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Abstract-The temperature profile for an N-component mixture of particles in a fluid flowing through a 
heated tube has been evaluated using a numerical method for the fluid and an analytical solution for the 
particles. The results for the time-at-temperature of the particles depend on the drift-flux parameters, which 
quantify the local slip. In particular, the more slip the better the heat transfer and the shorter the heat 
exchanger required for aseptic food processing. Two diagrams are given, which cover all parameters of 

interest for laminar flow. 

1. INTRODUCTION 

INDUSTRIAL food processing is the primary means of 

transferring food from the producer to the consumer 
in industrialized countries. The process of distributing 
and selling processed food may require months of 
stability of the food product. Bacterial contamination 
is normally suppressed by chemical additives, ster- 
ilization of the product or storing the product at low 

temperatures. The law requires that the sterilized 
product contains less than a certain number density 
of a target microorganism, for example C. botulinurn 

spores in low acid foods. The spore lethality curve 
normally follows a first order decay, where the 
exponent depends mainly on temperature. Therefore, 

for product sterilization, each part of the food product 
has to be held at a given temperature for a specified 
time period. While this is easy to fulfill in batch pro- 
cesses, i.e. canning, it is more difficult to prove in 

continuous aseptic food processing, where ster- 
ilization takes place during flow through a heat 
exchanger. This paper presents the theoretical basis 
for predicting the needed length of a continuous flow 
food sterilizer when the flow rate, physical properties 

of the various components and the required holding 
time are given. 

2. DRIFT-FLUX MODELS 

Drift-flux models have been widely used to predict 

the volume fractions of two phases when the volu- 
metric fluxes of each phase is known. The original 
work on drift-flux models was down by Zuber and 
Findlay [I] and Wallis [2]. Bhaga and Weber [3] have 
extended drift-flux models to the three-phase flow of 

solid, liquid and gas. Acikoz et al. [4] applied a 
similar drift-flux model to the three-phase flow of oil, 
water and air. Recently Millies et al. [5] developed a 
drift-flux model for N-component flow. The drift-flux 
equations become for N-component flow, 

(_ik) ---= 
(% > 

G.,<,i,>+V,.,; k = l,...N, (1) 

where, C,,r denotes the distribution parameter, 

(2) 

Vk,r denotes the drift velocity, 

It should be noted that the angular brackets denote 
cross sectional averaging and the drift-flux parameters 
C,,, and V,,, must be obtained from measurements. 

3. CALCULATION OF THE TEMPERATURE 

FIELD FOR THE STERILIZATION PROCESS 

The energy equation of a fluid containing food par- 

ticles, for fully developed flow through a pipe, where 
axial conduction has been neglected. is : 

prc,r and 1, denote the fluid density, heat capacity 
and heat conductivity, spk, D,,L, ccpk and TpL,a are the 
particle volume fraction, Sauter mean diameter, heat 
transfer coefficient and surface temperature of par- 
ticle k, respectively, and Ed is the turbulent diffu- 
sivity for heat. 

Laminar flow is to be expected for continuous ster- 
ilization in most cases. So cy(r) may be set equal zero. 
Nevertheless the option for turbulent flow has been 

implemented in the computational program. The 
results presented in this paper are restricted to laminar 
flow since the number of parameters increases con- 
siderably for turbulent flow. The temperature field 
inside the particle was evaluated assuming a spherical 
shape for the particles, since this is the worst case for 
heat transfer to the center of a particle. An energy 
balance for the particle gives 
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NOMENCLATURE 

(1 thermal diffusivity, equation (5) 

cpr heat capacity, equation (4) 
C,,r distribution parameter, equation (2) 

D p.A Sauter mean diameter of particle of 
component k, equation (4) 

i volumetric flux, equation (1) 

m factor, giving the phase distribution of 

the particles, equation (17a) 
n exponent, giving the velocity profile of 

the liquid, equation (17b) 
radial coordinate, equation (4) I 

R radius of the tube, equation (17b) 

t time, equation (5) 

T temperature, equation (4) 

MI axial velocity, equation (4) 

VA,, drift velocity, equation (3) 

z axial coordinate, equation (4). 

Greek symbols 

Mpl heat transfer coefficient particle/fluid, 

equation (4) 

A<, turbulent diffusivity. equation (4) 

ap.i volume fraction of particles of 
component k. equation (4) 

i factor, equation (I 6) 

tii parameter, equation (11) 
i thermal conductivity, equation (4) 

i r.i: eigenvalue, equation (9). 

Indices 

I- fluid 
k component k 

P particle 

t total fluid and particles 
* dimensionless. 

Numbers 
Bik Biot number, (a,D,,,)/& 

Pr, Prandtl number, ~,/a,- 

Ref Reynolds number of the fluid, ulD/vf 

Kh parameter, (a,/D&)(D*/a,). 

- (I,, D’ 
Kh =4-i- -, 

D;.r at 
(11) 

The boundary condition at the particle surface is where a,, denotes the thermal diffusivity of the particle. 

I ~T,,L 
Equations (4) and (8) were evaluated numerically 

xh 27 r=“pi ~ 
= MAW- Tp.i:lr=~~,~ J. (6) in the z-direction using a constant temperature as 

the boundary condition at the tube wall. The surface 

We may define the Biot number as temperature of the particles, which is required in equa- 
tion (4), was evaluated from the numerical quadrature 

Bi, E ‘I!!‘! t71 of equation (8). 

nh 

Equation (5) was solved analytically using sep- 4. THE NUMERICAL SOLUTION 

aration of the variables, assuming spherical symmetry 

of the temperature field inside the particle. The ana- 
The convergence of the sum in equation (8) is quite 

lytical solution is 
slow. So the first 50 eigenvalues are considered. Higher 
eigenvalues still give a contribution, but they reached 

T (v* t*j = T (r* oj+ %I sin (&jsin (Lr*jL 
p.k 1 P.k 1 2r* , L -sin (U cos Vd 

their final value quickly compared to the time scale 
for heat transfer in the fluid. We note that 

s ,* x (k.hjL?h) e ‘~‘~‘x(‘*~ “(T-T,,,(r*,O))dz, (8) 
rJ 

where Bik is the Biot number of particle k, and the Thus the final value of the higher eigenvalues is 

eigenvalues A,,,: are obtained from given by 

i.,, = .( 1 I - T tan (A,,,). 
(9) 

- sm (A,.,j cos (,Jk) 

The radial coordinate may be made dimensionless 
with the particle’s radius and the dimensionless time 
coordinate is 

t* = tq/D”, (10) 

e *~‘~‘~(‘* “(T- T,,p(~*. 0)) dr 

-(T-T,.,(r*,O)) 
I 

(13) 

where D denotes the tube diameter and a, is the ther- This equation gave good convergence for all cal- 
mal diffusivity of the fluid. It is convenient to define culations presented here. While stability is no chal- 
Ki as lenge for the analytical solution just presented, it is 
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for the numerical solution of the temperature field in 
the liquid. The time scale required for the analytical 
solution varies widely with the diameter and heat con- 

ductivity of the particle. Therefore up to 10 000 steps 
for the temperature field in the liquid were required 
while one step was sufficient for the temperature field 
inside the particle. The intermediate results for the 
temperature in the liquid are cancelled after each step 
for the particle temperature, since they are of no fur- 
ther interest during the calculation. 

The numerical calculations are performed on an 
AIX/370 parallel processor. The computer code was 
vectorized in order to speed up the computation. It 

was found from dimensional analysis that it was 
sufficient to vary four parameters in order to cover all 
possible combinations of parameters. More than a 
thousand calculations were performed with different 

sets of these four parameters. The results presented in 
the next section are based on these results. 

5. RESULTS OF THE NUMERICAL 

CALCULATION 

The temperature at the center of a particle, shown 
in Fig. I. depends on the location of the particle in 

the tube. 
As expected, the particles at the center of the tube 

are the coldest, and thus the most limiting during the 

sterilization process. The nondimensional tem- 
perature at the center of the particles located on the 

axis of the tube is given by : 

T* E 
T,., - Tp.c 

PJ 
Tw - T,,e ’ 

(14) 

where T, is the temperature of the tube wall and Tp,e 

the particle temperature at the entrance of the tube. 

Typical results are given in Fig. 2. The axial coordinate 
was made dimensionless with 

FIG. 1. Temperature in the center of a particle (K = 1, 
c,,j = 1.0, v;,r = 0, Ep + 0). 

0 0.1 0.2 0.3 0.4 

axial coordinate, Z. 

FIG. 2. Temperature in the center of a particle as a function of 
axial location in the tube for various K (C,,[ = 1 .O, V$ = 0.0, 

E” --P 0). 

Equation (15) implies that the required length of 
the sterilization section is dependent on properties of 

the fluid and the particles. The definition given in 
equation (15) makes sense only for monodispersed 
particles, so that only one value for the particle diam- 

eter, D,,, , exists. We will have to redefine the non- 
dimensional axial coordinate for the case of poly- 

dispersed particles. The particle temperature rapidly 
becomes equal to the temperature of the fluid for small 

values of (a,-D&)/(a,D2), that is, for small particles 
compared to the tube diameter, or high thermal diffu- 
sivity in the particle compared to the fluid. In contrast, 
the heat transfer in the particles is much slower than 
in the fluid if (afD&)/(a,D2) is large. The dimen- 

sionless axial coordinate, z*, also corresponds to a 
time scale 

where t is the residence time of the particle in the 
heated tube. The factor [ is introduced into equation 
(16) since the FDA currently requires the fastest mov- 
ing particle velocity to be twice the mean velocity (i.e. 
[ = 2.0). This corresponds to laminar Newtonian flow, 
which is considered to be the worst case, since most 
food’s rheological behavior is dilatant. The required 
length of the sterilization section may be found as 
follows : the axial coordinate, z*, where the particle’s 

center reaches the required temperature for ster- 
ilization, may be evaluated from Fig. 2, then the tube 
length giving the required holding time may be cal- 
culated from equation (16) and then these lengths are 
added. Normally, an adiabatic holding section is used 
to achieve sterilization. In order to use the drift-flux 
parameters to determine the effect of local slip, we 
may assume that the relative velocity of the particles 
with respect to the fluid is independent of the radial 
position of the particle and that the radial distribution 
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of the volume fraction for the particles and the fluid 
velocity is given by : 

r:,,.,(r) = +(O)[I +m(l -2(rlR)‘)]. (17a) 

q(r) = u,-(0)[ I - (r/R)“]. (17b) 

The relative velocity of the particles and the par- 
ameters n and m in equations (17a) and (17b) can 

then be evaluated from the definitions of the drift-flux 
parameters. equations (2) and (3). 

The temperature at the center of a particle is shown 
in Fig. 3, with drift velocity as a parameter. The drift 
velocity quantifies the local relative velocity of the 

particles with respect to the fluid. The thermal bound- 
ary layer becomes thinner, and the heat transfer to 
the particle improves, as the relative velocity increases. 

Two limiting cases can be seen in Fig. 3; the heat 
transfer to the particle is lower, and thus the required 
length of the holding section is longer for small drift 

velocities. The second limit is obtained for very high 
drift velocities. For this case the thermal resistance 

through the boundary layer becomes small as does the 
required length of the holding section. The influence of 
the volume fraction on the particles is shown in Fig. 

4. The heat transfer is reduced for large volume frac- 
tions of the particles since the heat transfer to the 

particles decreases the fluid temperature. The influ- 
ence of the distribution parameter is shown in Fig. 
5. A value of unity for the distribution parameter 
corresponds to a uniform distribution over the cross 

sectional area of the tube. Values between 0.9 and I .I 
may be expected for the sterilization process since the 
differences of the densities between particles and fluid 
is normally small. It can be seen in Fig. 5 that the effect 
of the distribution parameter depends on whether the 

particles are concentrated in the center of the pipe 
( C,,r > I .O) or near the wall (C,,, < I .O). The food will 
be heated in the heating section to nearly the wall 
temperature before it enters the holding section. Only 

small values of I -T,*, are therefore important for 

1 
0 0.1 0.2 0.3 0.4 0.5 

axial coordinate, Z* 

FIG. 4. Temperature at the particle‘s center as a function of 
axial location in the tube ; parameter: volume fraction of the 

particles (K = I, I’:,, = 0, C,, = 1.0). 

design purposes. We note that for small values of 
1 - TXk the curves become straight lines in Figs. 2-4. 
It is therefore sufficient to predict the slope 
2 log, o (I - Tz,I)/8z* and the horizontal intercept, $. 

The temperature of the particle’s center may then be 
calculated from 

We redefine Z* here for simplicity, since the influence 
of the parameter K will have to be considered in several 

locations : 

(19) 

The full numerical solution and equation (18) are 

axial coordinate, L. axial coordinate Z’ 

FIG. 3. Temperature of the particle’s center as a function of FIG. 5. Temperature at the particle’s center as a function of 
axial location in the tube; parameter: dimensionless drift axial location in the tube ; parameter : distribution parameter, 

velocity. Vzr = (VP,,D,,i )/v,. (K = I, C,,I = 1.0. CP + 0). (K = I. v;., = 0. CP = 0.3). 

-ii @I\ 
c a 
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MaI coordinate i 

FIG. 6. Temperature at the partide’s center as a function of 
axial location in the tube, the approximation against the 

numerical solution (k. = I, V$ = 0, cp = 0.3, CP,r = 1.2). 

shown in Fig. 6 for comparison. We note that the only 
deviation is for small z*. Figure 7 contains the same 
information required for design purposes, but it is 
obvious that a higher information density is now poss- 
ible. Our goal is to present the dependency of slope 
and intercept from all parameters in one graph, if 
possible. In order to do this, we need to reduce the 
number of parameters, since only two paramters can 
be shown in one plot. We find, that the distribution 
parameter has its influence only via the volume frac- 
tion and that the volume fraction of the particles 
only appears in one place in the differential equations. 
Moreover, the influence of the distribution parameter 
disappears for small volume fractions. Therefore we 
may summarize the influence of both the distribution 
parameter and the volume fraction in one new par- 
ameter. Most of the particles are distributed near the 
wall of the tube if the distribution parameter 

1.7 c I 

0.8 0.8 1.0 1.1 1.2 

becomes zero, as can be seen from equation (2). These 
particles have negligible influence on the heat transfer 
to the center of the flow, since they are quickly heated 
due to their small distance from the heated wall. The 
influence of the volume fraction disappears therefore 
if the distribution parameter becomes zero. Therefore 
we may try (Q,~C&) as a new parameter. We obtain 
a very good fit for the exponent, x = 2.44. 

It can be shown from dimensional analysis of the 
differential equations that only three parameters are 
sufficient: the Biot number, the parameter K, con- 
taining the ratio of tube and particle diameter and the 
ratio of the thermal conductivities, and the term, 
E~.~C~~P~N~,,,(DIB,L)~. Let us now summarize the 
influence of the Biot number and the parameter K. 
The limiting cases are as follows. 

1. The parameter K becomes zero, which means the 
thermal conductivity of the particle is negligibly small 
or the particle is very big; in both cases the slope 
becomes zero. 

2. The Biot number becomes zero, which cor- 
responds to a bad heat transfer through the boundary 
layer of the particle and the slope becoming zero. 

3. The Biot number becomes very large. For this 
case the temperature at the surface of the particle is 
essentially the same as the temperature of the fluid 
surrounding the particle. The slope then depends only 
on the parameter K and not on the Biot number. 

4. The parameter K becomes very large. The heat 
transfer inside of the particle becomes very good in 
this case. It can be shown, that the slope then depends 
only on the product of the Biot number and the par- 
ameter 7c. 

These limiting cases may be fulfilled if the slope 
depends on the parameter K/( y+ l/&o) instead of 
both the Biot number and the parameter K separately. 
We obtain a very good fit for the coefficient, 
y = 0.059. 
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FIG. 7. Temperature at the particle’s center as a function of axial location in the tube, the approximation 
against the numerical solution (ti = 1, V$ = 0, ep = 0.3, C,,f = 1.2). 
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FIG. 8. Intercept and slope as a function of distribution parameter (K = 1, V$ = 0, i:,, = 0.3). 

Next we describe the horizontal intercept, zd, which 
signifies the time lag required for the heat to pass 
through the fluid and reach the particles. The dis- 
tribution parameter and the volume fraction of the 
particles may be included in one parameter, 

E~,~C,O:~‘NU,,,(D/D~,~)~. We note that the exponent of 
the distribution parameter is different now. Nearly all 

particles have to be heated up before the heat transfer 
reaches the particles in the center of the flow. The 
distribution of the particles does not affect that much, 
therefore the influence of the distribution parameter 

on the intercept is small. The Biot number and the 
parameter K may be included in one parameter, if 
we regard again the limiting cases. The heat flux to a 

particle is proportional to lcBio if the Biot number is 
small. It is proportional to IC’.’ for large values of the 

Biot numbers, where the heat transfer resistance of 
the boundary layer becomes negligible. A good fit is 
given by, ~Bio~~~~+0.25rc~ ‘. 

Thus the influence of all parameters can be pre- 
sented in two figures, given in Fig. 8. 

In order to obtain these graphs we needed to interp- 
olate in two dimensions between 1218 calculated 
points. This caused some of the curves to not be com- 

pletely smooth. As can be seen in Fig. 8(a), the intercept 
is virtually independent of the second parameter, 

which includes the volume fraction of the particles. 
We may conclude that the delay until the heat transfer 
affects particles in the center of the flow is caused only 
by heating up the fluid and by the thermal resistance 
inside and outside the particle, but not by other par- 
ticles surrounding the particle under consideration. 
Let us now discuss the slope. 

I. For very few (E~,~ -+ 0) and very small particles 
(K + w) we obtain that only the heat transfer through 
the fluid is of importance. This limiting value for the 
slope can be calculated from NM = 3.66 to be 
slope = 6.4 in agreement with Fig. 8. 

2. For very few (Q -+ 0) but very large particles 

(K + 0) the heat transfer through the particle towards 
its center becomes limiting. This corresponds to a 
straight line in the half logarithmic scale of Fig. 8. 

3. If there are many particles (E~,~ > 0) the slope 
becomes smaller the more particles there are and 

the better the heat transfer becomes towards them. 

We have assumed up to now that only one kind of 
particle was present. The temperatures at the particle’s 
center for three different classes of particles are shown 
in Fig. 9. It is obvious that the particles with the 

smallest value of ICY (which are the biggest particles 
with the smallest heat conductivity) are the most limit- 
ing for continuous flow sterilization. For comparison, 
the temperature in the particle’s center is also shown 
when only monodispersed particles are present, but 
with the same volume fraction as all three classes 

0 0.5 1 1.5 

axial coordinate 2. 

FIG. 9. Temperature of the particle’s center for mono- 
dispersed particles (K = 1, cp,, = 0.3) and for three classes of 
particles (different values for K, the biggest particles cor- 
respond to the smallest value of K, E,,~ = 0.1 for each class) 

cv;., = 0, c,., = 1). 
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together. It is remarkable that the slope of the tem- 
perature inside the biggest particles versus entrance 
length becomes essentially the same in all cases. This 
slope just corresponds to an eigenvalue, which is valid 
for the whole system of particles and the fluid. The 
intercept is bigger for multiple particles compared to 
the same volume fraction of monodispersed particles. 
This is because the smaller particles are heated up first 
before sign~~cant heat is transferred to the big particles 
in the center of the flow. 

6. SUMMARY AND CONCLUSIONS 

The temperature profile for an N-component flow 
of particles in a fluid through a heated tube has been 
calculated numerically for the fluid and using an ana- 
lytical solution for the particles. The resuits for the 
time-at-temperature of the particles depend on the 
drift-flux parameters. In particular, the more slip the 

better the heat transfer, and the shorter the heat ex- 
changer required for aseptic food processing. The 
results are presented in a compact way, which allows 
us to present the influence of all parameters in two 
diagrams for laminary flow. 
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