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SUMMARY

The three-dimensional (3D) unsteady viscous wake of a circular cylinder exposed to a steady approach
flow is calculated using a fractional-step finite-difference/spectral-element method. The calculated flow
fields at Reynolds numbers of 100 (2D) and 200 (3D) are examined in detail. The flow field at Re=100
is 2D as expected, while the flow field at Re=200 has distinct 3D features, with spanwise wavelengths
of about 3.75 cylinder diameters. The calculated results produce drag and lift coefficients and Strouhal
numbers that agree extremely well with the experimental values. These 3D values at Re=200 are in
better agreement with experimental values than the results of a 2D calculation at Re=200, which is
expected. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The flow in the wake of a circular cylinder is three-dimensional (3D), even before it becomes
turbulent. The present study concerns the combined finite difference/spectral method calcula-
tion of the steady approach flow past a fixed circular cylinder at Reynolds numbers large
enough for the wake to be three-dimensional, but not turbulent. The onset of the 3D wake will
be discussed and it will be shown that the proper representation of the wake has a noticeable
effect on the Strouhal number and the drag and lift coefficients. Specifically, the flow will be
represented in terms of the primitive-variables form of the time-dependent Navier–Stokes
equations for an incompressible fluid. A fractional-step method, which is a combination of the
methods of Karniadakis et al. [1] and Kim and Moin [2], is used to advance the solution in
time.

For a circular cylinder in a steady approach flow, the 2D vortex structures are unstable to
3D disturbances at a Reynolds number of about 170. A synopsis of the steady approach flow
situation follows. When the Reynolds number, Re=UD/n, where U, D, and n are, respectively,
the freestream velocity, diameter of the cylinder, and kinematic viscosity of the fluid, is smaller
than 40, the flow is steady with two symmetrical vortices attached to the downstream side of
the cylinder. When the Reynolds number is slightly larger, ReB60, the trailing vortex sheet
becomes unstable and develops an unsteady wavy pattern. Vortex shedding occurs for
60BReB170; the attached vortices become asymmetric and are shed alternately at a
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well-defined frequency, the Strouhal frequency (S), to form the Karman vortex sheet behind
the cylinder. When Re is greater than 170, the vortex structures are unstable to 3D perturba-
tions. Past research has found several different vortex shedding modes in the transitional
regime 170BReB400. Bloor [3] found that transition to turbulence occurs in the region
200BReB400. The wake becomes fully turbulent when Re is higher than 400 according to
Bloor’s measurements.

Roshko [4] was one of the first to make extensive measurements in the wake. Roshko
observed that the vortex street is stable for Re under 150 and irregular when Re is higher than
300.

Hama [5] studied the development of 3D flows. Hama’s flow visualization showed that
three-dimensionality is not present for ReB150. It appears intermittently for 150BReB200
and becomes regular for 200BReB300. Hama also observed that the spanwise wavelength
decreases by a factor of about 3 from ReB200 to Re of about 300. In Gerrard [6], finger-like
structures are observed in flow visualizations and correspond to the spanwise waviness of the
shed vortices. Gerrard found that these structures appear almost randomly along the primary
vortices, but they repeat at the same location, cycle after cycle of vortex shedding.

Williamson [7] found that two discontinuities exist in the S–Re relationship in this
transitional regime. The first discontinuity occurs at Re between 170 and 180, and corresponds
to the secondary flow that takes the form of vortex loops. This discontinuity shifts vortex
shedding toward the lower frequency. Williamson’s flow visualization pictures show that the
spanwise wavelength is slightly smaller than three diameters. At the second discontinuity,
which occurs at Re between 230 and 260, finer scales develop in the streamwise vortex
structure, and vortex shedding is shifted to a higher frequency. The spanwise wavelength after
this discontinuity is about one diameter. Recently, Noack and Eckelmann [8] did a global 3D
stability analysis using a low-dimensional Galerkin method. They found that the periodic
solution (parallel vortex shedding) is unstable to spanwise perturbations for Re\170 and is
most unstable to a perturbation with a spanwise wavelength of 1.8 diameters. For Re between
54 and 170, the periodic solution is neutrally stable, which explains the difficulty in experi-
ments to achieve parallel vortex shedding. The results by Noack and Eckelmann do not show
the second discontinuity which was observed also by König et al. [9]. They attributed the
discrepancy to be possibly because of the realization of end conditions. The end conditions are
important for the Reynolds number between the two discontinuities even at large aspect ratios,
and these conditions are not full realized in numerical simulations. The numerically assigned
periodicity may also introduce or prohibit perturbations of certain wavelengths. Mansy et al.
[10] measured 3D structures in the wake and found the spanwise wavelength at 6 diameters
downstream from the center of the cylinder is 3.2 diameters at Re of about 200. The
wavelength undergoes a discontinuous change at Re of about 300 to 1.1 diameters. The
wavelength-to-diameter ratio approximately follows a relationship of 20/Re0.5. They also
observed the high sensitivity of wavelength to streamwise direction location in the near wake.
The wavelength is most sensitive within 6 diameters from the cylinder and increases with
streamwise location to reach an asymptotic value at 15 diameters from the cylinder. The 3D
structures observed by Mansy et al. are regular for Re above 180–200 and intermittent for Re
between 160 and 180. Bays-Muchmore and Ahmed [11] used a flow-visualization method to
study the streamwise vortices in the wake, with Re from 330 to 21 000. Their observations are
consistent with those of Mansy et al. The pairs of counter-rotating vortices have spanwise
spacings of about one diameter. Bays-Muchmore and Ahmed observed that these vortices
distort the Karman vortices significantly, but ‘only on their upstream sides’.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1003–1022 (1998)
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Three-dimensionality in the wake of a circular cylinder takes on several different forms.
Beside the forms described above, vortex dislocation is another important form. For some flow
conditions, nonuniform vortex shedding occurs and vortices reconnect between cells of vortex
shedding in the wake. In the region of dislocation, the variation in vorticity is more irregular
than at other places. The stronger tilting and stretching of vortices in these regions can
promote transition to turbulence. Vortex dislocation has been studied by many researchers,
among which are Williamson [12], Lewis and Gharib [13], Williamson [14], and Yang et al.
[15]. The end effects on the modes of vortex shedding, including parallel vortex shedding,
oblique vortex shedding, and vortex dislocations, are clearly shown by Hammache and Gharib
[16]. They found that oblique vortex shedding can be avoided if special care is given to the end
conditions. Enforcement of parallel shedding by reducing end effects also delays the transition
to turbulence through reduction of the number of vortex dislocations.

Numerical simulations of 2D vortex shedding have been studied by many people using quite
different numerical methods, e.g., [17–22]. However, as noted by Karniadakis and Triantafyl-
lou [23], three-dimensionality is ‘an unavoidable state of even nominally 2D wakes, once a
certain critical Reynolds number is exceeded’. Moreover, transition is inherently 3D, as shown
in the experiments of Hammache and Gharib [16]. Therefore, 3D simulations are necessary to
understand the dynamics of the flow with Re greater than the critical Reynolds number for 3D
instability. Karniadakis and Triantafyllou [23] used a 3D direct numerical simulation based on
a combined spectral element/Fourier spectral method to study flows with Re between 175 and
500. The streamwise structures shown have a wavelength of 0.8 diameters at Re=225 and
Re=300, which is in reasonable agreement with the observed wavelength of 1.1 diameters for
Re=300 [10]. For Re at 300, they found the variation of velocity in the wake oscillates at
double the period it had at Re=225. This period-doubling phenomenon was attributed to the
two modes of vortex motion when three-dimensionality is present. This behavior continues
(more and more subharmonics appear) when Re increases, and is the route for transition,
according to Karniadakis and Triantafyllou. To assess the influence of the size of the spanwise
computational domain, they used 1.57 and 3.14 diameters and found no essential difference in
the period doubling phenomena between the results from the two different domain lengths, but
they noted that the strength of secondary flow is much stronger with the larger computational
domain. Another numerical study of 3D flows is by Hansen et al. [24], who used the
velocity–vorticity formulation of the Navier–Stokes equation and simulated the flow around
an infinite cylinder at Re=200. Their results show 3D structures with a spanwise wavelength
of about three diameters.

In this paper, the numerical solution of a steady approach flow past a circular cylinder at
two values of Reynolds number (Re=100, 200) is considered. Both Reynolds numbers are
known to produce purely viscous flow with the wake, 2D at Re=100 and 3D at Re=200. A
combined finite-difference/spectral method solution technique will be used with time advanced
using a fractional-step method.

2. ANALYSIS

2.1. Go6erning equations

To describe the viscous transition from a 2D to a 3D wake in a steady approach flow past
a fixed circular cylinder, the nondimensional versions of the continuity equation and the
Navier–Stokes equation for an incompressible fluid are used,

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1003–1022 (1998)
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9 ·v=0 (1)

and

(v
(t

+ (9×v)×v= −9F+
2

Re
92v, (2)

where v is the nondimensional velocity vector, t is the nondimensional time, F is the
nondimensional pressure (including the kinetic energy) and Re is the Reynolds number
defined earlier. In defining these nondimensional terms, the velocity scale is the approach
velocity U, the length scale is the cylinder radius R, and the time scale is R/U. The
pressure term is

F= (p/rU2)+ (v ·v/2U2),

where p is the dimensional pressure and r is the constant fluid density. In the actual
computational scheme, the polar cylindrical form of Equations (1) and (2) are used.

The initial conditions for this problem are

u(r, u, z, 0)=
�

1−
1
r2

�
cos u, (3)

6(r, u, z, 0)= −
�

1+
1
r2

�
sin u, (4)

and

w(r, u, z, 0)=0, (5)

where U, the freestream velocity, has been set as unity and the dimensionless velocity
components are u, 6, and w in the r-, u-, z-directions, respectively.

The boundary conditions are

u(1, u, z, t)=6(1, u, z, t)=w(1, u, z, t)=0 on the cylinder. (6)

The inflow boundary condition is the uniform velocity at all inflow points. Special treat-
ment of boundary conditions is necessary at the outer boundary (r��). For steady ap-
proach flows, a boundary condition is required that does not interfere with the passage of
vortices or adversely influences the flow in the inner field. The outflow boundary conditions
will be specified after the numerical representation is discussed.

In the circumferential direction, the natural periodic boundary condition applies,

f(r, u+2p, z, t)= f(r, u, z, t), (7)

where the functional f( ) refers to all three velocity components, u, 6, and w.
The boundary conditions in the axial directions are not as straightforward as in the other

two directions. Periodic conditions will be used in this direction also,

f(r, u, z+Z, t)= f(r, u, z, t), (8)

where f( ) again refers to all three velocity components and Z is the imposed spanwise
wavelength or its multiple. However, the natural wavelength changes with flow conditions
and is unknown, so some judgements are necessary in determining the wavelength.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1003–1022 (1998)
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3. THE NUMERICAL REPRESENTATION

A mixed finite-difference and Fourier spectral representation of the physical problem in space
is used. There are two dimensions in the physical model that have periodic boundary
conditions. So, use of the Fourier spectral approximation in these dimensions brings signifi-
cantly reduced computational cost to obtain 3D solutions because of the accuracy of the
Fourier spectral methods.

The finite-difference representation is chosen for the radial direction because of its simplicity
in implementation compared with the Chebyshev spectral approximation, which would be used
if a spectral approximation were chosen in this direction with nonperiodic boundary condi-
tions.

3.1. Fractional step method

A second-order accurate fractional-step method is used to discretize the governing equations
in time. As mentioned earlier, this fractional-step method is a combination of the ideas of
Karniadakis et al. [1] and Kim and Moin [2]. In this approach, an intermediate velocity, v̂, is
first obtained by omitting pressure and using the second-order Adams–Bashforth scheme on
the convective terms and the Crank–Nicolson scheme on the viscous terms. This intermediate
velocity is corrected from a pressure Poisson equation to satisfy the continuity equation.
Finally, the boundary conditions on velocity are applied to get the velocity at the next time
step.

The intermediate velocity, v̂, is obtained from

v̂−vn

Dt
= −

1
2

(3Nn−Nn−1)+
1
2

Ln, (9)

where the superscripts refer to the time step, N represents the convective terms in (1), and L
represents the viscous terms. The intermediate velocity is corrected by pressure to obtain a
second intermediate velocity, ṽ, from

ṽ− v̂
Dt

= −9Fn+1/2. (10)

Finally, the velocity at time step n+1 is obtained by

vn+1− ṽ
Dt

=
1
2

Ln+1. (11)

In Equation (10), the pressure head, F, is unknown. Since the intent is to satisfy the continuity
equation for time step n+1, the divergence of Equation (11) is taken and set

Qn+1=9 ·vn+1=0, (12)

and the following is obtained,

Q0 =9 · ṽ=0. (13)

Then the divergence of Equation (10) is taken and Equation (13) is applied to get

92Fn+1/2=
9 · v̂
Dt

. (14)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1003–1022 (1998)
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After Fn+ l/2 is found from Equation (14) with appropriate boundary conditions (see Equations
(16) and (17)), ṽ and vn+1 can be calculated from Equations (10) and (11), respectively. No
boundary conditions are necessary for either of the two intermediate velocities.

Although the divergence-free condition of the velocity is used at the next time step, Equation
(12), to obtain the equation for pressure and the second intermediate velocity, a zero
divergence of vn+1 is not automatically achieved because the continuity equation and the
momentum equations have been uncoupled. Taking the divergence of Equation (11) and
taking ṽ to be divergence-free, the equation that is satisfied by the divergence of vn+1 is

Qn+1

Dt
=

1
Re

92Qn+1. (15)

This equation shows that the divergence of vn+1 satisfies a numerical boundary layer equation
[1]. The divergence (Qn+1) is zero only if it is zero on the boundary. For no-slip boundaries,
it is difficult to control the divergence in the computational field. If not, the divergence will
decrease with the normal distance from the boundary proportional to O((Dt/Re)−1/2). The
divergence in this numerical boundary can be O(Dt), whereas the divergence in other parts of
the flow field is O(Dt2). This could lead to large divergence or inaccurate solutions for some
problems, especially if the solution for pressure needs to be accurate near solid walls, such as
when fluid forces are of interest.

To control this time-splitting error, the consistent scheme developed by Karniadakis et al. [1]
is used on the boundary condition for pressure on solid boundaries that have no velocity, i.e.,

(F
(n

= −
2

Re
n ·9×(9×v), (16)

where n refers to the direction normal to the wall, and n is the unit normal vector. Karniadakis
et al. [1] and related work showed that this ‘rotational’ boundary condition is superior to the
traditional boundary condition,

(F
(n

=
2

Re
n ·92v, (17)

in that it eliminates the first-order splitting error that Equation (17) introduces.
In the implementation of the fractional-step procedure, a slight change in the final step,

Equation (11), is made so that efficient tridiagonal solvers can be used and iteration on vn+1

is avoided. The viscous term in Equation (11) is replaced by

Ln+1=
2

Re
(92vn+1−Sn+1+2Sn−Sn−1), (18)

where

S=
�

−
2
r2

(6

(u
er+

2
r2

(u
(u

eu

�
,

with er and eu being the unit vectors in the radial and circumferential directions, respectively.
This treatment introduces an error, second-order accurate in time, which is consistent with the
time-discretization accuracy. In flows with solid boundaries and high velocity gradients in
some regions, the effect of this error is not significant because, when viscous terms are
important, the second-order derivatives are the dominant parts in these terms. The terms
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represented by S are only first-order circumferential derivatives, and therefore are small. In
terms of the control of the divergence of velocity, the different treatments of S also only
adds a term which is second-order in time to Equation (15).

3.2. Fourier spectral method

Because there is only one direction (the radial direction) which does not have a periodic
boundary condition, a combined Fourier spectral approximation and finite-difference scheme
are used to discretize the system of equations, Equations (9)–(14), in space. The three velocity
components and the pressure can be expressed in general as functions of time and space. Let
f(r, u, z, t) represent any of the velocity components or the pressure and decompose f( ) as

f(r, u, z, t)= %
L/2−1

l= −L/2

%
N/2−1

k= −N/2

fkl(r, t) eiku ei2plz/Z, (19)

where i=
−1, N and L are, respectively, the number of collocation points in the circumfer-
ential and axial directions, and Z is the length of the computational domain in the axial
direction.

In these formulae, the terms with l= −L/2 or k= −N/2 are present because of the fast
Fourier transform, which is used extensively in the solution process and requires an even
number of terms with which to work. In calculations, the coefficients of these terms are always
set to zero to satisfy the conjugate symmetry of the Fourier coefficients of real variables.

3.3. Transformed equations

In the radial direction, the co-ordinate transformation,

r=ej, (20)

is used to generate a finer physical mesh near the wall of the cylinder than further away from
it. Thus, a uniform mesh size of Dj can be specified in the computational domain because the
variations of flow variables are greater near the wall.

From now on, the transformed equations and boundary conditions presented will be in the
transformed system of t, j, and the Fourier coefficients. The equations to solve in this system
are

1
a

v̂kl−vkl
n

Dt
= −

1
2

(3Nkl
n −Nkl

n−1)+
1
2

Lkl
n , (21)

� 1
r2

(2

(j2−
k2

r2 −s2l2�Fkl
n+1/2=

(9 · v̂)kl

Dt
, (22)

ṽkl− v̂kl

Dt
= −

�1
r
(

(j
er+ ikeu+ islez

�
Fkl

n+1/2, (23)

and

vkl
n+1− ṽ

Dt
=

1
2

Lkl
n+1, (24)

where −L/2+15 l5L/2, −N/2+15k5N/2−1, and er, eu, and ez are the unit vectors in
the radial, circumferential, and axial directions, respectively.

The calculation of the nonlinear terms in Equation (21) is the most time-consuming part in
the computation. First the Fourier coefficients of velocity and vorticity need to be calculated,
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then their physical values at the collocation points need to be obtained. The physical values of
the nonlinear terms are then obtained at these collocation points. Finally, they are transformed
to the wave space to give the Fourier coefficients of the nonlinear terms. The Poisson equation,
which usually takes most of the time in totally finite-difference formulations, is reduced to a
system of tridiagonal equations, as will be seen later. The operation count for solving the Poisson
equation is therefore O(MNL), in contrast with the operation count for the nonlinear terms,
which is O(MNL 1og2(NL)) when the fast Fourier transform (FFT) is used. The rotational form
of the convective terms is chosen because of its stability features in spectral approximations. (See
Canuto et al. [25]). It also has an advantage over the traditional form (v ·9v) in computational
time needed. The rotational form needs a total of nine FFT operations (one inverse FFT for
each of u, 6, w, vr, vu, and vz ; one FFT for each component of the non-linear terms) per time
step. The traditional form needs a total of 15 (one inverse FFT for each of the three velocity
components and their nine derivatives; one FFT for each of the component of the convective
terms) per time step. The utilization of the rotational form of the convective terms results in
a significant reduction in computational time.

As is well-known, the computation of non-linear terms introduces aliasing errors unless special
steps are taken for their removal. (See Canuto et al. [25]). These methods for removing aliasing
errors generally require significant increases in computational effort, especially for spectral
approximation in more than one direction. In the current implementation, the aliasing errors
are not specifically removed. These aliasing errors are small in the flow conditions of interest
here. The aliasing errors are most severe in the direct simulation of the transition process [26].

3.4. Finite-difference scheme

In this study, a half-staggered grid was used, as shown in Figure 1. All of the vector components
are determined at the intersection of solid lines, whereas all of the scalars (pressure, divergence,
etc.) are defined on points which are the intersections of solid and dashed lines. This grid is chosen
over the fully staggered grid, where each vector component is defined at half a grid, offset in
its direction from the points where scalars are defined, because the accurate calculation of the

Figure 1. The half staggered grid in the (r, u)-plane. The grid system is the same on the (r, u)-plane for each axial
collocation point. Vectors are defined at the intersections of solid lines, and scalars are defined on the intersections of

solid and dashed lines.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1003–1022 (1998)
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fluid forces on the cylinder is desired, and therefore the satisfaction of no-slip boundary
conditions becomes important. The half-staggered grid in combination with the viscous
correction step described earlier will ensure the no-slip and no-penetration conditions are exactly
satisfied. In a fully staggered grid, there will always be a slip velocity. The normal components
of the vectors are defined on the wall to make the boundary condition of pressure defined on
the wall and pressure defined in the flow field. The circumferential and axial components of
vectors, including velocity, are thus defined at half a grid point away from the wall. Although
the resulting slip velocity is small, it changes the shear stress on the wall and thus changes the
magnitude and phase of the fluid forces due to shear stress. Patankar [27] has an enlightening
discussion on the use of staggered grids.

It would be ideal if the pressure can also be defined on the wall so that a more accurate
calculation of fluid forces due to pressure can be made. The literature shows that a
straightforward implementation of the second-order centered finite-difference scheme of the
pressure gradient on this grid system will result in the uncoupling of odd- and even-numbered
grid points, thus producing numerical oscillations in the pressure field, which is the so-called
checker-board behavior. This problem can be overcome if a compact difference scheme is used
(see Lecointe and Piguet [28]). Compact difference schemes use all the grid points to determine
derivatives of a variable, so the uncoupling grid is not an issue. However, since the boundary
condition on pressure is on its normal derivative at the wall, defining the pressure at the boundary
will result in the discarding of the source terms of the Poisson equation at the boundary. At
best, these sources can only be incorporated into the solution indirectly. This, in turn, implies
that the pressure correction in divergence control is not accomplished at the boundary. Thus,
for complex flows with high gradients near the wall, the continuity equation is severely violated,
and the numerical simulation will usually fail because of large errors in mass conservation.
Therefore, the pressure on the wall is not easily defined or at the same points as the velocity
is defined. A half-staggered grid thus gives the best balance between different factors of concern
in the current study. Then the pressure on the wall for both the calculation of velocity and fluid
forces must be found. Fortunately, the variation of pressure near solid walls is not as steep as
that of velocity. Thus, an extrapolation procedure, which is based on the pressure values in the
flow field and the pressure gradient on the wall, is used to obtain the wall pressure.

3.5. The pressure equation

The discrete Laplacian operator for the Poisson equation needs to be consistent with the
gradient and divergence operators, which are, respectively,

(9p)i,kl=
pi+1/2,kl−pi−1/2,kl

riDj
er+ j

�k
ri

eu+slez
� pi+1/2,kl+pi−1/2,kl

2
, (25)

and

(9 ·G)i+1/2,kl

=
1

ri+1/2

�Ai+1,kl−Ai,kl

Dj
+

Ai+1,kl+Ai,kl

2
�

+ j
k

ri+1/2

Bi+1,kl+Bi,kl

2
+ jsl

Ci+1,kl+Ci,kl

2
, (26)

where G is a vector and A, B, and C are its radial, circumferential, and axial components,
respectively; j=
−1 to avoid confusion of indices. Combining Equations (25) and (26), the
discrete Laplacian operator for the Poisson equation is obtained. For each pair of modes (k, l),
the Poisson equation for the pressure term, F, is now a tridiagonal algebraic equation.

The Poisson equation for F and the boundary conditions (which are a combination of the
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J. ZHANG AND C. DALTON1012

Neumann boundary conditions and periodic boundary conditions) cannot uniquely determine
F. The solutions of the Poisson equation differ by an arbitrary constant, reflecting the lack of
thermodynamic meaning of pressure in incompressible flows. In the numerical implementation,
the end row of the coefficient matrix of the system of algebraic equations is reduced to all zeros
by the forward sweep of the Thomas algorithm for the tridiagonal equation when both k and
l are zero. The arbitrary constant is set by setting the Fourier coefficients of the mode k= l=0
at the end of the forward sweep (i=3/2 in the calculations since the forward sweep is from the
outer boundary to the wall of the cylinder) to zero.

3.6. Outflow boundary conditions

Boundary conditions for pressure at the outer boundary are not a trivial issue in this study,
as they may influence the inner flow by the incompressible nature of the fluid. Development of
appropriate boundary conditions for pressure and velocity at the outer boundary, especially at
outflow or mixed inflow–outflow boundaries, have been discussed by many researchers, such
as Sani and Gresho [29] and Mittal and Balachandar [30]. However, because of the complexity
of the problem and the large variation of flow conditions, no widely applicable formulation of
boundary conditions at numerically truncated boundaries (open boundaries) is currently
available.

The effect of the pressure boundary condition needs to be minimized, especially its 2D effect,
so that the 3D instabilities are not numerically suppressed. Ideally, pressure should be determined
by the flow. The boundary conditions should reflect this nature. Thus, the radial derivative of
pressure, derived from the radial component of the momentum equations, is used as the boundary
condition for steady approach flows.

The outflow boundary conditions for velocity should be such that the boundary condition
should not interfere with the outflow passage of vortices and also should not affect the global
properties of the flow, such as drag, lift, and vortex shedding. Thus, the following conditions
are used at the outflow boundary

((vr)kl

(r
=
((vu)kl

(r
=
((vz)kl

(r
=0, (27)

and

(2ukl

(r2 =
(ukl

(r
=0, (28)

where vr, vu, vz represent the three vorticity components, as determined from the computed
velocities, and kl represents the kl mode in the spectral representation. Allowing the vorticity
to pass through the boundary undisturbed by the boundary is the most natural boundary
condition that can be applied.

4. CALCULATION OF THE FORCE COEFFICIENTS

The fluid forces on the cylinder can be decomposed into two parts: the contributions due to
pressure and shear stress. Over the entire cylinder length, the force coefficients are

CD= −
1
Z
& z

0

& 2p

0

�
p cos u+

2
Re

vz sin u
�

r=1

du dz (29)
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Figure 2. Axial velocity at four different locations for Re=100. The co-ordinates shown are (r, u, z).

and

CL= −
1
Z
& z

0

& 2p

0

�
p sin u−

2
Re

vz cos u
�

r=1

du dz, (30)

where CD and CL are the drag and lift coefficients, respectively, Z is the cylinder length, and
p and vz are evaluated on the cylinder surface. Since both pressure and vorticity are
z-dependent, sectional values of both drag and lift can be determined by suppressing the
z-direction integration in Equations (29) and (30) and using local (at a particular value of z)
distributions of p and v.

5. NUMERICAL RESULTS

5.1. Re=100

At Re=100, the physical flow is 2D with an unsteady wake. A 3D simulation was
performed and the velocity from the start of the calculation t=0 to t=5 was perturbed. The
grid had 128 radial points and 128 and 32 Fourier collocation points in the circumferential and
axial directions, respectively. The outer boundary was at 21.3 cylinder diameters, the cylinder
length was set at Z=11 and the time step was 0.01. The adequacy of these values will be
discussed later. Figure 2 shows the behavior of the axial velocity with time for four different
(r, u) positions. The damping of the perturbation with time is quite clear from the plots in
Figure 2, i.e., the resulting calculated flow is clearly 2D. Figure 3 shows the contours in the
plane z=0 at t=100. There is essentially no distortion of the vortices as they pass through the
outflow boundary which indicates the appropriateness of the outflow boundary conditions
used. Figure 4 shows that the vz isolines are 2D at t=100, i.e., the effects of the axial
perturbations have been completely damped. These isolines are plotted in the computational
plane rather than the physical plane to show the radial variation of vorticity more clearly,
especially in the wall region. The line j=0 represents the cylinder wall and j=3.75 represents
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Figure 3. Contours of vz at t=100 and z=0 with Re=100.

the outflow boundary. The fact that the isovorticity lines are parallel to the cylinder wall and
perpendicular to the direction of flow indicates that the flow in the wake is 2D and that the
perturbations have been damped. The drag and lift coefficients, shown in Figure 5, agree quite
well with the experimental data. The drag coefficient has an average value of 1.32, which
compares well with the experimental value of 1.3. The lift coefficient has a peak of 0.32. The
computed Strouhal frequency is 0.154, which is within the experimental range of 0.15–0.16 at
Re=100.

5.2. Re=200

The physical flow at Re=200 has a 3D viscous wake. As stated earlier, the transition from
a 2D to a 3D wake occurs at a Reynolds number of about 170. Thus, the test of the 3D
capability of the numerical method is the growth of the disturbances at Re=200.

Figure 4. Isolines of vz on the computational plane at t=100 and u=0 with Re=100.
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Figure 5. Drag and lift coefficients for steady approach flow at Re=100.

First, the Re=200 case was computed as a 2D flow to discuss convergence and stability.
Table I shows the comparison of three different mesh sizes; with the mesh of 160×128
yielding the best comparison with the experimental data. Table I also shows a time-step
comparison for the 160×128 mesh, which indicates that a time step of 0.01 is adequate for a
stable converged solution. (The calculation did become unstable for a time step of 0.02). Each
of the calculations shown in Table I was carried to a dimensionless time of t=100. To further
illustrate convergence, the maximum divergence of velocity (at i=1) is presented in Figure 6
which shows that the 160×128 mesh has produced a constant and satisfactory value of the
divergence. Since the Cray C90, with its 64-bit floating-point calculations, was used for these
calculations, the effect of round-off error was deemed to be insignificant for both 2D and 3D
flows. The physical flow at Re=200 has an unsteady wake formed by shed vortices. The
vortex-shedding phenomenon was allowed to happen naturally, so the occasion of a shed
vortex did not occur at precisely the same time for each mesh system. Therefore, global
quantities, such as drag and lift, were used as the criteria for convergence as opposed to the
actual variables being computed.

The effect of the outer boundary on the flow was examined by considering two different
outer boundary lengths in the transformed co-ordinate system. These two lengths led to outer
boundary lengths of r�=99.48 and 198.34 in the physical plane. There was no discernible

Table I. Averaged drag coefficient (CD), peak lift coefficient (CL), and
Strouhal frequency (S) for steady approach flow at Re=200 from two-dimen-

sional calculations with Dt=0.005 and r�=99.48

CL,C SC SEM N Dt CD,C CD,E

0.1980.681.22–1.31.32 0.178–0.1960.005128160
0.69 0.19780 64 0.005 1.34

0.00532 0.16540 0.55B1.1
0.1970.681.310.0112816

Subscripts C and E refer to calculated and experimental values respectively.
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Figure 6. Maximum divergence of velocity at i=1 for steady approach flow at Re=200. Divergence is defined on
i+1/2. In the two-dimensional calculations, r�=99.48 and Dt=0.005.

difference in the drag and lift plots for the two different outer boundaries for Dj=0.02875 and
N=128 and a time step of 0.005. Thus, one can conclude that an outer boundary of
r�=99.48 is sufficiently large.

In the physical flow for Re=200, there are spanwise (axial) periodic structures which have
developed. Thus, an axial length of the cylinder, that is sufficiently long so that the periodic
boundary condition in the axial direction can be satisfied, must be chosen. Obviously, some
error will be introduced since the assumed wavelength will not be an integer multiple of the
natural wavelength. Selecting the axial computational domain long enough will allow the
simulation to amplify those modes that are closest to the natural wavelengths. Careful tests
have revealed that an axial length value of Z=15 is sufficient for the axial modes to be
captured accurately.

The 3D vorticity results for Re=200 are shown in Plates 1–3 for a mesh of 160 radial
divisions and 128 and 48 Fourier collocation points in the circumferential and axial directions,
respectively. The time step was 0.002, the outer boundary was 99.48 radii and the axial length
was 15. The calculations took 15 s per time step on the Cray C90 at the Pittsburgh
Supercomputer Center. The calculation speed was in excess of 400 MFlops. In Plates 1–3, the
vorticity value being shown is vz=90.5 at two different times, t=102.5 and 105. Plate 1
shows the clear 3D behavior of the vortex sheet being shed from the cylinder near side at
t=102.5 while Plate 2 shows the same behavior at t=105. Plate 3 shows the backside view
of the situation depicted in Plate 2. The vortex sheets on the front side of the cylinder are 2D
as expected and, after separation, a slight spanwise variation of the vortex sheet has developed.
The three-dimensionality continues after the vortices have been shed. Vortices which are two
shedding-cycles old, shown at the right in these figures, have well developed 3D variations
along their isosurfaces. These variations show that the spanwise wavelength is about half the
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length of the spanwise computational domain, i.e., the wavelength is 3.75 diameters. This
agrees reasonably well with the experimental observation of 3 to 3.2 diameters [7,10]. An
interesting observation is that the shedding of vortices has a slight difference in time along the
span, as shown in Plate 2. One result of this difference is the phase difference in the forces at
different sections of the cylinder.

One of the most influencing factors on the difference of predicted wavelength and experi-
mental observations is the length of the spanwise computational domain (Z), chosen because
a forced periodicity is used in the spanwise direction. If a very large Z is used, the difference
between calculation and experiment will be much smaller. However, this is not feasible
computationally because many more spanwise modes are necessary to represent the dynamics
of the 3D flow accurately. Later it will be shown that, although the primary 3D structures have
a wavelength of 3.75 diameters, many modes with smaller wavelengths are at relatively the
same strength compared with each other and are not very small in strength when compared
with the primary spanwise structures. This implies that, if a value of Z is used that is about
twice the physical wavelength, four or five modes in the spanwise direction may be enough to
simulate the primary 3D structures. However, to get a more accurate view of the impact of
three-dimensionality, many more modes (such as the 24 modes used) are necessary. The 3D
mixing and the tilting and stretching of vortices, which are distinct features distinguishing 3D
simulations from 2D simulations, can only then be simulated approximately. These factors
make it extremely difficult to predict accurately both spanwise wavelengths and the dynamics
of 3D flow. It is believed that the errors associated with the inaccurate estimation of spanwise
wavelength are of no significance because they mainly imply a numerical scaling of the 3D
behavior in the wake, but the physics of the flow should remain correct. This effect is much
weaker than the mixing and vortex tilting and stretching. It is highly advisable, though, to be
very cautious in estimating for different flow situations what the minimum length of the
spanwise computational domain can be without seriously affecting the solution.

Plates 4 and 5 show the isosurfaces of the streamwise vortices, vx, at t=102.5 and 1.05. The
red isosurfaces have a vx value of 0.1 and the blue ones have a vx value of −0.1. Again it
is seen that three-dimensionality is not present at the front part of the cylinder. At the
recirculation region behind the cylinder, streamwise vortices form several periodic and interlac-
ing structures. When the flow develops while flowing downstream, more and more variations
develop in the structures of streamwise vortices. Eventually, the 3D mixing is very strong
everywhere in the wake as the interlacing isosurfaces fill the whole wake. Plate 6 shows the
contour lines for streamwise vorticity at three radial distances away from the center of the
cylinder, r=1.3, 3, and 10. The locations of the spanwise structures correspond to the
locations of the axial vortices in the wake. These structures develop while the shed vortices are
being convected downstream.

Figures 7–10 show the spanwise power spectrum of velocity at three locations in the
centerline of the wake, i.e., r=1.5, 10, and 20 with u=0, and two other locations in the region
of attached vortices, i.e., r=1.5 with u=p/4 and 7p/4. From Figures 7 and 8, it is seen that
the spanwise wavelength varies very little with cross stream locations. In contrast, Figures 7,
9 and 10 show that the spanwise wavelength increases with streamwise locations, from 2.5
diameters near the cylinder (r=2.5) to 3.2 diameters at five diameters away from the center of
the cylinder. It seems that the same wavelength stabilizes at 3.2 diameters after r=10, as
Figure 10 shows the same wavelength. These differences are more obvious in the spectra for w
than for u and 6 because the latter are controlled not only by three-dimensionality, but also by
the primary 2D structures. As a result, the behaviors of the wavelengths for u and 6 are more
complex than that of w. These spectra all show large values at a wavelength of 15, which is the
size of the spanwise computational domain. This feature shows that a large part of the
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Figure 7. Spanwise power spectra of velocity at r=1.5 and u=0 for Re=200 and t=105.

spectrum for each velocity component is the part which is invariant with z (mode l=0). For
u and 6, it is obvious that these invariant parts reflect the primary flow. For w, the existence
of a strong l=0 mode is because, at a particular time and a particular (r, u) location, there is
a nonzero average axial velocity. This average may switch signs and change values as vortices
pass by, or for the points close to the cylinder, as the vortex shedding process makes the size
of attached vortices change.

The 3D simulation corrects the trend to overpredict drag coeffficients and Strouhal
frequency in 2D simulations. Figure 11 shows the drag and lift coefficients from both 2D and
3D calculations. Both the average drag and the maximum lift coefficients from the 3D
simulations are smaller than the corresponding values from 2D simulations with the same time

Figure 8. Spanwise power spectra of velocity at r=1.5 and u=p/4 (solid line) and 7p/4 (solid line with dots) for
Re=200 and t=105.
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Figure 9. Spanwise power spectra of velocity at r=10 and u=0 for Re=200 and t=105.

step and spatial resolution in the (r, u) plane. The average CD is 1.32 with 2D simulation and
1.28 with 3D simulation, compared with experimental values ranging from 1.3 to 1.22 [31–32].
The maximum lift coefficient is 0.68 with 2D simulation and 0.61 from 3D simulation. The
difference comes from the phase difference and thus the canceling of sectional fluid forces in
3D simulations, which is a physical reality and is absent in 2D simulations. Although the
vortex strength and sectional fluid forces are of about the same magnitude at different
spanwise locations, the 3D mixing of the wake makes the averages smaller in magnitude. In
Figure 12, it is seen that the sectional drag coefficients can have magnitudes larger than the
average drag coefficient. There are phase differences between the sectional drag coefficients,
which is the reason for the smaller average. Similar situations are present in the sectional lift

Figure 10. Spanwise power spectra of velocity at r=20 and u=0 for Re=200 and t=105.
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Figure 11. Comparison of drag and lift coefficients obtained by two- and three-dimensional simulations with same
time step and spatial resolution in the (r, u)-planes for Re=200.

coefficients, shown in Figure 13. This phase difference corresponds to the phase differences in the
shedding of vortices along the span, as mentioned earlier.

The Strouhal frequency is also smaller in the 3D simulation than the 2D simulation. From the
3D simulation, the Strouhal frequency is 0.190, and from the 2D simulation, it is 0.199. The 3D
simulation gives better agreement with experimental values of 0.178–0.196 [4].

The lower value of the Strouhal frequency in the 3D simulation is due to the z-direction transfer
of momentum in the wake. The rate of growth of the wake vortices is apparently inhibited by the
development of the axial component of velocity which is not present in the 2D simulations. It is
conjectured that the intensity of the wake vortices is diminished in 3D due to the axial momentum
transfer, leading to a slight decrease in shedding frequency as compared with the 2D case.

Figure 12. Average and sectional drag coefficients for Re=200 at z=Z/2, 5Z/8, 3Z/4, and 7Z/8.
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Figure 13. Average and sectional lift coefficients for Re=200 at z=Z/2, 5Z/8, 3Z/4, and 7Z/8.

6. CONCLUSIONS

A 3D primitive-variables solution of the incompressible Navier–Stokes equations was per-
formed using a fractional-step method to advance time. The physical problem was flow past
a circular cylinder at Re=100 and 200. The Re=100 case is a 2D flow and the computed
results agreed quite well with the experimental values.

At a Reynolds number of 200, the wake shows distinct 3D structures with spanwise
wavelength of 3.75 diameters of the cylinder. The spanwise wavelength increases with down-
stream locations and stabilizes after about ten diameters away from the cylinder. Three-di-
mensionality is shown to not only increase the mixing in the wake, but also tilt and stretch
the vortices in the Karman vortex sheet. The 3D simulation produces smaller global quanti-
ties (with better agreement with experimental values), such as drag and lift coefficients and
Strouhal frequencies, than the corresponding 2D simulation with the same spatial and
temporal resolution. The difference is attributed to the phase difference of flows in different
spanwise locations caused by three-dimensionality and the 3D mixing, which are both
absent in the 2D simulation. It is concluded that three-dimensionality is an important and
inherent part of the steady approach flow with higher than moderate Reynolds number and
that 3D simulations are necessary for reliable modeling of these flows.

However, 2D simulations are much less expensive than 3D simulations; so, if a cautious
estimate is made on the effect of the lack of the 3D features, one can still use 2D
simulations to obtain a qualitative understanding of the flow.
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Plate 1. Isosurfaces for axial vorticity at Re=200 and t=102.5. The red surfaces are for vz=0.5 and the light blue
surfaces are for vz= −0.5.

Plate 2. Isosurfaces for axial vorticity at Re=200 and t=105. The red surfaces are for vz=0.5 and the light blue
surfaces are for vz= −0.5.
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Plate 3. A view from the back of the isosurfaces in Plate 2. The direction of the freestream flow is from right to left
in this figure.

Plate 4. Isosurfaces for streamwise vorticity at Re=200 and t=102.5. The red surfaces are vx=0.1 and the light
blue surfaces are for vx= −0.1.
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Plate 5. Isosurfaces for streamwise vorticity at Re=200 and t=105. The red surfaces are for vx=0.l and the light
blue surfaces are for vx= −0.1.

Plate 6. Contour lines for streamwise vorticity at r=15, 3, and 10; t=105; and Re=200.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26 (9) (1998)


