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Power Transformations When Fitting Theoretical 

Models to Data 
RAYMOND J. CARROLL and DAVID RUPPERT* 

We investigate power transformations in nonlinear 
regression problems when there is a physical model for 
the response but little understanding of the underlying 
error structure. In such circumstances, and unlike the 
ordinary power transformation model, both the response 
and the model must be transformed simultaneously and 
in the same way. We show by an asymptotic theory and 
a small Monte Carlo study that for estimating the model 
parameters there is little cost for not knowing the correct 
transform a priori; this is in dramatic contrast to the re- 
sults for the usual case where only the response is trans- 
formed. Possible applications of the theory are illustrated 
by examples. 

KEY WORDS: Transformations; Box-Cox models; The- 
oretical models; Robustness; Nonlinear regression. 

1. INTRODUCTION 

Often in scientific work, an experimenter observes data 
y, and xi' = (x1i .. x,j) and postulates that these data 
follow a model 

Yi = f(Xi, Qo), i = 1, . . ., N, (1.1) 

where Oo is a k-parameter vector. The function f may be 
derived, for example, from differential equations believed 
to govern the physical system that gave rise to the data. 
The deterministic model (1.1) is often inadequate since 
the data exhibit random variation, but whereas f was de- 
rived from theoretical considerations, there is really no 
firm understanding of the mechanism producing the ran- 
domness. In this case, the experimenter usually assumes 
that 

Yi = f(xi, 0o) + ei, (1.2) 

where the {ei} are iid N(O, co 2). In those cases in which 
the data suggest that model (1.2) is also unsatisfactory, 
one might then, for example, assume that the errors are 
multiplicative and lognormal, so that 

1og(yi) = 1og(f(xi, Oo)) + Ei. (1.3) 

* Raymond J. Carroll is Professor of Statistics and David Ruppert is 
Associate Professor of Statistics at the University of North Carolina, 
Chapel Hill, NC 27514. Research for this article was supported by the 
Air Force Office of Scientific Research Grant F49620-82-C-0009 and by 
National Science Foundation Grant MCS 8100748. Rod Reish kindly 
provided the authors with the menhaden data. He and Rick Deriso 
greatly aided our understanding of those data. The authors also thank 
a referee and an editor for their comments on an earlier version of this 
paper. 

The point here is that model (1.1) is equivalent to the 
model 

h(yi) = h(f(xi, Oo)) 

whenever h(-) is a monotonic transformation. Therefore 
(1.2) and (1.3) are based on the same theoretical model, 
but they allow variability to enter into the model in dif- 
ferent fashions. 

A more flexible approach is to take a sufficiently rich 
family of strictly monotonic transformations h(y, X), in- 
dexed by the m-vector parameter X, and to assume that 
for some value X0, 

h(yi, Ao) = h(f(xi, 0o), Ao) + Ei. (1.4a) 

Equation (1.1) could be understood to mean Ey = f or y 
= f when there is no error. We have in mind the latter 
meaning; the former is not possible under (1.4a). The 
model (1.4a) is in the spirit of Box and Cox (1964), who 
suggested the family of power transformations with m = 
1 and 

h(y, A) = y(A) = (yX - 1)/K if K z 0 

= log(y) if K = 0. (1.4b) 

However, as we will make clear, our proposed model 
(1.4) has greatly different ramifications than those usually 
associated with the power family. Box and Cox (1964) 
used their family in a study of the transformation model 

h(y, Ko) = xtO0 + E. (1.5) 

Notice that here, unlike in (1.4), the regression function 
in (1.5) is not transformed. Box and Cox sought a trans- 
formation that achieves (a) a simple additive or linear 
model, (b) homoscedastic errors, and (c) normally dis- 
tributed errors. Our model is different. Theoretical con- 
siderations already provide a regression function. We 
hope to transform the response and the regression func- 
tion simultaneously to obtain homoscedasticity and nor- 
mality. 

There are two reasons for using model (1.4) instead of 
simply fitting (1.1) by least squares or some other method. 
First, estimation of Oo based on model (1.4) should be 
more efficient than other methods. Second, it may be 
necessary to estimate the entire conditional distribution 
of y given x; if the data clearly suggest that the distri- 
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butions of {yi - f(xi, 01)} are not constant across i, one 
must go beyond standard regression methodology. 

An example that motivated the research of this article 
is the relationship between egg production in a fish stock 
and subsequent recruitment into the stock. At least for 
some species, as egg production increases, the changes 
in the skewness and variance of recruitment are as large 
as the change in the median recruitment, and these 
changes in distributional shape may have important im- 
plications for management of the fishery. This example 
is discussed in more detail in Section 4.1. 

Another possible reason for transformation is that 
often, for an appropriate h, h(f(xi, 0)) is a linear function 
of 0. Linearization was an accepted technique before the 
advent of nonlinear regression programs. Now, however, 
the statistician must decide whether to use linearization 
or nonlinear regression. As discussed later, our theory 
provides a method for deciding whether linearization is 
appropriate. 

A natural question is, Which aspects of the data enable 
us to estimate Xo? If we transform yi by h(-, X) and X =, 
Xo, then information that X # Xo is provided by both (a) 
nonnormality and (b) nonconstancy in i of the distribution 
of h(yi, X) - h(f(xi, Oo), A). If the values of f(xi, Oo) are 
relatively constant, then (a) provides most of the infor- 
mation. On the other hand, if o.2 = var(Ei) iS small, then 
most of the information is provided by heteroscedasticity. 
To see this last fact, suppose, for example, that (1.4b) 
holds and that we do not transform the data (i.e., we use 
A = 1), but that the true value Ao is not 1. For each A, 
let g(-, A) be the inverse of the function h(., K), and define 
gy(y, A) = (alay) g(y, K). Then by (1.4) and a Taylor 
approximation, which is suitable if Ei is small, we have 

yi = g[h(f(xi, Oo), Ao) + Ei, Ao] 

~ f(xi, Oo) + kiEi, 

where ki = gy[h(f(xi, Oo), Ao), Ko]; therefore yi is ap- 
proximately normally distributed with mean f(xi, 00) and 
variance ki2ca2. 

When analyzing data, after we have determined esti- 
mates for 0, A, and u, we can estimate the density of yi 
(or of [yi - f(xi, 0)], the residual from the median). By 
plotting this estimated density we can check for skewness 
and other signs of nonnormality on the original scale. By 
overlaying plots for several values of xi we can also check 
for heterogeneity of the distribution of the untransformed 
data. Instead of graphing densities, we might graph quan- 
tiles against quantiles of the normal distribution; non- 
normality would then be especially easy to detect. We 
use such a quantile-quantile plot in Example 4.1. 

When we make inferences about 0, the issue arises 
A 

whether A should be treated as fixed or whether we should 
acknowledge that it is random. For example, there are at 
least two approaches to estimating the variance-covari- 
ance matrix of 0. The first is invert the estimated Fisher 
information matrix for (K, r, 0). The second is to trans- 
form the model and the response by h(~, A) and then use 

standard nonlinear regression methodology. The second 
method is not strictly correct since it treats K as known 
rather than estimated. However, it is convenient and ex- 
pedient since existing nonlinear least squares software 
can be applied. In this article we report large-sample anal- 
ysis and Monte Carlo results showing that the two meth- 
ods tend to give similar results. The second method usu- 
ally underestimates the variability of 0, but it does give 
a rough approximation to this variability. In the different 
model (1.5) of Box and Cox (1964), the two methods can 
give drastically different results, and this fact has led to 
considerable controversy; see Bickel and Doksum (1981), 
Carroll and Ruppert (1981), Hinkley and Runger (1984), 
and Box and Cox (1982). 

Another major difference between our model and that 
of Box and Cox (1964) is that in our model the parameter 
0 has physical meaning even when ko is unknown; flxi, 
0) is the median of yi regardless of the value of Ao. 

2. THEORETICAL ANALYSIS 

To analyze the effect of treating X as fixed (and equal 
to XO), we begin by computing the information matrices 
for (Ko, Oo, uo) and (Oo, uo), the latter case assuming that 
Ko is known. The details quickly become intractable, so 
we resort to the approximation (uo 0. The following 
theorems are proved in Appendix A. 

Theorem 1. Under general conditions, if N -X oo and 
then co-* 0, the limit distribution of 0 is the same whether 
Ko is known or unknown. The limit distribution of &' de- 
pends on whether Ao is known or unknown. 

Theorem 1 says that the effect of having to transform 
the problem to get homoscedastic, normal errors is small 
when ao( is small. However, we are not concerned only, 
or even primarily, with small ao. In fact, the need for 
transformation will probably be greater when ro is large. 
When ro is small, 0 from the untransformed data, 
O= ,, will have a small bias because yi will be approxi- 
mately normally distributed. Moreover, although 0,. 
may be inefficient in terms of variance, there may be less 
need for an efficient estimate if cuo is small. The small go 
asymptotics do, however, lead to major simplifications, 
and the Monte Carlo results presented later agree with 
them. 

Because we are interested in all values of o0, we looked 
at a second approach. This approach is outlined in Ap- 
pendix A. Basically, we construct a third estimator of 00 
and compute its efficiency with respect to 0(Xo), the es- 
timator of 0o when Ko is known. This gives us a bound 
on the efficiency of the MLE. 

Theorem 2. For any Ko, uo, 0o, f, or design {xi}, as N 
- 0, the asymptotic relative efficiency of the MLE 

0(X) compared to that estimate 0(Xo) with Ko known is at 
least 2/1T, that is, 

ARE(0(X), 0(X0)) ?2Iir 

This bound is very general, and if the Monte Carlo sim- 
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ulation in Section 3 is any guide, the bound is conser- 
vative. It follows that the practice of transforming and 
then using a standard errors for 0 (X) the estimates output 
from a nonlinear least squares package will be only mod- 
erately in error. 

3. MONTE CARLO 
To study 0 when N is finite and uo0 is not necessarily 

small, we undertook a small simulation of the model 

h(y1, Xo) = h(1 I+ 02 Xi, X\0) + U1oEI, (3.1) 
where h(*) is the Box and Cox (1964) power family (1.4b). 
In our simulations, N =50, the design points {x1} were 
equally spaced on [ - 1, 1], the errors were normally dis- 
tributed with mean zero and variance one, and 0 1 = 7, 
02 = 2. We considered three estimators: (a) ML esti- 
mator, X0 known (KNOWN), (b) ML estimator, X0 un- 
known (MLE), and (c) The ordinary least squares esti- 
mator (LSE) without'any transformation. 

Since it is a rather frequent practice to use least squares 
estimation without transformation, we included the LSE 
in the study. The method of computation is outlined in 
Appendix B. We chose three values of u0o: uo = .05, . 10, 
and .50. We present results in Tables I and 2 for Xo = 0 
(lognormal data) and X0 = .25. There were 600 replica- 
tions of the experiment for each (K0, uo) and each esti- 
mator, all generated from a common set of random num- 
bers. The normal random deviates were generated from 
the IMSL routine GGNPM. Estimation of (0 1, 02) for 
each X was done by the IMSL routine ZXSSQ while 
ZXGSN was used to estimate K0. 

The results for the ML estimator with Ko unknown (de- 
noted by MLE) are very encouraging. The mean squared 

Table 1. Results of the Monte Carlo Study 
Described in the Text. (These results are for the 

/NTERCEPT. The median response is linear 
with intercept = 7 and slope =2.) 

.00 .25 

=F .05 .10 .50 .05 .10 .50 

Bias of KNOWN .03 .06 .56 .01 .03 .23 
MSE of KNOWN 2.41 9.67 24.87 .90 3.59 9.04 
Bias of MLE .02 .04 .60 .01 .02 .19 

MSE of MLE 
MSE of KNOWN 1.02 1.05 1.14 1.01 1.03 1.12 
MSE of MLE - MSE 

of KNOWN .05 .47 3.44 .01 .09 1.09 
STD. ERROR of above 

difference .02 .15 .77 .01 .04 .25 
Bias of LSE .11 .40 9.48 .04 .13 2.60 
MSE of MLE 
MSE of LSE .97 .90 .22 1.00 .98 .63 
MSE of MLE - MSE 

of LSE -.06 -1.15 -96.62 .00 -.06 - 6.07 
STD. ERROR of above 

difference .04 .33 4.71 .01 .06 .78 

Table 2. Results of the Monte Carlo Study 
Described in the Text. (These results are for the 

SLOPE. The median response is linear with 
intercept = 7 and slope = 2.) 

.00 .25 

r = .05 .10 .50 .05 .10 .50 

Bias of KNOWN .01 .01 .03 .00 .01 .02 
MSE of KNOWN 7.08 28.36 72.23 2.71 10.83 27.24 
Bias of MLE -.01 -.04 -.15 .00 -.02 -.16 

MSE of MLEs 

MSE of KNOWN 1.06 1.06 1.01 1.06 1.06 1.03 
MSE of MLE - MSE 

of KNOWN .41 1.57 .95 .15 .60 .72 
STD. ERROR of 

difference .10 .40 .67 .04 .77 .27 
Bias of LSE .05 .15 2.97 .02 .04 .50 
MSE of MLE 

MSE of LSE .98 .59 1.01 1.01 .91 
MSE of MLE - MSE 

of LSE -.16 -1.29 - 50.54 .05 .13 -2.81 
STD. ERROR of above 

difference .18 .80 5.10 .06 .23 .74 

NOTE: Known = ML estimate with X known, MLE = ML estimate with A unknown, and 
LSE = ordinary least squares estimate. In these calculations, the mean squared error 
(MSE) and STD. ERROR of difference terms are multiplied by T**2. Here T = 10 if (r 
.10andT= 1if = .50. 

errors for MLE are reasonably close to those for 
KNOWN, the ML estimator with Ao known, especially 
for the slope 02. These results agree with our small u 
theory and indicate the moderate cost of not knowing Xo. 
The relative efficiencies of MLE to KNOWN are always 
well above the lower bound of 2/IT. To appreciate how 
well MLE does compared with KNOWN (line 2 of Tables 
1 and 2), see Table 5 of Bickel and Doksum (1981); in 
their model, which we call (1.5), they have ratios MLE(Ao 
estimated)/KNOWN(Xo known) always at least 1.5 and 
as large as 21 1, while ours never exceed 1.2. 

The other valuable point learned from Table 2 is that 
when we estimate the slope 02, the ML estimator with 
X0 unknown tends to dominate the LSE, especially for 
larger values of cro. In other words, for our model (1.4), 
there is real value to transformation when it is appropri- 
ate. 

Finally, it should be noted that there is indeed a (mod- 
erate) cost for estimating Oo when Xo must also be esti- 
mated. The consequence of this moderate cost is that 
inference drawn in the "usual" way-treating A as if it 
were preassigned-will be only moderately in error. (See 
Carroll and Ruppert 1981 and Carroll 1982a for details 
concerning the error in the usual inference for model 
(1.5), which tends to be moderate, on average, but which 
can be large for prediction at individual design points.) 

4. EXAMPLES 

4.1 Spawner-Recruit Data 

This research was motivated by our study of the pop- 
ulation dynamics of the Atlantic menhaden, which is, ex- 
cluding shellfish, the third largest commerical U.S. fish- 
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ery. The Atlantic menhaden fishery experienced a 
massive decline in the mid-1960's, and although there has 
been a slight recovery, present yields are only about half 
of those in the early 1960's. Our simulation study was an 
attempt to find strategies to reverse this decline in har- 
vest; see Ruppert et al. (1983) for further details. 

An important part of our study was the examination of 
the spawner-recruit (SR) relationship, in which we at- 
tempted to use the number of eggs E produced by mature 
menhaden (spawners) to predict the number R of juvenile 
menhaden recruited into the fishery (recruits). Estimates 
of E and R for the 21-year period 1955-1975 are given in 
Table 3. 

An inspection of Table 3 or a plot of R against E shows 
that there is substantial variability. Note, for example, 
that 1958 has only the eighth-largest egg production, while 
it produced twice as many recruits as any other year. The 
year 1975 has the third-largest number of recruits but only 
the fourteenth largest egg production. 

Two of the more usual ways to model the SR relation- 
ship are through the following approximations: 

(Beverton-Holt 1957) Ri (ot + r3Ei)-I 

(Unnormalized Gamma) Ri OEib exp(yEi). 

The Unnormalized Gamma (Gamma) is an extension of 
the Ricker (1954) equation, which allows only 8 = 1. Both 
the Beverton-Holt and the Ricker equations were derived 
from deterministic models. There appears to be no dis- 
cussion in the fisheries literature on how these models 
should be interpreted for fish populations exhibiting 
highly variable SR relationships. The parameters are 
often estimated by using linearizing transformations. As 
stated in the Introduction, these two models can be 
thought of as part of a relationship driving the system, 
but they entail considerable variation. We wanted not 

Table 3. Spawner-Recruit Estimates 

Year Egg Production Ea Recruits Rb 

1955 2.42289 .85558 
1956 1.77413 1.00935 
1957 1.13816 .49287 
1958 1.11338 2.10332 
1959 1.32726 .31186 
1960 1.88340 .41814 
1961 2.62193 .30636 
1962 1.63753 .30912 
1963 .63302 .25417 
1964 .33314 .29163 
1965 .20943 .21642 
1966 .16043 .30285 
1967 .18389 .17046 
1968 .23256 .24301 
1969 .15267 .40457 
1970 .22244 .20309 
1971 .31532 .47767 
1972 .33109 .37155 
1973 .33011 .40746 
1974 .27415 .52426 
1975 .30154 .92933 

a In units of iO'4 eggs. 
b In units of 1010 fish. 

only to decide upon one of the two models, but also, for 
our simulations, to do an adequate job of describing the 
nature of the variation in recruitment given egg produc- 
tion. The difference between the two models can have 
important effects on methods for managing the menhaden 
fishery. When, as is usual, -y < 0, the Gamma curve ex- 
hibits overcompensation; that is, eventually large egg 
production decreases recruitment, perhaps because of 
competition for food or perhaps because of a population 
explosion of a predator species. The Beverton-Holt 
model is much different, since it specifies that, except 
for random variation, large egg production will lead to an 
asymptote a-- 1 in recruitment. Since many strategies pro- 
posed for increasing the harvest depend on increasing egg 
production, perhaps beyond historically observed levels, 
the choice of the Gamma over the Beverton-Holt model 
could lead to a different management strategy. There has 
been no previous evidence for Atlantic menhaden sup- 
porting the Gamma curve, so a priori we would favor the 
Beverton-Holt curve, but it is obviously important for us 
to determine if the Beverton-Holt curve describes the 
present data as well as or better than the Gamma model. 

Linearization leads to the models 
(Beverton-Holt, Linear) Ri-' = a. + 3Ei-1 + lEi 

(Gamma, Linear) log Ri = blog Ei + 0* + -yEi 

+ U2Ei. (4.1) 
From the point of view of meeting the assumption that 
El,* * * S E, are iid N(0, 1), the linearized Beverton-Holt 
is superior; the predictions of Ri are similar for the two 
models, but the residuals from the linearized Gamma are 
less normal-looking and somewhat more heteroscedastic. 
Thus, if we are constrained to admitting only the linear- 
ization models (4.1), the choice for simulation studies 
would be the Beverton-Holt. 

There is, however, no reason why the variation about 
the Gamma model should be best explained by forcing 
linearization through logarithms. As argued in the Intro- 
duction, a more flexible model for determining the struc- 
ture of the model variability is through our nonlinear Box- 
Cox models 

(Beverton-Holt) Ri(xB) = {(t + r3Eiv)}(T) + CBEi 

(Gamma) Ri(AG) = {0 Eiexp(yEi)}( G) + OGEi. 

The MLE for KB is KB = -.72, with a 90% confidence 
interval of (-1.0, -0.17), and KB restricted to [-1, 1]. 
The likelihood ratio test for Ho: AB = - 1.0 has value AB 
= .63, indicating that the linearized Beverton-Holt model 
is at least reasonable. (Compare with X (1) quantiles.) 

For the Gamma model, we obtained XG = -.71, with 
a 90% confidence interval of( - 1.0, - .16). The likelihood 
ratio test for HO:AG = 0 has value AG = 4.61. This in- 
dicates that linearizing the Gamma model is probably not 
appropriate. In fact, having transformed by the power 
KG = - .71, the residuals are essentially as normal look- 
ing and homoscedastic as those from the linearized 
Beverton-Holt. 
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The estimated Gamma curve reaches a maximum well 
above historically observed levels of egg production. In 
fact, the fitted Gamma and Beverton-Holt curves are 
quite similar over the observed range. However, our sim- 
ulation experiments included allowing increased egg pro- 
duction where overcompensation would have an effect if 
the Gamma curve were used in the simulation model. We 
decided to base our simulations on the Beverton-Holt SR 
relationship, because there is no real evidence for over- 
compensation. 

As this example makes clear, nonlinear models that can 
be linearized should not necessarily be linearized, since 
transformation analysis of response and predictor func- 
tion can lead to a data scale with better distributional 
properties. In some cases, however, such as the Bever- 
ton-Holt model given here, the transformation analysis 
will provide added support for linearization. 

Our theory predicts that the need to estimate K is not 
costly in regard to estimation of ot and 3, and examination 
of the relevant Fisher information matrices suggests that 
this is, in fact, the case. If we fix k = A, and (pretending 
that K = A was known a priori) invert the information 
matrix for ox, P, and u, then the estimated (asymptotic) 
variances are .2029, 2.0361, and .0258, respectively. If 
we invert the information matrix for ox, PI, a, and A, then 
the estimated (asymptotic) variances for ox, 3, and C are 
.2213, 2.0394, and .1674, respectively. As our theory pre- 
dicted, only the variance of &n increased substantially. 

From our data analysis, we concluded that a realistic 
simulation model would need to be stochastic, and it was 
in the development of a stochastic model that power 
transformations proved to be most useful. In our simu- 
lation model we used 

R [(&^ + fIE)-' + uE]l/X, (4.2) 

where cx, 3, and u& are estimates on the X scale, and E is 
a standard normal pseudorandom number. With small 
probability the quantity in square brackets in (4.2) will 
be close to 0 or even negative, but in the model this quan- 
tity was truncated, so recruitment never exceeded twice 
the greatest recruitment observed in our data. In (4.2) 
one could use the MLE, K = -.72, but for simplicity, 
and because a likelihood ratio test indicated that Ho: A 

- 1.0 was very credible, we used A = -1.0. 
Model (4.2) with either A = -1.0 or K = -.72 is a 

particularly simple model that possesses these essential 
characteristics found in the data: 

(i) Recruitment is highly variable and the variability 
increases with E. 

(ii) Recruitment is positively skewed, and the skew- 
ness also increases with E. Therefore, except when 
E is small, the fishery has occasional dominant year 
classes. 

The heteroscedasticity and variable skewness can be 
seen by examining the estimated distributions of recruit- 
ment with eggs set equal to the observed values during 
1961 and 1969, the years with highest and lowest values 

of egg production, respectively, among all years for which 
we have data. In Figure 1, the quantiles of these estimated 
distributions are plotted against normal quantiles. The 
plots were obtained by plotting (4.2) with e = 4) - 1(i/70) 
on the horizontal axis and cP - '(i/70) on the vertical axis 
for i = 2, . . . , 68, and interpolating these points with a 
spline. (4) is the standard normal distribution function.) 
For the graphs, we used K = -.72 in (4.2), butX = -1.0 
(the value used in simulations) would give similar plots. 

With our model we were able to make a detailed sim- 
ulation study of management policies for Atlantic men- 
haden. We found that management of a fishery with oc- 
casional, randomly occurring, dominant-year classes is a 
problem considerably different from managing a fishery 
with low variability. 

In some situations, K may be a nuisance parameter that 
is estimated only so that other parameters can be more 
efficiently estimated. However, as in this example, we 
may sometimes want to know the conditional distribution 
of the dependent variable, given the independent varia- 
bles. K then becomes a parameter equally as important 
as other parameters. 

It is no coincidence that KB = KG. Since, for the range 
of E in the data, the Beverton-Holt and unnormalized 
Gamma curves with estimates substituted for the param- 
eters are similar, their residuals from the estimated me- 
dians are also similar. K is determined by the nonnor- 

2. 05 

L50 

1 .25 I.S 

1. 00- 

L -5.55 
E 

R -.25 1 

L -O.5S 

-1.2S I 

-2. 55 
I,,.... .....,I ,, ..... 

. . |.r. 
, ...... 

oilW ...vT. 1 r9 

0 5 t1 IS 25 25 25 

RECRU3T OMMUANLES 

LEDEND: METHOD HlOH EGGS - LOW EGGS 

Figure 1. Estimated quantiles of recruitment plotted against stan- 
dard normal quantiles. Recruitment is conditional on egg produc- 
tion being equal to the 1961 value (HIGH EGGS) or the 1969 value 
(LOW EGGS). Recruitment is in units of 109 fish. 
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mality and heterogeneity of distribution that can be 
detected in these residuals. 

As a final note, the analysis presented here was not 
merely an academic exercise; it formed a part of our study 
of the SR relationship, which itself was only a small (al- 
beit important) component of a large study performed 
under time constraints. We welcome further analyses of 
the data, but we hope it is clear that we do not consider 
the reported analysis complete. In fact, we analyzed 
many other models under varying assumptions. For ex- 
ample, the inclusion of a quadratic time trend in the lin- 
earized Beverton-Holt model substantially improved the 
fit to the data. However, the time trend may be due to 
substantial overfishing in the 1960's, and the use of the 
trend for predicting future recruitments does not seem 
warranted. Another candidate for an explanatory variable 
in a more complex model is recruitment lagged one year. 

4.2 Chemical Reaction Data 

As a second sample, consider the data of Carr (1960) 
on the isomerization of pentane. For that data set, one 
proposed model is 

0002(x2 - x311.632) 
= 1 + OIxI + 02x2 + 03x3 (4.3) 

Box and Hill (1974) also list the data and discuss the 
model. They linearize (4.3) by taking inverses and then 
using a form of weighted least squares; without going into 
the full details, it suffices to state that their analysis sug- 
gests that y(X) has constant variance, where k = .8 (see 
also Pritchard, Downie, and Bacon 1977). We shall call 
the Box and Hill method power transformation (linear- 
ized) weight least squares (PTWLS). 

Since the linearized model based on analyzing y - lin 
(4.3) exhibits marked heteroscedasticity, it is interesting 
to see how our estimation method (based on (1.4a)- 
(1.4b)) performs; this method will be called PTBS for 
power transforming both sides. Based on Box and Hill's 
analysis, we should expect our PTBS to find k - .8. As 
seen in Table 4, we estimated A = .71, which is definitely 
encouraging. 

We applied PTBS to model (4.3), untransformed. See 

Table 4 for the results, which for 0 are somewhat different 
from those obtained by Pritchard, Downie, and Bacon 
(1977), who used their algorithm DIRECT on the untrans- 
formed data. Possibly this difference is due to the pres- 
ence of several local minima. When we applied un- 
weighted nonlinear least squares to model (4.3), using 
Box and Hill's (1974) PTWLS solution as a starting value, 
other algorithms found a different solution with a smaller 
sum of squares than that reported by Pritchard, Downie, 
and Bacon (see Table 4). 

Our aim in studying this example was to show that our 
PTBS gives reasonable results. We think our answers are 
perfectly sensible, and they correspond to PTWLS. For 
both, one obtains physically meaningful (positive) esti- 
mates of 01, 02, and 03, but unweighted linear least 
squares on the inverse scale gives negative estimates. We 
believe that PTWLS and PTBS can be recommended 
equally for this data set, although perhaps unweighted 
nonlinear least squares is just as effective and somewhat 
simpler. 

A minor advantage of using the untransformed data is 
that on the inverse scale, Observation 6 of Box and Hill 
is highly influential even with power weighting (Carroll 
1982b), while on the original scale no observation appears 
to have unusually high influence on the estimate of X. 
Influence and diagnostics for inference in our model are 
questions that should be addressed in the future. 

We used our transformation method successfully on 
other data sets, including the second data set mentioned 
by Pritchard, Downie, and Bacon. 

APPENDIX A: PROOFS 

Outline of Proof for Theorem 1 

The likelihood analysis proceeds as follows. Define 

zi = dh(fi(0o), Xo)/1do, 

f i(0) = f(xi, 0), f i = f 0o) 

hy(y) = hy(y, X) = dh(y, X)Idy, and h(y) = h(y, X). 

Let hx(y) and hxx(y) be the gradient vector and Hessian 
of h(y, X) with respect to X. By simple algebra we find 

Table 4. Analysis of Carr's Data Using Unweighted, Least Squares, Power Transformation 
Weighted Least Squares (PTWLS), and Power Transforming Both Sides (PTBS) 

Estimation Method Unweighted PTWLS PTBS Unweighted Unweighted 

Source Pritchard et al. Box and Hill IMSL ZXSSQa Pritchard et al. BMDP3Rb 
and ZXGSN 

Response Variable y y y y y 
X 1 -.8 .71 1 1 
Sum of Squaresc - - 3.24397 3.23448 
60 16.3 40.00 39.2 35.9 35.9 
o1 -.043 .75 .043 1.04 .071 
02 - .014 .35 .021 .55 .038 
03 -.098 1.85 .104 2.46 .167 

a See Section 5. 
b Same solution obtained with BMDPAR, SAS-NLIN with derivatives, and IMSL ZXSSQ. 
c Used to compare the fits with A = 1 and response 5 = y. 
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the joint information matrix of (00, uo, Xo) as (all sum- 
mations are from 1 to N) 

S/cro2 ? C I /(To 2 

N- 'I = 1I(2uo4) C2/04 

C31902 

where 

S= N`EziZi= 

Cl = -N-'EEzJ[hx(yi) - hjfiflt, 

C2 = - N `EE Ei[hA(yi) - hA(fiflt, 

C3 = N-'E{LhJ(yi) - hJ(fi)][hJ(yi) -h\(fi)]' 

+ EJLhxJ(yi) -hA (fi)] 

+ (a/aX)(a/aX)tlog[hY(yM)]} 

In general, C, and C2 are not zero, and the asymptotic 
distribution of (0, c2) when Xo is estimated differs from 
when Xo is known. The key question, of course, is 
whether C, and C2 are sufficiently different from zero to 
seriously affect the distribution of X. 

The expressions C I, C2, and C3 are complex even when 
fi(Oo) has a nice form such as simple linear regression. 
To simplify matters sufficiently so that we can gain some 
insight about the difference between knowing and esti- 
mating Xo, we follow Bickel and Doksum (1981) and oth- 
ers and let uo - 0. 

Taylor expansions show that under mild regularity con- 
ditions Cl = O(ro2), C2 = 0(Uo2), and C3 = 0(crO2) as (To 

0. Standard calculations show that when Xo is known, 

N"2 covariance [(H - HO)Io-, (62 - o-2)/u2 a Xoknown] 

= lim l S) .(Al A, -_ = [( 5 ].(A. 1) 

Let D = Diag(cro ... ., uo, uo2, 1,... , 1). Then, to find 
this limiting covariance matrix when Xo is unknown, we 
must find the upper left (k + 1) x (k + 1) corner of 

S 0 C/o 1 - 
(DID)-' = 2 C24 j 

which by standard results on inverting partitioned ma- 
trices is A - + FE- 'F', where A - 'is given in (A. 1), E 
= C3/u0O2 - BA B, F = A'`B, and B' = (CI/UO C21 
ro2). Clearly, 

Ft = (S-'Ci/uo 2C2IUo) 

and 

E = C3/1uO2 - CtS-1C/Oro2 - 2C2tC2/urO4. 

To obtain simple asymptotics, we will assume that for uo 
fixed, C,/IU2, C2Iuo2, and C3I,o-2 converge as N V oo 
and that these, in turn, have limits D1, D2, and D3, re- 
spectively, as uo - 0. We also assume that S >~ Sx (pos- 
itive definite) as N -oo.c If D3 - 2D2tD2 is nonsingular, 

then 

lim lim FE F = [2 W]l 
cro0 N--oz L J 

where W = 4D2t[D3 - D2tD2]- 'D2 . 

Outline of Proof of Theorem 2 

Let w1, . . ., WN be positive numbers, and let 01 be 
any point that minimizes the expression 

1wi I yi - fi(0,) 1. 

Under (1.4), fi(0o) is the unique median of yi, so 01 will 
be consistent under some regularity conditions. The 
asymptotic distribution of 0i can be studied using tech- 
niques in Ruppert and Carroll (1980). A particularly sim- 
ple asymptotic variance matrix is obtained if wi = 
hy(fi(0o), Xo), that is, if wi is proportional to the density 
of [yi - f1(0o)] at its median, zero. Then 

N l(0 l - 0o)/Uv-e > N(0, (Tr/2)S-). 

Although wi depends on 0o and Ao, the methods in Carroll 
and Ruppert (1982) can be used to show that the same 
limiting distribution holds if one substitutes vN-consis- 
tent estimates for 00 and Xo. 

Let V(X0) and V(A) be the asymptotic variance ma- 
trices of 0(K0) and 0(A), respectively. Since V(Xo) = 
the asymptotic optimality of the MLE shows that 

S' ' V(X) ? (Tr/2)S 

where the inequalities are in the sense of positive defi- 
niteness. 

APPENDIX B: COMPUTATION 

Let L(0, u, X) denote the log-likelihood for model (1.4). 
We do not recommend direct maximization of this like- 
lihood by a canned routine for maximizing a function of 
many parameters. Rather, we adopt the usual practice for 
the Box-Cox (1964) model (1.5), which reduces the prob- 
lem to maximizing a function of the scalar X. Here are 
the general steps we used. 

Step 1. Fix an initial scale A'. For the simulation and 
second example, XA() = 1.0, while for the first example 
A(1 was chosen to satisfy (4.1). 

Step 2. Obtain preliminary estimates of 0, say 0(l) For 
the simulation and first example, these were found by 
least squares, while for the second example the starting 
values are the last column of Table 4. The value c(? is 
simply the square root of the mean squared residual. 

Step 3. Now begin the maximization of the log-likeli- 
hood. At the current value of X, find 0(X), v(X) by using 
a nonlinear regression algorithm, starting from 0(l), U(1. 

After completion, update 0(l) = 0(X), a(') = u-(X). Define 
the one-parameter function L*(X) = L(0(X), u(X), X). 

Step 4. On the interval X E [-1.0, 1.0], L*(X) is often 
concave and can be maximized by a program specifically 
designed to maximize a concave function of one param- 
eter. If L*(X) is not concave, use a grid search. 
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For Steps 3 and 4, we used the IMSL subroutines 
ZXSSQ and XZGSN, respectively. The latter program 
includes a check for convexity of -L*(X), which in the 
simulations was always satisifed. 

[Received November 1982. Revised October 1983.] 
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