) (14a) 

=d:{[1+(362/2)](1-  62)':2} '/2 
i"+ ~ V2") . (14b) 

A somewhat more sophisticated estimation of the effec- 
tive conductivity can be found by appealing to the upper 
and lower bounds that were derived by Hashin and 
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Shtrikman [! 5] for the effective conductivity of a random 
mixture consisting of two "components" with different 
conductivities. These bounds are known to be closer 
together than the above-mentioned series and parallel 
bounds. For a 50-50 mixture of elements with conduc- 
tivities G~ and Gp, where G~ < Gp, the Hashin-Shtrikman 
bounds on the overall conductance are: 

3G~(Gp - G~) 3Gp(Gp - G~) (15) 
G~ + 5G~ + Gp < G < Gp 5Gp + G~ 

Aside from the factor of 1/12/~, which is common to all 
terms, the hydraulic conductance is equivalent to the 
cube of the hydraulic diameter, i.e. G = d3/12 #. Hence 
the bounds (15) can be applied to d~, with (12) and (13) 
used for G~ and Gp. The geometric mean of these two 
bounds will provide an estimate of the effective conduc- 
tivity that has an narrower possible margin of error than 
the geometric mean of the series and parallel bounds, as 
in (14). 

In order to compare our semi-analytical results with 
those of Brown [8] or Patir and Cheng [3], we also need 
an expression for the standard deviation of the height 
distribution a. Since d - d m = dm3 sin(2nx/2): 

(7 = d;. ,5: sin: ~d~: 

= ~/d~n,52/2  = d m 6 / N / ~ .  (16) 

Hence 6 = x/-2-~/'dm for the sinusoidal profile shown in 
Fig. 2, and using this fact we can plot the geometric 
mean from expression (14), and the mean of the 
Hashin-Shtrikman bounds from (15), alongside the re- 
sults of Brown [8] and Patir and Cheng [3]• This is done 
in Fig. 3, where it is seen that all of the results are 
qualitatively similar, showing appreciable divergence 
only for small values of dm/~ (i.e. very rough surfaces). 
The simple geometric mean of the series and parallel 
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of values computed by Brown [21 for a fractat dimension of 2.5. 

conductivities yields almost the same result as the geo- 
metric mean of the Hashin-Shtrikman upper and lower 
bounds. (This lends further credence to the use of 
the geometric mean to estimate effective permeabilities. 
In the somewhat different context of 2-D porous 
formations with stochastic permeability distributions, 
Dagan [16] showed that the geometric mean often yields 
an accurate estimate of the effective permeability.) Each 
of these means matches the curve of Patir and Cheng [3] 
closely for dm/a > 3, but fall below this curve for smaller 
values of dm/a. The data of Brown [8] fall close to the 
curve, although these data approach the asymptotic 
value of dh/dm = 1 more slowly as dm/a--* c~. 

Figure 4 shows the geometric mean of  the series 
and parallel bounds for the sinusoidal model, compared 
with the upper and lower values of each set of 
10 realizations considered by Brown at each value of 
dm/a. This geometric mean generally lies within the 
range of values found by Brown; it falls near the upper 
range for large values of  din~a, and towards the lower 
range for small values of  d~/a. For small values of d,,/a, 
which is to say relatively rough surfaces, the sinusoidal 
model permeabilities drop off more rapidly than do the 
mean values found by either Brown [8] or Patir and 
Cheng [3]. This is easily understood because, for 
example, as 6 --* 1, the "series" conductivity goes to zero, 
and so both sets of lower bounds upon which the 
"geometric means" are based will vanish. Since 
dmla = w/216, this occurs at dmla = !.41741 In reality, of 
course, the flow would simply flow around any local 
point of contact between the two faces of the fracture, 
and the hydraulic conductivity would not drop to zero. 
This possibility is not entirely accounted for by the 
averaging methods that we have used to find to overall 
effect permeability• 

It is worthwhile to investigate to what extent ad- 
ditional roughness with higher spatial frequencies alters 
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/ 

Fig. 5. Fracture whose aperture variation contains two sinusoidal 
components, as represented by (17), with 2,/2 z = 2, 6t/~f z = 2. 

the analytical results. This can be done by using a profile 
that contains two sinusoidal components (see Fig. 5): 

d(x) = d=[l + 6 t sin(2rcx/At) + 62 sin(27tx/22)]. (17) 

In this case an analytical evaluation of (d  3 ), (d  -3 ) and 
a is not practical, but can be easily carried out numeri- 
cally. In general, the results show that the addition of 
this "smaller scale roughness" has only a minor effect on 
the relation between dh/dm and dm/a. As an example, 
consider the addition of a roughness component with a 
wavelength of one-half of the dominant wavelength, i.e. 
).t/22 = 2. A reasonable value for the amplitude of this 
component can be found by the following consider- 
ations. The power spectral density of a rock surface is 
usually of a form that can be expressed as [17]: 

6(2) = constant x 2 35-°, (18) 

where 2 < D < 3 is the fractal dimension of the surface. 
Most rock surfaces seem to have fractal dimensions that 
lie between 2 and 2.5, since fractal dimensions near 3 
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Fig. 6. Comparison of  the permeabilities o f  fractures with one or two 
sinusoidal components in their aperture variation (see Figs I and 5), 
according to the geometric mean of  the series and parallel values. The 

ratio 21/d = is varied, while maintaining 2t/22 = 2 and 61/6 z = 2. 

correspond to an extreme degree of roughness, for which 
nearby apertures are completely uncorrelated [18]. Using 
a value of D = 2.5, as in those results of Brown [8] 
plotted in Fig. 3, we see that 6 is proportional to 2, and 
so reasonable values for 62 can be found by setting 
6:/6t = 0.5. Note that the purpose of this calculation is 
merely to find values of 62 that can be used as a 
meaningful example, and is not intended to be "exact" 
in any way. Figure 6 shows the geometric mean of the 
series and parallel conductances for this model, com- 
pared with the results for 6, = 0. The addition of a 
higher-frequency roughness component is seen to have 
little effect on the dh/d,~ vs dm/a relation. We have tested 
this result by adding further roughness components of 
smaller wavelength, and this conclusion seems to hold in 
general. 

In order to further estimate the sensitivity of the 
analytical result (14b) to the shape of the aperture 
profile, a similar analysis has been carried out for a 
fracture with a "sawtooth" profile, such as that used by 
Eisworth and Goodman [19]. The extreme case, as far as 
irregularity of the aperture distribution is concerned, is 
when one face of the fracture is displaced from the other 
by one-half of a wavelength (see Fig. 11 of [19]). Within 
a "unit cell" consisting of one-half a wavelength, 
the aperture can be expressed as d(x)=dmm+ 
(dm,,-dm~,)x/L. The various statistical parameters 
can readily be found to be dm = (dm~ + dmi,)/2, a = 
(dmx-dmi.)/2v/3, (d3)=d;m + 3dmcr "- and ( d - 3 ) - ~ =  
(d z -  3az)2/dm. The geometric mean of the series and 
parallel conductances, which in general is given by (14a), 
takes the form: 

d~[sawtooth] =d~  {[1-9(a/dm)'][l - 3(o-/dm)"]}'/". (19) 

This is a different relation between dh/d~ and a/d m 
than was predicted for the sinusoidai profile. How- 
ever, when plotted as in Fig. 3, (19) lies very close 
to (14b); in fact, the two expressions agree exactly 
to "first order": (dh/d=)3= I-1.5(a/dm): .  Within the 
context of our analytical model, therefore, the depen- 
dence of the nonaalized permeability on the single 
parameter a/dm appears to be somewhat insensitive to 
shape. 

The results discussed above, and shown in Figs 3 and 
6, lead us to conclude that within the context of the 
lubrication approximation there is a strong correlation 
between the parameters d,/dm and dm/a, with the ad- 
ditional statistical details of the surface roughness profile 
providing only a small perturbation on this relation. The 
fact that our quasi-analytical results are similar to the 
numerical results found by Patir and Cheng [3] and 
Brown [8] lends support to this conjecture. However, all 
of these analyses are predicated on the use of the 
lubrication approximation to reduce the full 
Navier-Stokes equations to the Reynolds equation. We 
now carry out some analysis aimed at estimating the 
errors incurred by using the lubrication approximation, 
and at delineating those ranges of the fracture roughness 
parameters that will allow this approximation to be 
used. 
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HIGHER-ORDER CORRECTIONS TO THE 
LUBRICATION APPROXIMATION  t =a i+i5 l 120  

One of the assumptions needed to justify the reduction 
of the Navier-Stokes equations to the Reynolds 
equation is that the velocity gradients in the plane 
of the fracture are much smaller than the velocity 
gradient in the direction perpendicular to the 
fracture plane. Brown [2] correctly states that this is 
in some sense equivalent to the condition (in the 
present notation) that cr/). << I: this can be understood 
by noting that rapid changes in the aperture will 
necessitate rapid variations in the in-plane velocity, 
in order to maintain conservation of mass. Interestingly 
enough, this condition imposes no restrictions on 
the ratio ~r/do,: relatively large values of o- are permiss- 
able, as long as the variation in aperture occurs 
slowly in the .,c or y directions. Brown [2] examined 
the velocity gradients that he computed numerically, 
and found that the condition on their magnitudes 
was not always satistied. In fact. he concluded that 
the fracture walls would have to be smooth on length 
scales on the order of 500-50001tin, which is certainly 
not usually the case for real fractures. (Note that Fig. 3 
implies that a fracture can be considered "'hydraulically" 
smooth if thc amplitude of any roughness is less than 
about 0.1 din.) Furthermore, Brown's analysis does not 
quantify the errors that arc incurred by use of the 
lubrication approximation for fractures with "rapidly- 
varying" apertures. 

Strict "'error estimates" for the lubrication theory 
approximation to the Navier-Stokes equations are 
difficult to derive. A more tractable approach is to focus 
on a specific geometry such as that shown in Fig. 2, and 
examine the solutions to higher-order approximations to 
the Navier-Stokes equations. In this way we can find the 
range of values for the parameter a/). for which the 
lubrication approximation is "'valid". This will provide 
us with a rough rule-of-thumb that should apply to more 
general fracture aperture profiles. 

Hasegawa and Izuchi [11] performed a perturbation 
analysis of the problem of flow between a smooth 
wall and a wall with sinusoidal roughness. Although 
this geometry is slightly different from that shown 
in Fig. 2, it can still serve to demonstrate the influence 
of the effects of roughness, wavelength, etc. on per- 
meability. Their results can be put into a form in 
which the small perturbation parameters are a/). and 
Re, the Reynolds number. We will set R e = 0  in 
their expansions, and concentrate on the effect of 
a/).. Note that these authors fixed the pressure gradient 
along the channel, and found perturbation expansions 
for the volumetric flow rate; their results are there- 
fore more readily usable, for our purposes, than the 
related results of Van Dyke [20], who considered a fixed 
flow rate, and found expressions for the stream function. 

When translated into the present notation, the second- 
order expansion found by Hasegawa and Izuchi [11] can 
be expressed as [see their equations (25) and (27), and 
Fig. 1]: 

Comparison of (20) and (12) shov,s that the second 
term in brackets in (20) is the correction due to nonzero 
values of o',,;.. At first sight it might appear that, 
due to the 1."2-" dependence, the correction term could 
easily be very large if ). were small enough. However, 
the amplitude of the roughness usually drops off 
rapidly with increasing spatial frequency• For example, 
(18) implies that as ). decreases, 6 =constant  × ,;2, 
where s lies between 0.5 and 1.5. However, as indicated 
above, realistic values of s lie between 1 and 1.5 
(corresponding to surface fractal dimensions between 
2 and 2.5). Hence we see that if ). is small, 6 
will necessarily be small also and the correction term 
will remain bounded. For example, consider the 
"'worst case", s = I, for which 6 = C).. The correction 
term in (20) then scales as ).~/2'- = 2-', and will therefore 
be very small for small spatial wavelengths. This is 
analogous to the fact, well-known to fluid-flow engin- 
eers, that for laminar flow in a pipe, small-scale rough- 
ness has no effect on the hydraulic resistance. This 
insensitivity of laminar pipe flow to small-scale rough- 
ness is illustrated in the "Moody-Nikuradse"  charts [4, 
p. 580], in which the "t¥iction factor" is plotted against 
the Reynolds number. The curves corresponding to 
different values of the "'relative roughness" do not 
diverge until the turbulent (high Reynolds number) 
regime. 

The most stringent condition that we can derive 
by requiring the correction term to be small is 
actually found by considering the largest wavelength 
roughness. We first use (16) to replace d,,, wtth v'2cr/0, 
and note that, over the range of definition of 6, 
which is 0 < 6 < 1, the maximum value of the term 
that multiplies (a/).) 2 is 2.39. Therefore, if we want 
to restrict the relative magnitude of the correction 
term to 10% of the value predicted by lubrication 
theory, we must have 2.39 (a/2)2 < 0.10, which implies 
), > 5a. This condition is much less restrictive than 
the condition that was postulated by Brown [2]. which 
was ). > 500-. If we agree that a sinusoidal surface 
can be considered "'smooth" over lengths not greater 
than about )./10, say, this new criterion can (very 
roughly) be viewed as requiring the surfaces to be 
smooth over lengths on the order of a. Further evidence 
supporting this conclusion can be found in the work of 
Pozrikidis [21], who used a boundary-integral method 
to study the same problem that Hasegawa and lzuchi 
[11] analyzed by perturbation methods. Although 
Pozrikidis did not solve for the flow rate, he did show 
that as long as ). > 5a, the streamlines will adjust to 
the curvature of the wall, and no eddies will be generated 
within the sinusoidal bumps. Since the existence of 
such eddies (see Fig. 11 of [22]) would cause a break- 
down of the quasi-l-D lubrication assumption, the 
results of Pozrikidis corroborate our conclusion that the 
lubrication assumption will not become invalid as long 
as ). > 5a. 
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SUMMARY AND CONCLUSIONS 

The lubrication approximation has been used to study 
the permeability of rough-walled rock fractures. A major 
purpose of this study was to develop an understanding 
of how the hydraulic aperture depends on the statistics 
of the aperture distribution. When the various aperture 
elements are in series, the effective hydraulic aperture 
is given by dh= (d -3 ) - t i3<d  . . . . .  while if they are 
arranged in parallel, dh=(d3)t/3>dm~,,. Since the 
assumption of series (or parallel) resistances vastly 
underestimates (or overestimates) the actual effective 
conductance [14], a further averaging of these two values 
is needed. This can be achieved using either the geo- 
metric mean of the series and parallel conductances, 
or the geometric mean of the (narrower) Hashin- 
Shtrikman bounds; both methods provide similar 
estimates of the effective hydraulic aperture. 

For fractures whose apertures vary sinusoidally (or in 
a sawtooth manner), analytical expressions were found 
for (d  3) and ( d - 3 ) ,  in terms of d,,,.. = ( d )  and the 
standard deviation of the aperture a which is equal to 
~ / ( d ' ) - ( d ) " .  The motivation for analyzing these 
models was that they permit analytical treatment, while 
still capturing some of the qualities of "roughness". For 
these models, the predicted hydraulic aperture is always 
less than the mean aperture, by an amount that increases 
with increasing roughness. In fact, the resulting relations 
between d,/dm and a/dm are very similar to that found 
numerically by Brown [8] and Patir and Cheng [3], 
who studied fractures with highly irregular roughness 
profiles. Our analytical expression for dh for the sinu- 
soidal model fell within the spread of values found by 
Brown in his various stochastic realizations. 

An attempt was also made to estimate the conditions 
under which the lubrication approximation would be 
valid in treating flow through fractures. Although this 
approximation has been frequently used, quantitative 
estimates of its accuracy have not been available. By 
examining the higher-order solutions to the Navier- 
Stokes equations for flow through a sinusoidally-varying 
channel, developed by Hasegawa and Izuchi [11], we 
have been able to make some comments regarding this 
question. Deviations from the permeability predicted 
under the lubrication approximation seem to become 
appreciable only when the spatial wavelength of the 
dominant roughness component becomes on the order 
of (or smaller than) the amplitude of that roughness. 
This implies that the condition hypothesized by Brown 
[2], which was that the fracture should be smooth over 
distances of at least 50a, was in fact much too conserva- 
tive. If our conclusion is correct, then the use of the 
lubrication approximation would be justified for many 

real fractures, and the more difficult Navier-Stokes 
analysis could be avoided. 
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