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Abstract 

Lacunarity analysis is a multi-scaled method of determining the texture associated with patterns of spatial 
dispersion (i.e., habitat types or species locations) for one-, two-, and three-dimensional data. Lacunarity 
provides a parsimonious analysis of the overall fraction of a map or transect covered by the attribute of in- 
terest, the degree of contagion, the presence of self-similarity, the presence and scale of randomness, and 
the existence of hierarchical structure. For self-similar patterns, it can be used to determine the fractal dimen- 
sion. The method is easily implemented on the computer and provides readily interpretable graphic results. 
Differences in pattern can be detected even among very sparsely occupied maps. 

Introduction 

The effects of spatial pattern on ecological process- 
es is a key problem area in landscape ecology (For- 
man and Godron 1986, Turner and Gardner, 1991). 
Pattern determines how consumers move on the 
landscape (Wiens and Milne 1989) and utilize 
resources (O'Neill et al. 1988b). Dispersal processes 
interact with pattern to separate competitors in 
space (Comins and Noble 1985, Geritz et al. 1987) 
and permit coexistence. Coexistence through spa- 
tial heterogeneity has been shown for both animals 
(Kareiva 1986) and plants (Pacala 1987) and has 
been modeled by Palmer (1992). 

The importance of spatial effects on ecological 
processes has motivated the development of a num- 
ber of indices for quantifying i landscape pattern. 
Useful indices have been developed from statistical 
measures of dispersion (Elliot 1977), information 
theory (O'Neill et al. 1988a), fractal geometry 
(Krummel et aL 1987, Milne 1992), and percolation 

theory (Gardner et al. 1987, Gardner and O'Neill 
1991). A problem with all these indices is that 
different spatial patterns can be realized for any 
single value of the respective index. For example, 
Mandelbrot (1983) recognized that objects with 
identical fractal dimensions can have greatly differ- 
ent appearances. 

The fact that deterministic ffactals with identical 
dimensions can have greatly different appearances 
can be illustrated by Fig. 1 which shows a 
1-dimensional fractal sequence of points and gaps 
(Cantor dusts; see Feder 1988) with a fractal dimen- 
sion of 0.5. The difference between the two se- 
quences is in the distribution of the size of the gaps. 
In Fig. la the ratio between successively smaller 
gaps is 4:1, while the object in Fig. lb has a ratio 
of 9:1. The distribution of gap sizes has been 
termed lacunarity by Mandelbrot (1983), with geo- 
metric objects being more lacunar if gap sizes are 
distributed over a greater range; e.g. the sequence 
in Fig. lb is more lacunar than the one in Fig. la. 
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Fig. 1. Cantor dusts. The fractal dimension D of the dusts equals 
In N~ In (1/r), where Nis the number of smaller pieces generated 
and r is the size reduction at each iteration (Mandelbrot 1983; 
Feder 1988). Each dust is shown after 3 iterations. A: N = 2 and 
r = 1/4. B: N = 3 and r = 1/9. Both dusts have a D of 0.5. The 
differences in appearance or texture are measured by their 
lacunarity. 

Lacunar i ty  can thus be thought  o f  as a measure o f  

the 'gappiness '  or  'hole-iness '  o f  a geometric struc- 

ture (Kaye 1989). 

A more  precise definit ion o f  lacunari ty was given 

by Gefen et al. (1983); lacunari ty measures the devi- 

at ion o f  a geometric object ,  such as a fractal,  f rom 

translat ional  invariance. That  is, at a given scale, 

how similar are parts  f rom different regions o f  a ge- 

ometr ic  object  to each other? Low lacunari ty geo- 

metric objects are homogeneous  and translat ionally 

invariant  because all gap sizes are the same. In  con- 

trast,  objects with a wide range o f  gap sizes are het- 

erogeneous and not  translationally invariant;  they 

have high lacunarity.  Note  that  t ranslat ional  invari- 

ance is highly scale dependent;  objects which are 

heterogeneous at small scales can be quite homo-  

geneous when examined at larger scales or  vice ver- 

sa. Lacunar i ty  can thus be considered a scale depen- 

dent measure o f  heterogeneity or  texture. 

Note  that  t ranslat ional  invariance is not  the same 

as self-similar. The Can to r  dusts in Fig. 1 were 

generated by a process that  guarantees that  they are 

self-similar; i.e., the units at successively finer 
scales appear  identical to the units at the broader  

scales. However ,  because the entire sequence has a 
wide range o f  gap sizes, it is not  translationally in- 

variant.  

Method of calculating lacunarity 

Methods  for  calculating lacunari ty were given in 
general terms by  Mandelbro t  (1983) and more  spe- 

Table 1. Lacunari ty calculation for 12 x 12 random may  (Fig. 

2a). The size of  the gliding box is r • r, with r = 2. S is the num-  

ber of  occupied sites or mass  of  the gliding box; n(S,r) is the fre- 

quency of boxes of size r with mass  S; Q(S,r) are the correspond- 

ing probabilities; Z0) = ~ SQ(S,r) and Z(2) = E S2Q(S,r) are the 

first and second moments ,  respectively. The lacunarity, A(r) = 
Z(2)/(Z(1)) 2. 

s n(S,r) Q ( S , r )  SQ(S , r )  S2Q(S,r) 

r = 2 0 3 0.024 0 0 
1 35 0.289 0.289 0.289 
2 46 0.380 0.760 1.520 
3 29 0.239 0.719 2.157 
4 4 0.066 0.264 1.057 

Z(1)  = 2.033 Z(2) = 5.024 
A(2) = 1.215 

cifically by Gefen et al. (1984) and Lin and Yang 

(1986). More  recently, Allain and Cloitre (1991) 

described a s t ra ightforward algori thm for  the cal- 

culat ion o f  the lacunari ty o f  bo th  deterministic and 

r a n d o m  fractals; it is Allain and Cloitre 's  a lgori thm 

that  we have utilized and will now describe. 

The gliding box  algorithm 

We will use some simple examples to demonst ra te  

the use o f  Allain and Cloitre 's  (1991) 'gliding box '  

algori thm. Fig. 2a represents a 12 • 12 r a n d o m  

map;  each square has a probabil i ty o f  0.5 o f  belong- 

ing to a part icular  habi tat  type (indicated by l ' s) .  

A n  r • r box (r = 2) is placed over the upper  left 

corner  o f  the map.  Of  the four  sites covered,  2 are 

occupied by the habitat  o f  interest. The number  o f  

occupied sites is referred to as the box mass.  The 

box is now moved  one column to the right and the 

box mass is again counted.  This process is repeated 
over all rows and columns producing a f requency 

distribution o f  the box masses (Table 1). The num-  

ber o f  boxes o f  size r containing S occupied sites is 
designated by n(S,r) and the total  number  o f  boxes 

o f  size r by  N(r). I f  the map  is o f  size M,  then 

N(r) = ( M -  r + 1) 2. 

This f requency distr ibution is converted into a 
probabi l i ty  distr ibution Q(S,r) by dividing by the 
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Fig. 2. Three 12 x 12 maps,  with l ' s  representing occupied 
habitat .  The percentage of  occupied P,  equals 0.5 for all 3 maps.  

A: Random map.  A(4) = 1.04. B: Map with a single large gap. 

A(4) = 1.810. B: Perfectly regular (checkerboard) map.  A(4) = 

1.00. 
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total number of  boxes: 

Q(S,r) = n(S ,r ) /N(r)  

(Table 1). The first and second moments of  this dis- 
tribution are now determined: 

Z 0) = ~ S Q(S,r) 
Z (2) = E A e Q(S,r) 

The lacunarity for this box size is now defined as: 

A(r) = Z(2) / (Z(1) )  2. 

For the example given, A(2) = 1.215 (Table 1). 
The statistical behavior of A(r) can best be under- 

stood by recognizing that: 

z z) = s (r) + 

where S(r) is the mean and s2s(r) the variance of  the 
number of sites per box. As a result, 

A(O = + 1. 

From this relationship, we can determine that 

lacunarity is a function of: 
1. the size of  the gliding box. As box size increases, 
the average box mass also increases and the proba- 
bility that box masses will greatly differ from the 
average decreases; i.e., the relative variance 
decreases. The same map will thus have lower 
lacunarities as the size of the box increases. For the 
example above, A(4) = 1.037; 
2. The fraction, P, of the map occupied by the 
habitat of interest. As the mean number of oc- 
cupied sites goes to zero, s2s(r)/S(r) 2 goes to co. 
Sparse maps will thus have higher lacunarities than 
dense maps, for the same gliding box sizes; 
3. the geometry of  the map. Fig. 2b shows a map 
with the same P as Fig. 2a, but with a single large 
gap in the middle. For this map, A(2) = 2.053 and 
A(4) = 1.810. This increase in lacunarity is due to 
the increase in both fully occupied (S = 4) and total- 
ly empty (S = 0) boxes produced by the clumping of 
the occupied sites. For a given P, therefore, higher 
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Table 2. Properties o f  r andom and hierarchically structured 

maps. Maps are 216 • 216, with three (L = 3) 6 • 6 levels. P is 
the total proportion of the map covered by the habitat of in- 
terest; Pi is the fraction of units at the ith level that contain the 
suitable habitat type; total edges are total number of non-habitat 
sites adjacent to habitat sites. 

Map Pl  P2 p 3 P Total 
Type Edges 

Top91 0.917 1 1 0.917 1080 

Middle91 1 0.917 1 0.917 3072 

Bottom91 1 1 0.917 0.917 15324 

Same91 0.972 0.972 0.972 0.919 6556 

Random91 0.917 14866 

Top50 0.500 1 1 0.500 1656 

Middle50 1 0.500 1 0.500 7956 

Bottom50 1 1 0.500 0.500 48172 

Same50 0.805 0 .806  0 .806  0 .528  22540 
Random50 0.500 46812 
Top02 0.028 1 1 0.028 144 
Middle02 1 0.028 1 0.028 864 
Bottom02 1 1 0.028 0.028 5166 
Same02 0.306 0 .306  0 .306  0.028 3998 
Random02 0.028 5118 
Dn02 1 0.167 0 .167  0.028 4538 
Up02 0.167 0.167 1 0.028 744 

lacunarity represents higher contagion (fewer, but 

larger gaps). 
In contrast, Fig. 2c is a totally regular (i. e., trans- 

lationally invariant) map,  again with P = 0.5. The 
number  of  occupied squares within a gliding box 

would be constant at any location of  the map (the 
variance is zero). The lacunarity of  a totally regular 
array is thus 1 for any gliding box size larger than 

the unit size of  the repeating pattern.  
Based on these considerations, the use of  a single- 

valued lacunarity estimate based on a single gliding 

box size for a given map is of  limited value at best, 
and is probably meaningless as a basis for compari-  
son of  different maps.  The useful feature of  
lacunarity measurements is the great deal of  infor- 
mation which can be gained by calculating lacunari- 
ty over a wide range of gliding box sizes. 

Note that the gliding boxes overlap; i.e., they are 
not independent. This is a key difference f rom the 
typical ecological practice of  non-overlapping spa- 
tial samples. 

Fig. 3. ' R a n d o m '  map.  216 x 216 random map  with P = 0.5. 

Lacunarity analysis of simulated maps 

Generation of  random and hierarchical random 
maps 

To examine the properties of  the lacunarity statis- 

tic, we have calculated the lacunarity of  a range of 
simulated landscape maps,  which differ in the frac- 
tion, P,  and the distribution of occupied habitat 

(Table 2, Figs 3 -  7) Two-dimensional random maps 
(hereafter referred to as 'Random ' )  were formed by 
creating arrays with M columns and M rows and 
randomly setting the M 2 elements to 1 with a prob- 
ability P. Array elements set to 1 represent suitable 

habitat,  while elements left at 0 represent unsuita- 
ble sites. ' R a n d o m '  maps were generated with M 
fixed at 216 (46,656 total sites) and P values of  
0.028, 0.500, and 0.917 (Table 2; Fig. 3). 

Hierarchically structured random maps were 
generated by a recursive algorithm derived f rom the 

methods of  fractal geometry known as curdling and 
random trema generation (Mandelbrot,  1983; 
Gardner et al., in press; O'Neill  et aL, in press). 
These processes t ransform an initially uniform dis- 
tribution into many  small clumps of  high density 
(Feder 1988), separated by gaps whose size and po- 
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Fig. 4. 'Same' map. This map and those in figures 5-7 are 216 
• 2!6 hierarchical maps (Table 2). For this map P equals 0.522 
andpl = P2 = P3 = 0.806. 

sition are, to some extent, r andom.  Our  implemen- 

ta t ion o f  this a lgor i thm specifies the number  o f  lev- 

els L o f  successively finer scales within the map;  the 

number  o f  units m i within the ith level; and the 

fract ion Pi o f  units at the ith level that  contain  the 
suitable habi tat  type. 

A three level hierarchical map  (L = 3) is illustrat- 

ed in Fig. 4. A matrix o f  6 • 6 (m i = 6) elements 

was created with 29 o f  the elements r andomly  set to 

1 601 = 0.806). Each  element that  is set to 1 is then 

subdivided into a 6 • 6 matr ix (m 2 = 6) and 29 of  

these elements are now randomly  set to 1, with the 

remainder  being set to 0 (P2 = 0.806). The process is 

repeated at third time, with m 3 = 6 and P3 = 

0.806. The result is a r a n d o m  hierarchical map with 
a total  number  o f  sites M z, equal to 46,656 

(m I • m 2 • m3)2 and a total  f ract ion o f  suitable 

sites P equal to 0.522 (Pl •  • Note  that  this 
map is self-similar across the three hierarchical lev- 
els because the same number  o f  units are set to  1 at 
each level. 

A series o f  maps  were generated with L = 3, all 

m i = 6, and P ' s  o f  0.028, 0.500, and 0.917 (Table 

2). In  maps  labeled 'Same '  (Fig. 4), the values o f p i  

Fig. 5. 'Bottom' map, Pl = P2 = 1 and P 3  = P = 0.5. 

were equal at all three levels. Again,  these maps  are 

essentially self-similar, with gaps being generated 

over a range o f  sizes. In  the remaining maps ,  gaps 

were generated at only one level; i.e., the maps  are 

r a n d o m  at one spatial scale. In  ' B o t t o m '  maps,  P l  

= P2 = 1 andP3  = P (Fig. 5), so gaps and contigu- 
ous blocks o f  habitat  are small. Conversely,  ' T o p '  

maps  (Fig. 6), P l  = P and P2 = P3 = 1, have very 
large gaps and large blocks o f  solid habitat .  'Mid- 

dle' maps  (Fig. 7) have gaps and habitat  blocks at 

an intermediate scale (Pl -- P3 = 1 and Pz = P). 

Lacunarity analysis 

For  each map,  the lacunari ty was calculated for  box 

sizes ranging f rom r = 1 to 128, by multiples o f  2. 

A log-log plot was then made  of  lacunari ty versus 
box size (Figs. 8 to 10). 

The highest value o f  lacunari ty is f ound  for  r = 

1; i.e., a gliding box equal in size to the grain o f  the 
map.  A t r  = 1, A(1) = 1/P(sinceQ(1,1) = P,  
Z(2)/(z(1))2 __ p/p2). This value is solely a funct ion 

o f  the percentage o f  occupied sites and is indepen- 
dent o f  the overall size o f  the map  and o f  the details 

o f  the distribution. As a result, all curves for  a given 
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Fig. 6. ' Top '  map ,  p1 = P = 0.5 a n d P 2  = P3 = 1. 
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Fig. 8. Log- log  p lo t  o f  l acuna r i ty  versus  g l id ing  box  size f o r  

maps  wi th  P = 0.5 (Figs. 3 - 7 ;  Tab le  2). 
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Fig. 9. Same as Fig.  8, for  maps  wi th  P = 0.917 (Table  2). 

Fig. 7. 'M idd le '  map .  P l  = P3 = 1 and  P2 = P = 0.5. 

P have the same y-intercept. As P increases, this 
value increases (Figs. 8 -10 ) .  At large r values, the 
curves are similarly constrained. If the box is the 
size of  the entire M • M map, then the variance o f  
box masses is 0 and A(M) must equal 1. 

Away  from the endpoints,  the shapes of  the 

4.0 

3.0 

== 2.0 

1.0 

i I n [ n I i , I 
0 "Bot.02." 

P = 0.02 0 "Mid.02." 
r ~-~,~" ~ - - o- -[3. _ [] "Top.02." 

,. ~ ~ . _  -u. ~ . _  ~" :~"/~L02 
~ .  ' ~ .  % L-k. �9 "Up2.02." - -  

'~& \ � 9  El,, �9 "Dn2.02," 

i ' ' .  ~O% .0. "I]~ - , ~ \  ",. ,, - , 
K : ~  %. " ' . .  b "'o, �9 

\ \  \ " . ,  \ o., ,, 
' %  \ .  "'.,. %, "'�9 �9 - 

v~. \ "'A \ ^  "'o , 

- " ~ ,  "='\m "'~L,,.A. " " o .  " ,  - 
~ , . , ,  ,,. " o , ' ~ .  ""o 

~ ~'--. ^ "U. ~. C~ %.-. " "A. ? * .  ' , 

t J t t . ~ -" ''~ 
0 1.0 2.0 3.0 4.0 

In (box size) 

Fig. 10. Same as Fig. 8, for  m a p s  wi th  P = 0.028 (Table  2.). ' U p '  

and  ' D n '  m a p s  respect ively  have  top  and  midd le  or  midd le  and  

b o t t o m  levels ident ical .  



curves differ for the same P. For a particular box 
size, the lacunarity is now a measure of  contagion. 

Higher lacunarity values represent greater relative 
clumping of  a habitat type or, alternatively, a wider 
range of  gap sizes in the distribution of  the habitat. 

If  a map has a random structure at some scale, 
lacunarity depends upon the size of  the gliding box 
relative to the characteristic scale of  randomness. If 
the random pattern is smaller than r, then the vari- 
ance of  the mass distribution within the gliding box- 
es will approach zero and lacunarity will approach 
1. If  the gliding boxes are smaller than the scale of  
the randomness, then the map will appear heter- 
ogeneous at that scale and the lacunarity estimate 
will be higher. 

The differences in the curves for the 'Bottom' ,  
'Middle' ,  and 'Top '  maps for all three values of  P 
demonstrate the scale dependent effects of  random- 
ness on lacunarity estimates. In 'Top '  maps (Fig. 
6), only solid 36 x 36 blocks are turned on or off,  
so the map is random only at scales greater than 
this. Lacunarity values are high for these maps until 
r approaches the block size; they then begin to 
decline and above the block size the lacunarity 
rapidly approaches zero. Similarly, 'Middle' maps 
have block sizes of 6 x 6 and 'Bottom'  maps of  1 
x 1. In both cases, as the size of  the gliding box ex- 
ceeds the block size, the lacunarity rapidly 
decreases towards zero. 

The curve for the 'Random'  maps closely follows 
that for the 'Bot tom'  maps. This is due to the simi- 
lar spatial scales of  the randomness for the two map 
types. Note, however, that the curve for 'Bottom'  
always plots slightly below that for 'Random' .  This 
is certainly due to the greater regularity of  the 'Bot- 
tom'  map produced by the curdling algorithm; each 
6 x 6 unit at the lowest level is constrained to have 
exactly the same number of  occupied elements. In 
contrast, the number of  occupied elements in simi- 
lar sized block on a 'Random'  map can vary. 

The three 'Same' maps (labeled as "Al l "  in Figs. 
8-10)  have equal curdling probabilities at all three 
levels. The lacunarity curves for these maps are very 
nearly linear and, therefore, the closest to being 
truly self-similar. As described by Allain and Cloitre 
(1991), the lacunarity curve for self-similar fractals 
should be a straight line with a slope equal to D - E ,  
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Fig. 11. Two simulated 258 point transects, with 33 occurences 
of habitat or organism of interest. A: Randomly distributed 
points. B. A random fractal series of points. This series is a L6vy 
dust, which is a randomized version of the Cantor dusts in Fig. 
1 and has a fractal dimension of 0.8 (Mandelbrot 19983, Voss 
1988). Notice the clumping of points. 

where D and E are the fractal and Euclidean dimen- 
sions, respectively. 

To confirm that a linear lacunarity plot indicates 
self-similarity, two hierarchically structured maps, 
'Up02' and 'Dn02',  were produced with identical 

upper (Pl =P2) or lower (P2 =P3) two levels, respec- 
tively (Table 2). The lacunarity curve for 'Up02' 
(Fig. 11) is straight over the range of  box sizes cor- 

responding to the two identical levels and then 
curves over the range of  smaller box sizes. Similar- 
ly, the curve for 'Dn02' curves over the largest size 
range and is then straight over the middle and small 
range. 

Finally, of especial interest is that the differences 
among the spatial patterns on the maps can be de- 
tected even when the map is sparsely occupied. The 
properties and relationships among the curves are 
essentially the same whether the map is 91~ oc- 
cupied (Fig. 9) or 207o occupied (Fig. 10) 

Use with transect data 

The 2-dimensional techniques for estimating 
lacunarity can be easily adapted for the analysis of 
transect data. To do so, the gliding box is simply 
replaced with a set of  one-dimensional boxes or 
bins. 

Figure 11 illustrates two 258 point transects, in 
which dots represent habitat sites of  interest. In Fig. 
11A, the probability of  any site being occupied is 
0.128. Notice that although there is some clumping, 
as would be expected from a random process, the 
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Fig. 12. Lacunarity anaylsis of the two transects in Fig. 11. 

points are more or less evenly distributed over the 
line. In Fig. l lB, the same number of sites are oc- 
cupied (33), but the points are very distinctly 
clumped. This sequence is a randomized version of 
the Cantor dusts shown in Fig. 1, with D = 0.8 and 
is statistically self-similar (Mandelbrot 1983, Voss 
1988). 

The lacunarity plots for these two sets are shown 
in Fig. 12. Two important features to note are: 1) 
as expected, the lacunarity of the clumped sequence 
is much higher than that of the random sequence; 
2) the lacunarity curve of the self-similar sequence 
is straighter than that of the random dust, which is 
continuously curved. The results for the one- 
dimensional distributions are thus identical to those 
for the two-dimensional cases. 

In sum, examination of the graphs produced by 
an analysis of lacunarity reveals the overall fraction 
of the map occupied by the habitat type of interest, 
the level of contagion between occupied sites at a 
particular scale, the scale at which the map approxi- 
mates a random pattern, and the range of scales 
over which a map exhibits self-similarity. The 
method can thus detect the presence of a hierarchi- 
cal structure. The technique is apparently robust 
against differences in P. 

Discussion 

Numerous methods exist to measure the degree of 
spatial clumping or aggregation of biological popu- 

lations (Pielou, 1969; Elliot 1977). Many of these 
are based on quadrat sampling and are designed to 
determine whether, or to what extent, the variance- 
to-mean ratio of samples/quadrat differs from ran- 
dom (Poisson) expectation. Lacunarity is clearly 
related to these measures. 

As pointed out by Pielou (1969), populations will 
usually differ in both mean density and degree of 
aggregation; various measures of aggregation are 
more-or-less sensitive to differences in mean densi- 
ty. This is certainly the case for any individual 
lacunarity value. However, as can be seen by com- 
paring Figs. 8-10, the shapes of the lacunarity 
curves depend on the pattern of aggregation and are 
independent of the density. Changes in P are 
reflected in the positions of the curves, not their 
shapes. 

The use of lacunarity plots, rather than a single 
value, also confirms the suggestion of Pielou 
(1969:104) that 'much can indeed be learned by ex- 
amining the way some measure of aggregation 
varies with quadrat size.' The usefulness of graph- 
ing changes in an index over different scales was 
recognized long-ago by Morisita (1959) and Grieg- 
Smith (1964). We suggest that any single-valued in- 
dex will be inadequate for characterizing heter- 
ogeneous landscapes. Instead, it is the change of the 
value of lacunarity over different gliding box sizes 
that yields the most information. 

Various alternative measures of aggregation are 
based on determing the distribution of distances 
among individuals (distance or neighborhood anal- 
ysis methods; Pielou 1969). For example, a tech- 
nique referred to as second-order neighborhood 
analysis was used by Getis and Franklin (1987) to 
quantify clustering. This extension of neighbor- 
hood analysis examines the proportion of points on 
a map within a given distance of a chosen point and 
determines whether the pattern of dispersion differs 
from random (Poisson) expectation. A major 
drawback of all neighborhood analysis methods is 
that they are sensitive to the edge of the map. The 
boundary correction given by Getis and Franklin 
(1987) assumes that the pattern seen within the map 
boundary continues outside the edge. This assump- 
tion is often questionable, especially when large 
areas or gradients are included in the study area. 



Multi-scaled lacunarity measurements are not af- 
fected by the boundary of the map, although the 
size of the map will impose an upper limit on the 
scale of the pattern which can be analyzed. 

O'Neill et al. (1988a) developed an index for con- 
tagion, D 2, derived from information theory. This 
index is based on the probability that grid points be- 
longing to two different landscape types are adja- 
cent to each other. O'Neill et al. (1988) indicated 
that D 2 captures fine grained texture, but not 
broad scale patterns. Lacunarity analysis, in con- 
trast, captures pattern over the entire range of 
scales from the individual grid point to that of the 
entire map. 

Several other indices of landscape pattern have 
been described by Gardner et al. (1987; in press). Of 
these, the one most similar in purpose to lacunarity 
is total amount of edge, E, which is the total num- 
ber of non-habitat sites adjacent to habitat sites. As 
shown in Table 2, the number of edges peaks at 0.5 
occupancy; it is therefore not  rank correlated with 
lacunarity. 

Discussion 

When Mandelbrot (1983:310) introduced the con- 
cept of lacunarity he stated that 'texture is an elu- 
sive notion which mathematicians and scientists 
tend to avoid because they cannot grasp it.' The use 
of lacunarity to characterize landscape texture al- 
lows us to begin to quantify the effect of texture 
(and change in texture) on broad-scale ecological 
processes. 

Lacunarity has several practical advantages over 
other indices of landscape pattern: (1) the al- 
gorithm is simple to implement and is not computa- 
tionally expensive compared to calculations that re- 
quire habitat clusters to be identified (Gardner et 
al., in press); (2) the gliding box algorithm exhaus- 
tively samples the map to quantify changes in con- 
tagion and self-similarity with scale; 3) unlike many 
nearest-neighbor indices, the results are not sensi- 
tive to the boundary of the map; and 4) the tech- 
nique can be reliably used for the analysis of very 
sparsely occupied maps. 

The methods described here allow us to quantify 
landscape texture; it is interesting, therefore, to 
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speculate on the effect that texture might have on 
patterns of species abundance. A variety of theoret- 
ical studies (Kareiva, 1990) have shown that varia- 
tion in species composition and abundance at land- 
scape scales depends on the degree of habitat heter- 
ogeneity and species specific patterns of dispersal 
and resource use. However, the relationships be- 
tween landscape texture and abundance may be ob- 
scured when landscapes are infrequently disturbed 
because biotic effects (e.g., competition, predation, 
and mutualistic interactions) may be the local deter- 
minates of abundance of species. When distur- 
bances alter landscape texture (i.e., the creation of 
large gaps by storms, fire, etc.) then patterns of spe- 
cies abundance should be altered in a manner that 
reflects the textural changes. In other words, distur- 
bances that destroy identical proportions of habitat 
should have different impacts on species composi- 
tion and abundance if the landscape's original tex- 
ture has been significantly altered. 

The relationship between landscape texture and 
species abundance should also be clear for species 
reinvading after a disturbance, since they will often 
be free of confounding effects of biotic interactions 
(i.e., competition and predation). Patterns of 
resource use by these species should be closely relat- 
ed to the texture of the landscape. 

Habitats that occur as linear structures on the 
landscape (i.e., riparian zones or shoreline areas) 
are particularly vulnerable to disturbances that in- 
crease lacunarity by the removal of segments of 
habitat. The process or recolonization of these sys- 
tems should be related to the change in landscape 
texture and the dispersal characteristics of species 
reinvading these habitats. 

Habitat fragmentation is probably the most 
prevalent and important impact that humans have 
on landscapes (Forman and Godron 1986). Hu- 
mans can change the distribution of land use types 
very quickly and at a variety of spatial scales 
(Krummel et al. 1987). The sensitivity of lacunarity 
analysis will make these effects easily detectable. 
Because the effect of pattern on landscape process- 
es is scale specific (Gosz 1992), the quantification of 
these changes by a lacunarity analysis will allow ap- 
propriate scales for empirical studies to be quan- 
titatively defined. 
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