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Abstract 

A two-compartment, heterogeneous population model (HPM) was de]-ived using the simulation software SB 
ModelMaker to describe the growth of Litrric~ monoc~toger~s in bacteriological media ;lt S-35°C. The model assumed 

that, at tirrle t = 0, the inoculum was distributed between two distinct compartments. Non-Growing and Growing, and that 

growth could be described by four parameters: initial total cell population (N,,), final maximum cell population (N,,,,,,). 

maximum specific growth rate (p,,,.,, ), and initial cell population in the Growing compartment (G,,). ‘l‘he model was htted to 

the data by optimizing the four parameters, and lag phase duration (A) was calculated. The resulting values of p,,,,,, and /\ 

were similar to those determined using the modified Gompertz equation. A new parameter, )I‘,,, was defined which relates to 

the proportion of the initial cell population capable of growth, and is a measure of the initial physiological state of the cells. 

A modified model in which /_L,,,,,, was replaced with a temperature function, and bv,, replaced G,,, was used to predict the 

effect of tcmperatu1.e on the growth of L. n~ono~~fogrr2rs. The results of this study raise questions concerning the current 

definition of the lag phase. 0 I997 Elsevier Science B.V. 

KcJ~~c~K/.s: Predictive microbiology; Heterogeneous: Model: Lisfer-icl rt~onoc’~to~~nu.v; Growth; Simulation 

1. Introduction 

Predictive microbiology, the use of mathematical 

models to describe the growth and death kinetics of 

foodborne microorganisms, has been an area of 

considerable activity over the last decade. Recent 

reviews have highlighted some of the advantages and 

disadvantages of this approach (McMeekin et al., 
1993; Ross and McMeekin, 1994; Skinner et al., 

1994). In their summary, Ross and McMeekin 

(1994) suggest that predictive models derived from 

model systems can be successfully applied to food 

systems, and that predictive microbiology can pro- 
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development of Hazard Analysis Critical Control 
Point (HACCP) systems (Baker, 1995: Notermanc et 
al., 1995). 

The usual approach to tnodelling bacterial growth 
involves fitting of bacterial count data to sigmoidal 
equations such as the modified Gompertz to obtain 
values for the Gompertz parameters B and M. which 
are used subsequently to calculate lag titne (A) and 
maximum specific growth rate (k,,,,,,) (Gibson et al., 
1988; Buchanan and Phillips, 1990). Models are then 
derived relating growth parameters to environmental 
factors such as temperature, pH and u,, using a 
variety of techniques which include Arrheniux cqu:~- 
tions (Davey, l993), square root models (Ross. 
199.3). and response surface models (Gibson et al., 
198X; Buchanan and Phillip\, 1990). 

One of the difticulties experienced with the use of 
empirical tnodels for bacterial growth such as the 
tnoditied Gompertz is the poor estimates often 
obtained for the lag time (Ratkowsky et al., I99 I : 
Duh and Schat’fner, 1993; Grau and Vanderlinde, 
1993: Houtama et al.. 1994). This situation is 
exacerbated by the observations that lug time is 
affected by temperature history (Buchanan and 
Klawittcr, I99 I : Hudson. 199.1) and by temperature 
fluctuations (Li and Tort-es, 1991: Zwietering et al., 
1994b). Some workers have attempted to alleviate 
this problem by using the second derivative of the 
Gompertr equation to more accurately determine the 

lag time (Buchanan and Cygnarowic/.. 1990). Others 
have concentrated their efforts towards deriving 

more mechanistic models for bacterial growth. Hills 
and coworker\ (Hills and Wright, 1994: Hills and 
Mackay. 1995) have recently described the develop- 

ment ot ;I structured-cell kinetic model, while 
Baranyi and coworkers (Baranyi ct al.. 1993a,b: 
Baranyi and Roberts, 1993. 1995; Baranyi ct al., 
1995) have taken a dynamic approach to model the 
physiological state of the cell. Definitions of the lag 
time have been reviewed recently by Zwietering et 
al. ( 1994b). 

In the present study. a dynamic modelling ap- 
proach was taken. The initial cell population was 
assumed to consist of at least two distinct popula- 
tions. which were modelled independently. The 
resulting model provides a good fit to Li.src)/.itr 
1ll0fi0(.~l0~(‘17(‘.) growth data at a variety of tetnpera- 
tures. and suggests that a novel approach to model- 
ling bacterial growth may shed further light on 

the physiological state of the cells during the lag 
phase. 

2. Materials and methods 

L. //7o/lcrc:\toKcrrc~.s Scott A was obtained from Dr. 
J. M. Farber. Health Protection Branch. Health 
Canada. The strain was subcultured twice in Tryptic 
Soy Yeast Extract Broth ITSBYE: Tryptic Soy Broth 
(Difco Laboratories. Detroit, Ml) supplemented with 

0.6% (w/i,) Yeast Extract (Difco)] for 34 h at 30 C. 
Stock cultures were prepared in TSBYE plus 15% 
M,/\ glycerol. and were fro/,en in 0.2 nil volumes in 
cryovials at - 25°C. 

The content< of one cryovial of L_. 111o17o~~~rogc17c.s 
was transferred to IO ml of TSBYE in a SO ml 
Erlenmeyer flask. The flask was incubated for 24 h at 
30°C with shaking at IS0 rpm in a GX6 Aquatherm 
Water Bath Shaker (New) Brunswick Scientilic, 
Edison. NJ). The culture was transferred ( I%) to IO 
ml fresh TSBYE and incubated under the same 
conditions t’or exactly I5 h. The resulting culture was 
used as the inoculum for growth experiments. 

Growth cxpzriments were carried out at 5. IO. IS, 
20. 25. 30. and 35°C in SO ml TSBYE in a IS0 ml 
serum flask with shaking at I SO I-pm. The medium 
was equilibrated to the appropriate temperature in a 
G86 Aquathei-m Water Bath Shaker or G76D Gyrot- 

ory Water Bath Shaker (New Brunswick Scientific, 
Edison. NJ), with cooling supplied by the RFIO 
Frigidflow Bath Circulator (New Brunswick Sci- 
entific) iI\ required. Cultures were inoculated to five 
an initial cell density of = 10’ cfu . ml ‘. Cells were 
enumerated at appropriate intervals by diluting in 
0. I c/r Bacto Peptone (Difco) and spread plating on 
Tryptic Soy Yeast Extract Agar [TSAYE; TSBYE 
plus 1.5% w/v Bacto Agar (Difco)] to determine the 
total cell count. Plates were incubated 72 h at 30°C. 

The heterogeneous population model (HPM ) was 
developed ~15ing SB ModelMaker Version 2.0 
(Chcrwell Scientific Publishing. Oxford, UK). A 
two-compartment model was proposed, with the 
assumption that the cell population at / = 0 (/,,) was 



defined as N,,, and was distributed between Non- 
growing (NC) and Growing (G) compartments. It 
was further assumed that the concentration of NG 
cells did not change over the course of the experi- 
ment. Thus: 

dNG 
~ = 0; NG(t) = NG(0) = NG,, 

dt (1) 

It was further assumed that the G cells were capable 
of exponential growth starting at t,,, thus representing 
that proportion of N,, which was fully adapted to the 
new growth conditions. A logistic function was used 

to limit the total cell population to a maximum 
(N,,,;,,) defined by the stationary phase. Thus: 

(2) 

where &u x 
= maximum specific growth rate. 

The initial number of cells in the non-growing 
compartment was detined as: 

NC,, = N,, - G,, (3) 

Since the differential equations describe the behav- 
iour of real cell populations rather than the 
logarithms, two variables were defined in order to 
visualize the data after the simulation. The logarithm 
of the total cell population at time =I was the 
logarithm of the sum of the number of cells in the 
two compartments: 

log N(t) = log(NG(r) + G(t)) (4) 

The logarithm of the growing cells at time=r was 
the logarithm of the number of cells in the G 
compartment: 

log G(r) = log(G(t)) (5) 

Optimized values for the four parameters N,,, N,,,,, 
IU,,,~,~ and G,, were obtained by least squares fitting. 
There was some difficulty in fitting the HPM to 
experimental data using SB ModelMaker, thus fitting 
was carried out using Scientist@ (Micromath Sci- 
entific Software, Salt Lake City, UT, USA). A 
modified Powell algorithm was used to minimize the 
sum of squared deviation between observed data and 
model calculations. Initial parameter estimates were 
obtained using simplex optimization. Differential 
equations were solved numerically by the method of 
Runge-Kutta, since the software does not require 

analytical forms of equations. Subsequent simula- 
tions with derived models were carried out using SB 
ModelMaker. 

Growth data were also fitted to the modified 
Gompertz equation described by Willocx et al. 
(1993): 

log N(t) = 

A+Cexp[-exp((2.718.(RsIC).(h-t)+ l)] (6) 

where A=log N, (log cfu.mll’); C=asymptotic 
increase in population density (log cfu.ml-‘); Rp= 

growth rate (h-l); h=lag phase duration (h). 
Note that since data are plotted on a log,, rather 

than a natural log scale, R, and ,u,,,,, are related by: 

rum,, 
Rg = In 10 

3. Results 

The HPM was fitted to each of the data sets using 
Scientist, and the results are presented in Table 1. 
Excellent fits were obtained for all temperatures. An 
example of the fit obtained with the 5°C data is 
shown in Fig. 1. The solid line represents the model 
fit for log N, while the broken line represents the 
simulated values for log G. Clearly, representing log 
N as the sum of the NG and G compartments results 
in a smooth transition from the lag to the exponential 

phase. 
Results from the HPM were compared with those 

derived from tits using the Gompertz equation. R, 

values were obtained directly from the Gompertz, or, 
in the case of the HPM, were derived from Tut,,,, 
using Eq. (7). The Gompertz model gave values for 
h directly. Values for h for the HPM were derived 
from the following equation: 

log N,, = log G,, + AR, (8) 

A= 
log 4, - log Go 

R, 
(9) 

The square root mode1 was used to describe the 
influence of temperature on pnleh and h, and the 
results are shown in Fig. 2. Values for J_L~,,,,~ were 
slightly higher with the HPM, and values for A were 
generally shorter than found with the Gompertz 
equation (Table 2). R-squared values for P,,,~,, 
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(0.9969 and 0.9962) and A (0.9807 and 0.9740) were 

obtained for the HPM and Gompertz models, respec- 
tively. An equation describing the effect of tempera- 

ture on w,,.,, was derived for the HPM: 

\QCz = 0.083 12 + 0.04487 . T (10) 

While calculating A for the HPM using Eq. (9). it 
was noted that log N,, -log G,, appeared to be 
constant and independent of temperature. This value 
(herein detined as LF,,) was calculated for each data 
set (Table 2). Several workers have observed that 

A . PII,:,\ is constant under isothermal conditions 
(Baranyi and Roberts, 1994: Houtsma et al.. 1994: 
Zwietering et al., 1994a), therefore this calculation 
was made for K, and h from the Gompertz fits 
(Table 2). Values for h.R, always exceeded IL’,,. and 
a paired r-test found this difference to be significant 
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Fig. 2. Intluence of temperature on the sqwrrz root ot (A) 

Imaximum spcc~fic growth rate ( ,qT,,,, ) and (B) reciprocal lag time 

(A ’ t 2~s dctmnined by the modified Gompertr equation (0) x~d 

the heterogeneous population model (. ). 

(PsO.05). Baranyi and Roberts (1995) have detined 
the product of P,,,,~~ and h as h,,. Thus, it is proposed 
that K‘,~ is related to h,, by the following equation: 



Table 2 

Comparison of growth rate (Rg) and lag phase duration (A) 

calculated using the HPM and the Gompert7 equation 

Temp (“C) HPM Gompertc 

A Rz “‘11 h R* h.R* 

5 46.9 0.02 I 0.990 54.1 0.023 I .21 

IO 12.7 0.045 0.571 14.2 0.049 0.70 

IS 6.39 0.102 0.655 I I.1 0.133 I .41 

20 5.54 0.192 I.066 6.71 0.226 I33 

2s 2.40 0.283 0.679 3.02 0.332 1.00 

30 1.89 0.383 0.724 2.79 0.452 I .26 

35 I.17 0.508 0.643 I.87 0.600 1.19 

Mean 0.762 1.20 

(s.e.) (0.072) (0.107) 

s.e.. standard error. 

4, 
bL’(, = ~ 

In IO (11) 

In a manner analogous to that described by Baranyi 
et al. (1995) for Brochothri.x thermosphactu, a 
revised model for L. wwnocpgenes was derived 

(Fig. 3). In this model, ,u,,;,, was replaced by the 
temperature function in Eq. (lo), and G,, was 
replaced by \I’,,. N,, and N,,,,, were entered by the 
user. During the simulation, G,, was calculated from 

VV,, by: 

IL’() = log N,, - log G,, (12) 

Fig. 3. Flow chart for modified two-compartment, heterogeneous 

population model for Liateritr ~)~~~~oL’~~o,~PIzc.~. The two compart- 

ments (represented by rectangular boxes) represent the numbers of 

Non-Growing and Growing cells at time = t. The variables (repre- 

\ented by rounded box\) arc used to calculate the logarithm of 

the Growing cell5 (Log G) and the lopanthm of the total cell 

population (Log N). Maximum specitic growth rate (p,,,,,,) was 

replaced by a variable (Growth Rate) intluenced by the tempera- 

ture, which appears as a defined value set by the user. 

b 215 

Time (h) 
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Fig. 4. Output of a simulation performed with the model in Fig. 3 

with temperature set at 20°C. The simulated increase in log N 

(solid line) is compared to experimental data. The 95c/r confidence 

intervals of the model are represented by the broken lines. 

with the value of w(, taken from Table 2. NC,, was 
calculated using Eq. (3). The model was also modi- 
fied to allow the user to enter an appropriate 
temperature at the start of the simulation. 

Fig. 4 shows the results of a simulation performed 
using the revised model at 20°C. The data points are 
the 20°C experimental values used to derive the 
model, and are included in this figure for illustrative 
purposes. The solid line represents the simulation 

output for log N, while the dotted lines represent the 
95% confidence intervals calculated from the stan- 
dard error for “I’,~ (Table 2). 

4. Discussion 

A simple, two-compartment heterogeneous popu- 
lation model (HPM) has been presented which 
effectively describes the growth kinetics of L. mono- 
cytogrnes at 5-35°C. The model assumes that a 
growing bacterial population is dominated by the 
first cells to begin growth, a theory implicitly 
believed by many microbiologists, although as yet 
unproven (Whiting and Cygnarowicz-Provost, 1992). 
The model accounts for the gradual transition from 
lag to exponential growth, and normal variation in 
the model’s wg parameter may explain the variations 
in apparent lag phase observed by many workers. 

The HPM assumes that the concentration of NC 
cells is constant over the entire experimental period, 



thus precluding any adaptation. This may not neces- 

sarily be the case under all conditions. The model in 

Fig. 3 could be expanded to include a flow of cells 

from NC to G, analogous to the first order adaptation 

process proposed by Whiting and Cygnarowicz-Prov- 

ost ( 1992)however, preliminary attempts to include 

this characteristic in the model did not improve the 

tit (data not shown). The HPM predicts that any cells 

in the G compartment quickly dominate, whethel 

they existed there at f=O or arose by adaptation. The 

model further predicts that the contribution of cells 

adapting subsequently is minimal. Adaptation might 

play a greater role under conditions where G,, is 

expected to be small, i.e., in a stressed population. It 

should be made clear that the cells referred to here as 

NC are only non-growing over the initial part of the 

experiment, that is, during the lag phase. All cells 

present at I =O, whether G or NC would, given 

sufficient time. form colonies on solid media. 

state of the culture. In the Baranyi model. the initial 

physiological state is embodied in a parameter a,) 

which is related to /I,, (Baranyi and Roberts, 1994: 

Baranyi et al.. 1995): 

II,, = - In 0,) (13) 

This parameter. termed the suitability for growth. 

is a measure of the intracellular concentration of a 

critical metabolite. and is used to adjust the ,u from 0 

to ,+:,, (Baranyi et al.. 1995). This has the effect of 

accounting for the gradual change in the cell popula- 

tion from the lag to the exponential growth phase. In 

the HPM. the parameter G,, is analogous to a,,. and 

also describes the suitability for growth: however. in 

this case. the initial physiological state of the cells is 

embodied in only a sub-population of growing cells. 

The apparent gradual increase in log N during the 

transition from lag to exponential phase is a conse- 

quence of summing the NCJ and G cell compart- 

ments;. 
We have no direct evidence to support the hypoth- 

esis that a fraction of the cells are in fact capable of 

exponential growth at t=O (G,,>O); this is an 

assumption made to simplify the model fitting pro- 

cess. Thus, the HPM should be considered as an 

empirical model at present. Under some conditions. 

however, a proportion of the cell population may be 

capable of growth immediately after inoculation, fol 

example when the new growth environment does not 

differ substantially from that under which the in- 

oculum was grown. 

Of the current models attempting to define the lag 

phase in physiological terms, the model proposed by 

Baranyi and coworkers (Baranyi et al.. 1993a.b: 

Baranyi and Roberts. 1994. 199s: Baranyi et al.. 

1995) is the best documented. The present model 

shares some characteristics with the Bnranyi model 

(Baranyi et al., 1993b). During the exponential phase 

both models give a straight line. In addition. the 

HPM, like the Baranyi model, does not require data 

from the stationary phase to achieve a satisfactory tit, 

in contrast with the Compertz model. However. the 

Baranyi model uses pure exponential growth. while a 

logistic growth function was employed for the HPM. 

The ma.jor difference between the two models is 

the assumption by the Baranyi model that the cell 

population is homogeneous (Baranyi et al.. l993b). 

In spite of this fundamental difference, the most 

intriguing similarity between these two models is 

that they both predict h,,. the initial physiological 

While the HPM in its present form is simple and 

provides good lits to experimental data. it appears to 

have some limitations. Difficulty was experienced 

when trying to fit some of the data sets using the 

ModelMaker program; convergence was not always 

obtained. The software program Scientist gave rapid 

convergence with all data sets. There was also sonic 

deviation between calculations of \\‘l, from the HPM. 

and the h.KB from the Gompertr.. While Ggniticantly 

different. these two values were not markedly differ- 

cnt. Other worker\ have shown that there is wide 

variation in measurement of h (Ratkowsky et al.. 

1991: Duh and Schaffner, 1993: Grau and Van- 

derlinde. 1993: Houtsma et al.. 1993). In addition. 

Baranyi et al. ( 1995) reported large standard errors 

in calculation of II,, for R. r/lr/./l7o.s(lh~rc.r(1. Thus. the 

differences noted with the HPM may not be in- 

portant. 

The present study also calls into question the 

concept of lag phase. The lag phase is normally 

defined as the intersection of the tangent to ,u,,,,,, 

extrapolated to the lower asymptotic value (log N,,). 

Thus the HPM defines the number of cells present at 

A (N,) as: 

N,, = NG,, + G, 

from Eq. (3). and from Eq. (4): 

N,! = (N,, ~ G,,) + N,, = 2N,, - G,, 

( 13) 

(IS) 



Thus, the cell population is always >No at the end 

of the lag phase as defined by conventional growth 
models and the HPM. Under certain environmental 
conditions, a foodborne pathogen present in a prod- 
uct might be considered to be in the lag phase, based 
on predictions made by existing models, and thus the 
product would be considered as safe. The above 
argument suggests, however, that an increase in cell 
numbers may have already taken place. Clearly, a 
new definition of the lag phase is required which is 
based on a measurable physiological event. 

The HPM suggests that, at any time r>O, a 
proportion of the cell population is in exponential 
growth, and a constant threat might be implied. It 
must be emphasized, however, that there is no 
evidence for the existence of a growing sub-popula- 
tion at t,,. When one is concerned about a virulent 
foodborne pathogen, a small population of growing 

cells masked by a background of non-growing cells 
could present a considerable health hazard if they 
were capable. for example, of producing a toxin. 
Alternatively, exponential phase cells might be less 
resistant to stress factors such as stomach acid. Any 
assessment of the potential risk of a small growing 
population must include factors such as infectious 
dose and susceptibility of the pathogen in question to 
enviromnental stress. 

Development of models in predictive food micro- 
biology normally involves the derivation of an 
equation which defines the dependent variable (e.g.. 
growth) as an explicit function of the independent 
variable, time. The resulting equations are fitted to 
the data using non-linear regression programs. In the 

present study, a simulation modelling approach was 
employed in which numerical solutions were derived 
for differential equations. Using software such as SB 
ModelMaker, it is possible to more clearly under- 
stand the interactions between the various compart- 
ments and variables of the model, and subsequently 
more complex models can be designed. 
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