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Atmospheric refraction effects in Earth remote sensing
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Abstract

Just as refraction moves the apparent positions of stars from their true ones, it slightly distorts the view of Earth from
space, as well as affecting the angle at which sunlight or moonlight illuminates its surface. The astronomer’s problem is to
correct the apparent position of a star for refraction, relating the position as observed from Earth to the true position. By

Ž . Xcontrast, the space observer’s problem is to obtain the true refracted surface zenith angle z of illumination or of viewing,
when the zenith angle z of the ray in space is known, and to correct for the apparent horizontal displacement of the surface0

point being viewed. This paper solves the problem of the refraction angle for a spherical atmosphere by a simple, analytic
Ž . Ž X.solution, depending only on the surface index of refraction m namely: sin z sm sin z . The problem of the apparent0 0 0

horizontal displacement of the point viewed is also solved analytically, but approximately, because the result depends
weakly on an assumed vertical structure of the atmosphere. The results are useful primarily in cases where observation must
be done at large zenith angle, or low Sun angle. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. The problem

In space sensing of terrestrial data in optical
wavelengths, atmospheric refraction affects the angle

Ž .of solar or lunar illumination at the earth, the
viewing angle, and the apparent position of the
lookpoint, or terrestrial point being viewed. Rays of
light striking the atmosphere are refracted toward the
zenith as they descend, and outgoing rays away from
the zenith as they ascend. In both cases, the ray is
closer to the zenith lower in the atmosphere. Thus,
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refraction introduces small corrections to both the
angles used in defining the bi-directional reflectance

Ždistribution function, or BRDF Burgess and Pair-
.man, 1997 .

The present work develops an analytic method
that determines the angle of atmospheric refraction
and the apparent displacement of the point of Earth
intersection due to refraction, assuming a spherically
symmetric atmosphere. The equation for the angle is
rigorous, and the approximation for the displacement
is accurate within a tolerance comparable to the
variations to be expected from the weather.

The method requires only four equations: one
rigorous conservation law for the product of the
geocentric distance of a point on the ray, the index of
refraction at that point, and the sine of the zenith
angle there; one geometric equation usually used, in
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astronomy, to correct eclipse and occultation predic-
tions for the heights of observatories, and two empir-
ical formulas for refraction, spliced together at 83.98

zenith angle. The empirical formulas are needed only
for determining the displacement of the ray along the
earth’s surface, not for the refraction angle. A simple
atmospheric model is provided that simulates typical
conditions at sea level and allows extension of the
algorithm to other altitudes.

1.2. PreÕious analyses

Existing studies and algorithms for refraction
ŽChauvenet, 1885; Garfinkel, 1944; Hohenkerk et al.,

.1992; Stone, 1996 were all derived from ground
based measurements of the heavens and are ex-

Ž .pressed in terms of the refracted Earth surface
zenith angle. Such algorithms are unsuited for space
observation, where the unrefracted zenith angle is
known. For ground-based observations, the lateral
displacement of the refracted ray from the prolonged
unrefracted ray along the Õertical was calculated in
order to correct eclipse predictions for the height of
the observatory. In the case of space observation, the
Õertical displacement is of less interest, but the
observer needs to know how far the true point of
Earth contact of the ray is moved along the horizon-
tal by refraction. The two problems are related
Ž .Section 2.2.3 . The analysis presented here resulted
from re-analysing the classical refraction theories,
designed for terrestrial observation, in order to derive

Žcorrections to geolocation algorithms Noerdlinger,
.1994 in the Mission to Planet Earth EOSDIS

Ž .NASA, 1998 Science Data Processing Toolkit
Ž .NASA, 1997 , an extensive set of software used in
processing remote sensing.

At first glance, it might appear difficult to replace
the various ad hoc recipes for refraction with one
that depends only on the angle of incidence. It is not
possible to assume plane geometry — a spherical
atmosphere must be used. Indeed, the Moderate Res-

Ž .olution Imaging Spectrometer MODIS experiment
ŽBarnes and Salomonson, 1993; Hoyt and Storey,

.1994; MODIS, 1998 of Mission to Planet Earth
relies on a FORTRAN finite difference program, origi-
nally written by Dr. Douglas Hoyt of Research Data
Ž .RDC , and modified by Mr. James Storey of STX,
The authors kindly provided their program, which

Ž .has been used as a check Section 4 on the present
analytic work. A listing of the program is available
from the author on request. It has been long recog-

Ž .nised Chauvenet, 1885 that there are certain con-
servation laws at work, even for a spherical atmo-
sphere. It has been possible, by adding a little further
analysis to Chauvenet’s, to devise an equation that
yields the zenith angle at the surface analytically, as
a function of the unrefracted angle of incidence and
the surface index of refraction only. The displace-
ment of the terrestrial point from the unrefracted one
is then found using empirical approximations. The
extremely simple atmosphere model used here serves
only to obtain the surface index of refraction for any
specified elevation off the geoid; it is not used to
integrate differential equations for the ray.

1.3. Limitations of scope and assumptions

1.3.1. Geometrical restrictions
In the astronomer’s problem, differential refrac-

tion distorts a highly refracted image and spreads
each point into a small, vertical spectrum of the
source; similarly, for the space observer, the bending
and displacement of near grazing rays will be strongly
wavelength and angle dependent. The results of this
paper can be adapted to such problems, but the
present study is confined to a single ray at a single
wavelength. Limb sounders employ rays that refract
around the earth without striking the surface, a case
not treated here. This study does not directly treat
airborne observation, but it is adaptable, for our key

Ž .result is a simple conservation law, Eq. 9 , which
holds in any case. All geometrical calculations are
based on a spherical Earth and a spherically symmet-
ric atmosphere. The oblateness of the earth should be
taken into account in finding the earth point of
interest from the original space data but once that is
done, the loss of accuracy by reverting to a spherical
atmosphere herein is negligible. Thus, the latitude
dependence that is introduced later idealises the
problem, by assuming that within the region tra-
versed by the ray, a spherically symmetric approxi-
mation suffices. This is justified by noting that a ray
which traverses a substantial range in latitude must
be a grazing ray, and so must be subject to large
fluctuations from weather that would dominate the
error in using a spherical model. Fluctuations due to
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weather cannot be treated by the methods presented
here. See also Section 1.2.

1.3.2. Use of mean waÕelength and atmospheric
conditions

All the algorithms derived here will be for
monochromatic light, ignoring scattering and absorp-
tion. The approximate equations adapted from vari-
ous sources for the classical total refraction as a
function of the refracted angle, are for ‘‘white light’’,
which we can assume is centred in the approximate
range 460 to 530 nm. In Section 2.2.3.2 selected
references are given to the recent literature on refrac-
tion, which could be used to modify our equations
for different wavelengths, temperatures, and different
water vapour contents.

1.3.3. Terrain effects are represented only as altitude
differences

Although our model allows for the variation of
index of refraction due to changes in altitude, it does
not, by itself, account for the effect of terrain geome-
try on the intersection of the ray with the earth’s
surface. The geometric displacement from the inter-
section of the ray with an ideal ellipsoid is often a
much larger effect than refraction! In imaging a
plateau at 2000 m altitude, at zenith angle of, say,
458 the lookpoint would be displaced 2000 m due to
geometry, and only about 4 m due to refraction.
There are simple ways to handle the geometrical
correction for a rather flat plateau. For example,
assuming that one knows the approximate location,
one can find the intersection of the line of sight with
an earth ellipsoid inflated to the required altitude. If
the terrain is jagged, however, iterative methods

Ž .appear to be needed Nishihama et al., 1997 . In
principle, for this case, the refractive vertical correc-
tion to the ray path could be significant, because it
could cause a ray to hit or to miss a mountain peak,

Ž . Ž .for example. It is believed that Eq. 2 or Eq. 10 ,
below, could be adapted to dealing with the vertical

Ž .displacement of the ray, because Eq. 2 is used to
correct eclipse observations in a like manner, and

Ž .Eq. 10 is its equivalent for space sensing. These
equations, however, have not been tested in the
space sensing context. Either one of them requires an
empirical equation for refraction, such as is devel-

Ž . Ž .oped in Section 2.2.3, Eqs. 17 and 18 .

2. Analysis

2.1. Problem definition and notation

We shall refer to the zenith angle 1 of the ray in
space, prolonged, where it meets the earth, as the
‘‘unrefracted zenith angle’’, and that at the surface

Ž .as the ‘‘refracted or true zenith angle’’. Table 1
gives the notation for the derivations, including the
atmospheric model in Appendix A. The symbol ‘‘^’’
indicates a triangle and not an increment. Angles are
in rad unless otherwise specified. The lapse rate is
defined unsigned but acquires a negative sign in use.
The asterisk ‘‘)’’ is occasionally used for multipli-
cation, when the juxtaposition of symbols could be
confusing. As in common usage, due to the near
axial symmetry of the earth, the terms ‘‘spheroid’’
and ‘‘ellipsoid’’ are used interchangeably for figures
used to represent the earth.

In Fig. 1, a distant observer D views point PX,
which is displaced by distance d from the intersec-
tion of the unrefracted ray DP with the earth. Point O
is Earth centre. Note that there are three different
angles that we must relate: z is the zenith angle at0

the intersection of the idealised unrefracted ray with
Ž .Earth, z the zenith angle of the same unrefracted

ray at the vertical of the true, or refracted, Earth
intersection, and zX is the zenith angle of the re-
fracted ray at the earth’s surface. In this discussion,
‘‘Earth’s surface’’ means the end of the ray, be it on
the ellipsoid, on some terrain, or on a low cloud
layer. Note that the difference between z and z is0

due to the sphericity of the earth, and that, as it
descends, the ray also travels laterally. Of course, the
known quantity is z , and the required quantity is zX.0

Ž .The angle z is of interest for two reasons only: 1
the difference between z and z is needed to deter-0

Ž .mine the displacement d, and 2 the original data on
refraction were tabulated in terms of zX and fitted to

Ž X. Xa function that gave zyz from z , without regard
to z . Indeed, the conventional angle of refraction is0

z-zX, but from the standpoint of space obserÕation,

1 The units for the zenith angles and angle of refraction are left
open when they appear within a trigonometric function, or within
a linear, homogeneous equation. When the units are important, as
when numerical values are given, they are specified in each case.
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Table 1
Notation for refraction and the atmosphere models

Symbol Definitions of symbols and values of constants

Ž . Ž .A m Earth radius spherical model
Ž .a m Altitude off the geoid

Ž .a m Altitude of tropopausetropop
Ž .d m Displacement of the point viewed, along Earth’s surface

Ž .d rad Angular displacement of the point viewed about Earth centreAng

densFac Ratio of density to that at sea level rrr0

east Eastward unit vector on the Earth’s surface
2Ž . Ž .f Pa Partial pressure of water vapour 1 Pas1 Nrm s0.01 mb

2Ž .g mrs Mean sea level acceleration of gravitys9.8050
Ž .H deg Refracted ray’s elevation off horizon at Earth’s surface
Ž .h m Altitude from observation point to the unrefracted ray

Ž .Molec Mean tropospheric molecular weight ;28.825 see Appendix Amean

N Unit vector normal to the spheroid
north Northward unit vector on the Earth’s surface

Ž .P Pa Pressure
Ž .P mb Pressuremb

Ž .q m Geocentric distance of any point along the ray
Ž . Ž .r Krm Tropospheric temperature rate with altitude lapse rateL,trop

Ž . XRefr rad Conventional refraction angleszyz
X XŽ . Ž .Refr z Refr as a function of z rad

XŽ .Refr Conventional refraction angle in 8s180 zyz rpdeg

Refr Conventional refraction angle in s of arcarcsec
XŽ .Refr rad Refraction anglesz yz0 0

y1 y1 aŽ Ž . .R J k mol K Ideal gas constant s8314.3gas
Ž .T K Temperature
Ž .T 8C TemperatureC

Ž .T K Mean sea level temperaturesealevel
Ž .T K Temperature at the tropopausetropop

tempFac Ratio of temperature to that at sea level TrTsealevel

tempFac Ratio of temperature at tropopause to that at sea level T rTtropop tropop sealevel

u Unit vector along the outward rayˆ
u Projection of the u on the horizontal planeˆ ˆh

3Ž .Õ m rkg Specific volume of air; reciprocal of the density
Ž .W m Density scale height

z Zenith angle in space, relative to N at true Earth intersection
Ž .z q Running zenith angle of refracted ray relative to N

z Running zenith angle of unrefracted ray relative to N0 r

z Zenith angle in space, relative to normal at base of unrefracted ray0
Xz Zenith angle of refracted ray at the Earth’s surface, relative to N

yGG Polytropic index such that rAT in the troposphere
l Latitude
L Longitude

Ž .m Refractive index of air a function of a
m Refractive index of air at the point of observation0

3Ž .r kgrm Density of the atmosphere
3Ž .r kgrm Density of the atmosphere at zero altitude0

² :r Global average, over latitude, of r0 0

c Azimuth of the outward ray projected on the Earth

a Ž .We use the k-mole kilo mole value here, which is not an SI value. The SI system adopts a value effectively based on the gram mole
Ž .kilogram mole divided by 1000 , tantamount to an exception, for compatibility with older chemical data.
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Fig. 1. Geometry of terrestrial refraction.

the change in the zenith angle due to refraction is
z yzX.0

Again referring to Fig. 1, we see that z )z)zX.0

The difference between z and z is, however, quite0

small. Note that for very distant astronomical ob-
jects, there is a ray parallel to line DP, which if
unrefracted, would meet the earth with zenith angle
Ž . Xz not z at P . Because this ray could have been0

used in place of DP, it is understandable that no
distinction was made, traditionally, between z and0

z, except when discussing eclipses. In Fig. 44 of
Ž .Chauvenet 1885 , point D is the same as ours, but

we omit the line OD, which he draws, and we
Xinclude the line OP, which he omits. Line P T is

tangent to the ray at PX. Our usage of h, q, and m is
identical with Chauvenet’s. In common with him, q
is the geocentric distance of any point K on the
refracted ray, but we denote the value of the zenith

Ž .angle at K as z q , at variance with Chauvenet’s
notation i for that angle.

The displacement of the point where the ray
meets the earth from its unrefracted intersection can
be described by either of two quantities d or d ;Ang

the former is a linear measure on the surface and the
latter is an angular measure about earth centre. We
need to derive one of these, say along with zX, from
z , eliminating z. Three equations in the four vari-0

ables d , zX, z, and z are needed, which willAng 0

leave one degree of freedom, allowing for the inde-

pendent variation of z . We shall get the relation of0

zX and z from a modification of a standard refraction
Ž .algorithm Section 2.2.3.1 , and the two equations

XŽ .for d and z z from the theory of refraction in aAng 0

spherical atmosphere. It will turn out that a very
simple relation between zX and z exists, indepen-0

dent of the details of atmospheric structure, while to
determine the displacement d requires knowledgeAng

of the angle z, whose value does depend on the
structure and must be found from zX using empirical

Ž X.or semi-empirical formulas for z z .
Two well-known analytic approximations for

Ž X.z z will be used for different ranges of the angles.
The motivation for switching between these approxi-
mations will be discussed in Section 2.2.3.1 after the
underlying theory. For the present, we refer to such

Ž X.algorithms generically as offering a function Refr z
szyzX as a function of zX.

2.2. DeriÕation of the refraction algorithm

2.2.1. Geometrical description and preÕiously known
results

To review the geometry, consider Fig. 1. The
unrefracted ray DP would have struck the earth at P,
making angle z with the vertical there in the ab-0

sence of an atmosphere. It is refracted so as to strike
the earth at PX, at an angle zX from the vertical there.
The unrefracted ray meets the local vertical from PX

at the angle z, which is usually denoted the unre-
fracted angle, because conventionally the rays from a
distant celestial object are parallel. A line through PX,
and parallel to DP, to illustrate the point, has been
omitted as inappropriate to the case of Earth remote
sensing.

Ž .Again, the horizontal displacement of the ray is
in a vertical plane containing the ray and is in the

Ž .sense that the actual refracted ray will meet the
earth at a displacement of dsd ) A m from theAng

Ž .geometrical unrefracted position, on the side to-
wards the nearest horizon. The angle d is theAng

angle in radians that the displacement in meters, d
subtends at Earth centre.

Ž . Ž . Ž .In Eq. 149 and Eq. 564 of Chauvenet 1885 ,
one finds two remarkable equations, rigorous for a
spherical atmosphere. The first,

qmsin z q sconst. 1Ž . Ž .
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follows directly from Snell’s law, and the second is

1qhrAsm sin zX rsin z . 2Ž . Ž . Ž .0

In these equations, m is the index of refraction at
any altitude, and m that at PX. The variable q is the0

geocentric distance, and will be used as a running
variable along the ray, so that Chauvenet’s relation
qsAqh will not, in general, hold except at point

Ž .B. Eq. 1 will be shown to lead directly to an
X Ž .analytic relationship between z and z . Eq. 2 was0

originally intended to correct eclipse and occultation
calculations for the height of the observatory, but it
will be used to solve the problem of determining
d , and hence d. The problem addressed here, toAng

determine the effect of refraction on the observation
of Earth from space, is complicated by the fact that
neither z nor zX is the known angle z . If we can0

determine the difference z -z, we can solve ^POB0

for angle d '/POBs/POPX, which is the radAng

equivalent of d. Summing angles around ^POB and
using the fact that z is the same as angle /PBO, we
see that, with z in rad,

POPX q pyz qzsp 3Ž . Ž .0

or

d sdrAsz yz rad 4Ž . Ž .Ang 0

2.2.2. Solution for the angle of refraction
Ž .Eq. 2 looks temptingly as if we could use it to

get zX from z, or vice versa, but it does not contain
enough information; we shall need an empirical

Ž X. Ž .equation for z z . Eq. 1 comes directly from
Snell’s law, but it also expresses a conservation law
that we shall exploit. Remember that it deals with the
angle between the ray and the local vertical — a

X
vertical that swings round the earth from OD to OP
as the ray descends. Following up on this idea, we
shall see that although it cannot give the refraction

X Ž . X Ž .zyz , Eq. 1 relates z and z . Note that Eq. 10

becomes that of a straight line in polar coordinates as
q™`, m™1. Thus, outside the atmosphere, the Eq.
Ž .1 is rigorous but seemingly of little interest. Yet, it
is most useful as a reference equation for comparing
the relationship of zenith angle to geocentric distance
along the unrefracted line DP and the refracted ray

X
DP . Along the straight line DP, if z is the running0 r

Ž .zenith angle angle of the ray to the radius , then

q sin z sb 5Ž . Ž .0 r

where b is a constant, equal to the distance closest
approach of the line DP to O. But from ^POB,
applying the previous equation at P,

bsA sin z 6Ž . Ž .0

We have used the fact that /OPB has the same sine
Ž .as its supplement, z . Furthermore, by Eq. 1 , with0

XŽ .z q the running value of the zenith angle along DP ,
and m the running index of refraction, the actual ray
has the equation

qm sin z q sb 7Ž . Ž .1

where b is another constant. But as q™`, m™1,1
Ž .so the values of z q become the same on the

refracted and unrefracted rays there. Therefore, the
two constants b and b are equal,1

b sb 8Ž .1

When the comparison is at the same geocentric
Ž .radius, the factor q cancels when we use Eq. 8 to

Ž . Ž .equate the left hand sides of Eqs. 5 and 7 . Thus,
Ž . w Ž .xsin z sm sin z q . Applying this equation at0 r

qsA, we see that

sin z sm sin zX 9Ž . Ž . Ž .0 0

Ž .where m is the surface index of refraction. Eq. 90

closes the system of equations. The remarkable sim-
plicity of this equation makes one wonder why there

Žare many complicated analyses e.g., Garfinkel, 1944,
.1967 , depending on atmospheric models and many

fits depending on refraction data. The reason is that
for the classical case of terrestrial observation, z is0

not known, and precisely when the refraction be-
comes large, at large zenith angles, then the differ-
ence between z and z becomes significant. Even0

when point D is very far away, so that a ray parallel
Xto DP will meet P at angle z, it is only z that is then

known from tabulated data on the star or planet; to
know z one must also know d or d . The fact0 Ang

Ž .that Eq. 9 seems previously unknown, although
Ž .both Chauvenet 1885 and Garfinkel knew of Eq.

Ž .7 , may be largely due to their not having plotted
point P and defined angle z — an angle of interest0

Ž .only to space observers. The work of Stone 1996
Ž .comes quite close to deriving Eq. 9 , but is again

designed for terrestrial use and omits use of point P
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and angle z . Stone optimises his approximations for0

highly accurate results at zenith angles of 758 or less,
because outside that range, few useful astronomical
observations can be made, and the reliability of any
algorithm is also less. This is complementary to
what is needed for space observation, for low Sun
angles, or to observe near Earth limb, should that
become necessary.

2.2.3. Horizontal displacement
Ž .Chauvenet’s second equation, our Eq. 2 , relates

z and z . This can be verified by using the law of0

sines on ^POB, yielding

Aqh rAssin z rsin z 10Ž . Ž . Ž . Ž .0

Ž . Ž X.which agrees with Eq. 2 because sin z sm0
Ž . Ž . Ž .sin z . We use Eq. 4 rather than Eq. 2 or Eq.0

Ž .10 , which are equivalent to it, being based on the
same triangle, because we do not need h in the
present discussion. Because all available data and
approximations relate z and zX, without regard to z ,0

X Ž .we first obtain z from Eq. 9 as
Xz sarcsin sin z rm . 11Ž . Ž .0 0

This gives the surface zenith angle, which defines
the angle of refraction as

Refr sz yzX 12Ž .0 0

Ž .To obtain d, using Eq. 4 , we need z, which must
be obtained by applying some empirical equation.

ŽThere is a wide choice Chauvenet, 1885; Garfinkel,
.1967; Allen, 1973; Hohenkerk et al., 1992 .

2.2.3.1. Spliced empirical approximations. The prob-
lem of refraction received attention from such well-
known astronomers as Bradley, Argelander, and
Bessel. We shall select a relatively simple equation,
in view of the inevitable variations due to the weather.

2 Ž .Our choice, equation H3.283-1 from Hohenkerk
Ž .et al. 1992 , while of good reputation near the

horizon, is not usable near the zenith, as it gives a
nonzero refraction value there. Therefore, we shall
first develop analytical results for small z, where the
refraction tends to zero. Obtaining the correct ana-

2 Ž .We denote equation number a from Hohenkerk et al. 1992
as Ha.

lytic behaviour Refr'zyzX
™0 smoothly as z™0

is important so that the displacement d will behave
reasonably near the zenith.

Clearly, as z ™0, the difference in z and z0 0

must tend to 0. For small zenith angles, the earth
curvature is also unimportant, so we can estimate d
using a plane parallel atmosphere approximation.
Assuming a single homogeneous layer, whose thick-
ness is one density scale height W, Fig. 2 shows that

Ž X. Ž .d; zyz W rad . Even though we get the linear
dimension d from a plane parallel model, for such
small angles we can still interpret it in the spherical

Ž . Ž . Ž .Earth context, using Eq. 4 , as ds z yz A rad .0

Thus,

For z™0, z yz; WrA zyzX 13Ž . Ž . Ž .0

Although this equation is approximate, it is good
enough for small zenith angles and it gives a good
picture of why the difference between z and z,0

although small, is so significant. Also, it enables us
to calculate analytically an approximate formula for

X Ž .zyz . To do this we apply Eq. 9 in the limit of
small z and z , to yield z ;m zX. Combining with0 0 0

Ž .Eq. 11 , we see that
XFor z™0, Refr™ m P1 r 1q WrA z� 4Ž . Ž .0

14Ž .

It is now possible to derive analytically the leading
Ž .constant in the approximation of Allen 1973

Refr s58.3tan zX y0.067 tan3 zX 15Ž . Ž . Ž .arcsec

Using a mean sea level index of refraction m s0
Ž1.0002904, from Hoyt’s model in the MODIS soft-

ware; this seems slightly large, as explained in Sec-
. Žtion 2.2.3.2 , As6371000 m the mean Earth ra-

.dius , and Ws8591.7 m, based on the pressure scale
Ž .height of 8434.5 m of Allen 1973 , and lapse rate of

Ž .0.0065 Krm we find from Eq. 14 :

For z™0, Refr 0.0002900 zX radarcsec

s59.82 zX arc sec 16Ž .
X Ž X. X Ž .with z in rad. Using tan z ;z rad and ignoring

the cubed term, we see that Allen’s 58.3 arc s is
Ž . w Ž .xexplained as the value of m y1 r 1q WrA for0

a slightly smaller index of refraction than ours. We
thus choose Allen’s approximation for small zenith
angles, changing the value 58.3 to 59.82. For larger
zenith angles, we use a minor adaptation of the
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Fig. 2. Simplified model for estimating refraction near the zenith.

standard algorithm to relate zX and z from Ho-
Ž . Žhenkerk et al. 1992 , Eq. H3.283-1 Eq. H3.283.2

.was compared and found to offer no advantage .
Finally, to make a smooth transition at zs1.465
rad, it was necessary to change the coefficient of

3Ž X. Ž .tan z of Allen 1973 very slightly. The final
equation used for zenith angles less than 1.465 rad
Ž .83.948 is

Refrs my1.0 r 1q WrA� 4Ž . Ž .
X X3= tan z y0.00117 tan zŽ . Ž .

for H)6.068 17Ž . Ž .
where H is the elevation of the ray at surface level,

Ž .ŽŽ . X .Hs 180rp pr2 yz 8. Note that the derivation
Ž . Ž .in Eqs. 13 – 16 is only to validate Allen’s constant

and to assure continuity with Eq. H3.283-1; therefore
it is assumed that z and zX are small. The overall
effect is that Allen’s numerical constant can be

Ž . wreplaced consistently by the factor my1.0 r 1q
Ž .xWrA , so that the dependence on altitude or on the
assumed baseline index of refraction, m, is consis-
tent, but the peculiar dependence on the tangent and
its cube cannot be derived this way. The equation

Ž . Ž .actually used is Eq. 17 , in which my1.0 s

Ž . Ž .rrr m y1.0 . In order to validate against Hoyt,0 0

we use m s1.0002904, and this was actually used0

in the EOSDIS software, but see Section 2.2.3.2.
For larger zenith angles, we use an equation

adapted from Eq. H3.283-1, which reads:

Refrs 0.01678 0.28) P rTŽ . Ž .mb

r tan Hq7.31r Hq4.4� 4Ž Ž .
for H-6.068 18Ž . Ž .

Let us eliminate both H and the factor
Ž .0.28) P rT , which is really a complicated repre-mb

sentation of the air density, a variable probably used
because pressure and temperature are easily mea-
sured at surface stations. To an excellent approxima-
tion, 0.28) P rT is unity at sea level for Tsmb

T , so it can be replaced withsealevel

0.28 P rT™rrr 19Ž .mb 0

Ž .In the EOSDIS software NASA, 1997 , the value of
rrr is taken from an atmospheric model described0

in Appendix A. Finally, when the zenith angle z is
obtained from one of the two empirical equations,

Ž .then d is found from Eq. 4 , which completesAng

the solution, since dsA) d .Ang
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2.2.3.2. Corrections to the index of refraction. The
subject of index of refraction in air is important as a
correction to many high precision laboratory mea-
surements, and is relevant to terrestrial geodesy as

Ž .well; see, e.g., Remmer 1994 . Those who hope to
improve on the equations just presented, undaunted
by the effects of the weather, may wish to consult

Ž .Birch and Downs 1994 . Values from that paper, for
dry air at 158C, are about 1.000277, a bit less than
Hoyt’s 1.000290, and the corrections for moist air
further reduce the values slightly. Birch and Downs’

Ž .Eq. 2 for dry air, at pressure 101 325 Pa, can be put
in the form

1
y8�m y1s = 1.05442=100 1q0.003661TC

4053 0.601y0.00972TŽ .C
= 1q 64=10

15 998 2 406 147
= 8342.54q q2 2 538.9ys 130ys

20Ž .

where T is the Celsius temperature and s is theC

vacuum wavenumber in mmy1, from wavelength
350 nm to 650 nm. Extending beyond the Birch and
Downs upper wavelength limit to some of MODIS’s
infrared bands would reduce the index of refraction

Ž .slightly further. Birch and Downs’s Eq. 3 gives for
the change in m when the partial pressure of water0

vapour is f Pa,

dmsyf 3.7345y0.0401 )10y10 21Ž . Ž .

If refined values such as the above are used for m,
Ž . Ž .the constants used in Eqs. 16 – 19 would, in prin-

ciple, have to be adjusted. Inasmuch as these equa-
tions only affect the horizontal displacement, such
extra work would be of questionable value.

2.3. Increments in latitude and longitude

Finally, the equations are given for transforming
d to changes in latitude l and longitude L. TheAng

trace of the ray path DP on the earth is a vector lying
c rad East of North, where c is the azimuth of the

ray. The azimuth c can be found as follows. Let û
Ž .be the unit normal along PD the line DP reversed ,

and u its projection on the horizontal plane at P. Nˆ h

will stand for the normal to the ellipsoid at P,

Ns cos l cos L ,cos l sin L ,sin l . 22Ž . Ž . Ž . Ž . Ž . Ž .
All this analysis is correct for an ellipsoidal rather
than a spherical earth if l is taken to stand for the
geodetic latitude. Clearly,

u suy uPN N 23Ž . Ž .ˆ ˆ ˆh

It is not necessary to normalise the vector u for theˆ h

remaining operations; however, if the ray is at zenith,
u will be zero and the azimuth is indeterminate. Inˆ h

this case, of course, the displacement is zero, so the
calculation is of no interest. Nevertheless, one must
be careful in software to avoid division by meaning-
lessly small quantities when near this condition.
Next, define North and East unit vectors on the
ellipsoid by

north sysin l cos L 24aŽ . Ž . Ž .x

north sysin l sin L 24bŽ . Ž . Ž .y

north scos l 24cŽ . Ž .z

east sysin L 24dŽ . Ž .x

east scos L 24eŽ . Ž .y

east s0.0 24fŽ .z

The azimuth of u , and hence of the ray is then:ˆ h

csatan eastPu rnorthPu 25Ž .ˆ ˆŽ .h h

With c known, the displacement of the earth inter-
section of the ray, PX, is as given in Table 2, where
dsAd . Thus, the increments in latitude and lon-Ang

gitude are as shown in Table 3. The last expression
in Table 3 is singular at the North and South poles
and should not be used there. The displacement of
the ray can be assumed to be South at the North pole

Table 2
Vector displacement on surface

Direction Value

Ž .North d cos c

Ž .East d sin c
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Table 3
Displacement in latitude and longitude

Direction Value

Ž . Ž .Latitude l d cos cAng
Ž . Ž . Ž .Longitude L d sin c rcos lAng

and North at the South pole but when starting at
Ž .either pole, the longitude not its increment must be

Ž . Ž .found from atan y rx where x , y , z areray ray ray ray ray

the components of the vector PD in Earth centred
Ž .rotating ECR coordinates, i.e., right handed rectan-

gular coordinates with the z axis North and the x
axis lying in the semi-plane of North and the Green-
wich meridian.

3. Sample results and discussion

Table 4 exemplifies results at sea level, using a
conversion of 6 371 000 m per rad for the displace-
ment, a global mean surface temperature of 288.115
K, and a global mean tropospheric height of 10 500
m. The local Earth curvature radius could be used in
place of 6 371 000 m if the difference were consid-
ered significant.

Note that the linear displacement at 888 zenith
angle is about 17.5 km — very substantial. Because
of the very approximate atmosphere model, this
number could vary by perhaps 25% depending on
weather in temperate and tropical regions; in the
Arctic it would be considerably smaller. Comfort-

Table 4
Refraction results at sea level

Zenith angle in space Zenith angle at surface Refraction Linear displacement
X XŽ . Ž . Ž . Ž . Ž .z 8 z 8 z yz 8 d m0 0

10 9.9971 0.0029 0.55
20 19.9939 0.0061 1.22
30 29.9904 0.0096 2.22
40 39.9860 0.0140 3.98
45 44.9834 0.0166 5.46
50 49.9802 0.0198 7.73
55 54.9762 0.0238 11.40
60 59.9712 0.0288 17.85
61 60.9700 0.0300 19.70
62 61.9687 0.0313 21.82
63 62.9674 0.0326 24.26
64 63.9659 0.0341 27.08
65 64.9643 0.0357 30.37
70 69.9543 0.0457 58.38
75 74.9380 0.0620 136.07
76 75.9334 0.0666 166.73
77 76.9281 0.0719 207.38
78 77.9220 0.0780 262.47
79 78.9147 0.0853 338.98
80 79.9061 0.0939 448.38
81 80.8955 0.1045 610.33
82 81.8825 0.1175 860.32
83 82.8658 0.1342 1266.53
84 83.8437 0.1563 1970.64
85 84.8133 0.1867 2974.07
86 85.7687 0.2313 4858.39
87 86.6977 0.3023 8677.42
88 87.5698 0.4302 17 538.46
89 88.2951 0.7049 41 818.33
90 88.6191 1.3809 113 429.26
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ingly, however, at an incident zenith angle as large
Ž .as 85.258 85.058 refracted , our result for the dis-

placement, 3.33 km, agrees with the result from
Ž .Hoyt’s finite difference program 2.91 km within

15%. The displacement at 908 incidence, over 113
km, is only suggestive and could easily vary by 50%.

4. Validation

The refraction angle and displacement were com-
pared with Hoyt’s finite difference program at sea
level, 10 km, and 20 km altitude. This program
divides the atmosphere into seven homogeneous
spherical layers. At each layer boundary, Snell’s law
is used to obtain the refractive change in zenith
angle, while within a layer the angle is changed by a
trigonometric algorithm to account for the curvature
of the layer. The results at sea level are shown in
Figs. 3 and 4, which speak for themselves. The
results at altitude are nearly as close in relative error,
and better in absolute error, so they are not pre-
sented. It is clear that the theory given here is
adequate for refraction corrections in most remote
sensing applications. Exceptions were noted in Sec-
tion 1.2. The biggest problem remaining is that
terrain corrections exceed the refraction corrections
in most cases, and the interaction of the two has not
been studied. Problems with limb sounders also in-
vite generalisation of our results. This might be
possible by mating two cases where zs908, z f0

Fig. 4. Comparison of surface displacement with the MODIS finite
difference program.

88.68, but the two would meet at some nonzero
altitude, for which one would have to solve by
iteration. Ray tracing programs along the lines of
Hoyt’s would probably be considered preferable for
such work, but the analytic method given herein is
simpler and faster for space observation of the earth’s
surface at zenith angles of a few degrees to about
858.

5. Conclusions

It is possible to correct the viewing angle and
illumination angle for remote space sensing of sur-

Fig. 3. Comparison of refraction angle with the MODIS finite difference program.
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Ž .face phenomena accurately with Eq. 9 . Using this
result, it is possible to correct for the apparent dis-

Ž .placement of the point being viewed with Eqs. 4 ,
Ž . Ž . Ž . Ž .11 and 12 , and either Eq. 17 or Eqs. 18 and
Ž .19 . To obtain numerical results at any altitude and
latitude, it is necessary to use either local data or an
atmospheric model, for example the one described in
Appendix A, to obtain the index of refraction at the
actual surface being viewed. For smooth terrain at
any altitude, these methods suffice, but for work in
rugged terrain, it would be necessary first to correct
the surface location with an elevation model
Ž .Nishihama et al., 1997 . In very jagged areas, and at
low viewing angles, the correction for elevation of
the line of sight intersection with the surface could
interact with refraction in such a way as to require

Ž . Ž .use of Eq. 2 or Eq. 10 as well. The further
adaptation of these methods to limb sounding and
aerial imagery seem worth exploring.

Acknowledgements

The author is indebted to Dr. Douglas Hoyt and
Mr. James Storey for their finite difference refraction
program.

Appendix A. Atmospheric model

The atmospheric model used for refraction calcu-
lations is based on the following idealised equations
Ž .see Table 1 for definitions . Again, the only purpose
of this model is to yield the index of refraction at

Ž .any altitude, so that Eq. 9 can be applied at the
actual Earth intersection of the unrefracted ray. If
available, local data could always be used instead of
this model, to advantage.

A.1. Barometric law

Ignoring the inverse square law variation of the
acceleration of gravity with altitude, as well as Earth
oblateness and centrifugal force, the barometric law
reads

d Prdasyr g A1Ž .0

where d is the differential operator and P the pres-
sure.

A.2. Ideal gas law

For the ideal gas law

PÕsR TrMolec A2Ž .gas mean

the value of Molec was taken as the molecularmean

weight of dry tropospheric air, based on 1 part water
Ž .to 80 dry air by number Allen, 1973 .

A.3. Mean lapse rate and density Õariation

The lapse rate is the rate of change of temperature
with altitude. Assuming an empirical global mean

Žadiabatic lapse rate of 0.0065 Krm Allen, 1973;
. 3Gill, 1982 in the troposphere, we get at altitude a

T a sT ya) r , a-a A3Ž . Ž .sealevel L ,trop tropop

Letting

tempFacs1.0yr ) arT A4Ž .L ,trop sealevel

Ž . Ž . Ž .we integrate Eqs. A1 and A2 , using Eq. A3 to
obtain, in the troposphere,

densFacs tempFac G A5Ž .
where

Gs Molec ) g r R ) r y1s4.123Ž . Ž .mean 0 gas L ,trop

A6Ž .

Above the tropopause, an isothermal atmosphere was
assumed, matched at the tropopause. In the strato-
sphere, we assume a constant temperature and scale
height and so have an exponential atmosphere with
the same scale height as at the tropopause,

G
densFacs tempFac exp ayaŽ .Ž .tropop tropop

= Molec ) g r R )T .Ž . Ž .mean 0 gas tropop

A7Ž .

The first factor sets the correct scale to match at the
tropopause.

3 Because the altitude is used only to obtain the air pressure,
which is then used to obtain the surface index of refraction,
altitude should be referred to geoid.
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Table 5
Latitude dependence on the tropopause altitude and the sea level temperature

Ž . Ž . Ž . Ž .Latitude a Allen a fitted T Allen T Fittedtropop tropop sealevel sealevel
Ž . Ž . Ž . Ž . Ž .8 m m K K

0 17 000 17 786.1 300 299.35
10 16 600 16 194.8 299 298.53
20 15 500 14 681.1 297 296.12
30 13 700 13 244.9 293 292.18
40 11 800 11 886.1 286 286.83
50 9800 10 604.9 279 280.24
60 9000 9401.13 271 272.60
70 8100 8274.85 263 264.15
80 7800 7226.06 255 255.15
90 nra 6254.76 248 245.86

A.4. RefractiÕe index Õariation with altitude

Ž .For comparison with Hoyt and Storey 1994 the
index of refraction is assumed to be given by

ms1.0q0.0002905 rrrŽ .0

s1.0q0.0002905)densFac A8Ž .
This is not quite consistent with the Clausius–Mos-

Ž 2 . Ž 2 .sotti relation m y1 r m q2 sconst=r, but
agrees within 3.5 parts per billion between y1000
and q25 000 m altitude — well above any known
terrain. See also Section 2.2.3.2. This concludes the
altitude dependence of the atmospheric model. We
next present a simple latitude dependent models of
the quantities a , r , and T . The composi-tropop 0 sealevel

tion of the atmosphere was obtained from Allen
Ž .1973 , p. 119. The atmospheric model is used only
to get the index of refraction at sea level. Latitude
dependence is based on the following fits to the sea
level temperature and mean scale height as functions

Ž .of latitude, from the table of Allen 1973 on p. 121.
Ž .The US Standard Atmosphere NOAA, 1976 is dry,

which seemed less realistic. The effect of humidity
on the molecular weight is small, but effect of water
vapour on the lapse rate is considerable. The latitude
dependence of the lapse rate is apparently minor
Ž .Gill, 1982 . Fits to the tropopause height vs. latitude
and surface temperature are given in Table 5. These
were used in late releases of the Science Data Pro-

Ž .cessing Toolkit NASA, 1997 . Alternate columns
Ž .give values from Allen 1973 and the fitted Eqs.

Ž . Ž .A9 and A10 . The Mathematica program

Ž .Wolfram, 1996 , was used to perform least squares
Ž .fits to the data of Allen 1973 , yielding

< < 2a s17 786.1y9338.96 l q1271.91l mŽ .tropop

A9Ž .

T s245.856q53.4894 cos l K A10Ž . Ž . Ž .sealevel

where l is the latitude. Using mean atmospheric
pressure as a constant, and the ideal gas law, Eq.
Ž . Ž .A2 , one can derive from Eq. A10 the dependence
of density on latitude. Forcing the mean over latitude
Ž Ž . . ² :weighted by cos l for solid angle of r r r to0 0

² :be unity, where r is the global average, a least0

squares fit yields

² :r r r s1.14412y0.185488 cos l A11Ž . Ž .0 0
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