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The Seymour aquifer region of Texas has been identified as containing elevated
levels of nitrate in ground water. Various state and federal agencies are
currently studying policy options for the region by gathering more site-specific
information. However, because of lack of sufficient information, cause and
effect relationships between water quality and agricultural practices have not
been well established for the region. Some recently available biophysical
simulation models have impressive capabilities in generating large amounts of
data on environmental pollution resulting from agricultural production
practices. In this study, the data generated by a biophysical simulation model
were used to estimate the nitrate percolation response functions for the
Seymour aquifer region. Interestingly, nitrate percolation values obtained from
simulation models often comprise a censored sample because the non-zero
percolation values are only observed under certain climatic events and input
levels. It has been shown in the econometric literature that the use of Ordinary
Least Squares (OLS) on censored sample data produces biased and inconsistent
parameter estimates. Thus, a sample selection model was used in this study to
estimate the response functions for nitrate percolation. The study provides
some insight into the relationship between nitrate percolation and agricultural
production practices. In particular, the study demonstrates the potential of
selected design standards in minimizing agricultural nonpoint-source (NPS)
pollution for the study area.  1996 Academic Press Limited
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1. Introduction

Ground water contamination from agricultural production practices has become an
important environmental issue due to real and suspected threats to human health and
the economic costs associated with making contaminated water potable. The issue
facing the policy makers today is how to select from alternative policies—those which
will protect ground water quality while minimizing adverse effects on farm income. A
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Figure 1. The Seymour Aquifer.

number of policy alternatives have been proposed in the theoretical literature for dealing
with nonpoint-source (NPS) pollution. However, the linkages between the theory and
application of policy is complicated by the difficulty of identifying sources and measuring
individual emissions, their variability over time and space, and the role played by
natural processes in determining the ultimate impact of pollutants on the environment.
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The policy vacuum in the area of NPS contamination control thus seems largely due
to a poor understanding of the cause and effect links between economic activities and
environmental damages.

Understanding and quantification of environmental relationships are often
hampered by unavailable data. Field testing is prohibitively expensive, and even
when some field testing data are available, they are often inadequate for any detailed
analysis. These limitations have necessitated the use of sophisticated simulation
models to measure environmental impacts of alternative production practices and
environmental policies. The simulation models, however, generate a large amount
of data. It is advantageous to synthesize these data into clear and concise results
by estimating functional relationships. Thus, the predicted value of any dependent
variable can be found for any combination of inputs. This advantage is clear
when the estimated regression equations are incorporated inside a mathematical
programming model. By using only a few regression equations, a large number of
production technologies can be generated for analysis.

The purpose of this article is to estimate response functions for nitrate percolation
for the Seymour aquifer region of Texas, a Hydrologic Unit Area (HUA) under the
President’s Water Quality Initiative. The region (Figure 1) covers approximately 274 500
acres in portions of Haskell and Knox Counties in north-west-central Texas, where
many water wells exceed the federal safe drinking water standards for nitrate-nitrogen
(Kreitler, 1979; Harden and Associates, 1978; Neilsen and Lee, 1987; Aurelius, 1989;
Texas Water Commission, 1989). While few cases of death or severe illness in adults
are linked directly to nitrate, the most widely recognized human health consequence
of nitrate exposure is methemoglobinemia (blue-baby disease) in infants (Bouwer, 1978).
Nitrate-nitrogen (NO3-N) levels greater than 10 ppm (parts per million) make infants
more susceptible to this disease. With the predominance of sandy soils in Seymour
aquifer area and the shallow depth to ground water, there is significant risk that nitrate
and other pollutants may further contaminate the aquifer. Various state and federal
agencies have begun to study the best management practices and other policy options
to minimize the contribution of agriculture to the pollution of the aquifer. This study
is intended to complement these efforts by providing some timely information for policy
makers.

Another motivation for this study stems from the opportunity to contribute to
applied econometric literature by utilizing an appropriate estimation technique
in estimating the response functions for nitrate percolation. Nitrate percolation
values obtained from simulation models often comprise a censored sample because
the non-zero percolation values are only observed under certain climatic events
and input levels. A censored sample occurs when some observations for the
dependent variable that correspond to known sets of independent variables are
zeros. Tobin (1958) had shown that the use of Ordinary Least Squares (OLS) on
censored sample data produces biased and inconsistent parameter estimates.
Because of the sensitivity to policy implications, careful attention must be given
to the choice of an estimation method when estimating response functions using
simulated data.

The remainder of the paper provides a critical overview of alternative estimation
methods, a description of the Heckman two-step method which has been used in this
study, a description of the data, the estimated results and a discussion of their
implications.
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2. Choice of a sample selection model

2.1  

As noted earlier, the simulated data on nitrate percolation often comprise a censored
sample. One alternative may be to ignore all limiting observations (zeros) and use the
OLS estimation procedure. However, ignoring these meaningful limiting values amounts
to having a truncated sample, and the OLS parameter estimates in this case are also
biased and inconsistent (Maddala, 1983; Amemiya, 1984). Tobin’s limited dependent
variable model, more commonly known as the Tobit model is customarily used in these
situations. The limitation of a Tobit model, however, is that the same set of explanatory
variables and parameters determine both the probability of occurrence of pollution
and the distribution of pollution (Lin and Schmidt, 1983; Lee and Maddala, 1985;
Haines et al., 1988). In the context of nitrate percolation, the occurrence of percolation
and the amount of percolation are not so intimately related. In an agricultural setting
influenced by stochastic weather, it is not difficult to imagine a scenario where a
particular soil or tillage practice might have a lower probability for percolation, but
might also have greater average percolation when percolation actually occurred. Thus,
the choice of an estimation technique is critical when the relationships involving NPS
pollution is measured.

Another limitation ot the Tobit model relates to computational issues. Nitrate
percolation is sensitive to weather, soil type, tillage and other relevant production
practices. Furthermore, because of the depth of the dewatered (vadose) zone, nitrate
requires a certain time to travel through the soil profile and eventually to percolate
into the aquifer. Thus, in our study some production practices resulted in high number
of limiting values (zeros). As the computation of parameter estimates in a Tobit model
is generally performed via some version of Newton’s iterative method, the convergence
may not occur with a high number of limiting values. Even when convergence occurs,
the coefficient estimates of the model may not be accurate or meaningful (Maddala,
1983; Capps, pers. comm.).

Thus, an alternative to the Tobit model is often needed due to the above-mentioned
restrictions. A number of consistent alternatives to maximum likelihood estimation
have been proposed in the literature. In agricultural economics, these models have been
mainly used in consumer demand and recreational demand studies. Cragg (1971)
developed several generalizations of the Tobit model that allow the decision process to
have two steps. However, because of a truncated distribution used in the second step,
Cragg’s estimator is computationally more difficult (Haines et al., 1988). Fair (1977)
suggested an alternative iterative method for obtaining the maximum likelihood es-
timators of the censored model. Estimates obtained from the Fair’s procedure have
been shown to be identical to the Tobit model and the criticisms of the Tobit model
are also applicable to Fair’s model. Based on the method of moments, Greene (1981)
proposed an alternative non-iterative method which corrects the bias of least squares
estimator of the censored model. The motivation behind such an approach was the
prohibitive costs of maximum likelihood estimation which required an iterative pro-
cedure. With the current state of computer technology, Greene’s procedure does not
have an advantage over the Tobit model. An ingenious way of approaching the problem
of estimating the Tobit model had been proposed by Heckman (1976, 1979). The
Heckman method was used in this study because of its simplicity and appropriate
behavioral implications.
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2.2.   

Heckman devised a relatively simple two-stage estimation process that yields consistent
parameter estimates. In his method, the censored sample problem is treated as a
specification error or omitted variable problem. According to Heckman, it is possible
to correct for the above problem by first estimating the omitted variable ki. Using
Probit analysis, ki is consistently estimated as the inverse of Mill’s ratio, f(xi′b/s)/F(xi′b/
s), where f(·) and F(·) are the density and distribution function of the standard normal
distribution, respectively. Though not directly observable, ki can be consistently formed
by a likelihood function of the binary variable,

Zi =1 if Y∗i>0,

=0 if Y∗iΖ0.

where Y∗i is nitrate percolation or dependent variable. The first stage of Heckman’s
two-stage procedure is to obtain the consistent estimates of the parameters, xi′b/s and
ki, by maximizing the log-likelihood function,

L=R
n

i=1
[1−zi) log F(−xi′b/s)+zi log F(xi′b/s) ]

The second stage involves using the estimated ki as an additional regressor, and applying
least squares only on those observations where Yi>0. The parameters obtained from
the second stage are consistent and asymptotically normal.

The heckman model is attractive for several reasons. Unlike the Tobit model, the
Heckman model is better suited for situations where the probability of occurrence of
nitrate percolation and the amount of percolation is not intimately related. It is also
free of computational difficulties when the number of zeros are large—a problem
encountered with the likelihood function of the standard Tobit model. Another attractive
feature of the Heckman two-step procedure is that it allows the researchers to statistically
test for sample selection bias. If the estimated coefficient associated with the Mill’s ratio
is significantly different from zero, then there is no sample selection bias that arises
from using non-randomly selected samples to estimate behavioral relationships. More-
over, since the final coefficients are estimated using OLS, all the usual goodness of fit
criteria can be applied.

Heckman’s model is also more appropriate when the limiting values of the dependent
variable (zeros) are unknown and inexplainable while the Tobit or Cragg’s model
applies when the values of dependent variable are known to equal zero (Lin and
Schmidt, 1983). In the context of agricultural NPS pollution, zero values of nitrate
percolation (for a particular scenario) generated by a simulation model are not entirely
explainable because of the complexity of biophysical process. Thus, Heckman’s model
is more appropriate for such a sample where the limiting values do not have an obvious
interpretation or meaning.

3. The data

The data required for estimating the response functions for nitrate percolation
were generated from EPIC-WQ (Erosion Productivity Impact Calculator-Water
Quality), a biophysical simulation model. EPIC-WQ is a sophisticated process model
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which is composed of physically-based components for processes of soil erosion,
plant growth, weather, hydrology, nutrient cycling, tillage, soil temperature and
economics (Sharpley and Williams, 1990). The model has been employed successfully
for numerous sites in the U.S. as well as in other countries (Jones and O’Toole,
1987; Cabelguenne et al., 1990).

EPIC-WQ’s soil database maintains a 2-m soil profile data for different regions
of the U.S. This precludes simulation of nitrate percolation into the aquifer through
the dewatered (vadose) zone. To modify the EPIC-WQ model by incorporating the
dewatered zone, 36 well logs were selected from a Texas Department of Water
Resource’s study on Seymour aquifer (Harden and Associates, 1978). The average
depth of these wells is about 26–27 feet, the same as the average depth to water
across the Seymour aquifer area. With the help of EPIC-WQ model developers
(Benson, pers. comm.; Williams, pers. comm.), the dewatered zone was divided into
five layers and these layers were added below the top soil in the EPIC-WQ model.
This enables the EPIC-WQ model to simulate nitrate percolation through the
dewatered zone into the aquifer.

Results from the U.S. Geological Survey (USGS) well testing (two wells drilled
in 1992) in the Gilliland/Truscott segment of the Seymour aquifer were used to
validate EPIC-WQ for nitrate percolation to the aquifer. The Gilliland/Truscott
segment is small, isolated from the main segment of the Seymour aquifer, and has
no intensive agricultural production activities. By using the well logs and by
simulating native pasture production for 50 years, nitrate leaching results were
obtained from EPIC-WQ and compared with well testing results. EPIC-WQ sim-
ulation of native pasture scenario for two wells were 6·2 ppm and 5·7 ppm compared
to actual well tests of 9·3 ppm and 8·4 ppm, respectively. This suggests that the
EPIC-WQ generated value may be slightly lower than actual, but the relationship
of one value to another is in the right direction. Furthermore, since the USGS
results were obtained by single well tests only (instead of repeated testing of the
same site), the discrepancy between the well tests and simulated values does not
necessarily reflect any weakness in EPIC-WQ.

After validating EPIC-WQ, the data on the concentration of nitrate percolation
were generated by EPIC-WQ simulations for various input combinations and
management practices for cotton and wheat production. The EPIC-WQ simulations
were performed for selected levels of pre-plant and post-plant nitrogen fertilizer
application, irrigation water applications across three periods (early to mid-July,
mid-July to early August, and early August to late August), two soil types (Miles
and Abilene), and two tillage practices (conventional and minimum). Seven levels
of pre-plant and post-plant fertilizer (20 to 80 pounds at 10-pound intervals) and
three levels of irrigation application in each period (3, 5 and 7 inches) were used
for irrigated cotton. Combinations of seven levels of pre-plant and post-plant
fertilizer (20 to 80 pounds at 10-pound intervals) were used for dryland wheat. For
dryland cotton, only five levels of fertilizer (20 to 60 pounds at 10-pound intervals)
were used. These same input levels were used to generate the data under alternative
soils and tillage practices which were used as binary variables. The total number of
simulated data points or observations were 4900, 700, and 700 for irrigated cotton,
dryland cotton, and dryland wheat, respectively. The simulations were conducted
for a 25-year period. Corresponding rainfall data for 25 years were generated by
applying the stochastic weather generator in EPIC-WQ.
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4. Estimation

4.1       

Three nitrate percolation response functions were estimated for irrigated cotton, dryland
cotton, and dryland wheat by using the econometric computer package SHAZAM
(White, 1993). The following nitrate percolation response function was considered for
irrigated cotton. The specification for dryland cotton and wheat was identical except
irrigation was not included.

Y=f(N1, N2, W1, W2, W3, R, D1, D2)

where Y is the concentration of nitrate percolated into the aquifer, N1 is the amount
of pre-plant nitrogen fertilizer used, N2 is the amount of post-plant nitrogen used, W1,
W2, and W3 are the irrigation water used during period 1 (early to mid-July), period 2
(mid-July to early August), and period 3 (early August to late August), respectively, R
is rainfall during the growing season (June to September for cotton, and February to
May for Wheat), D1 is a binary variable taking on a value of one for the alternative
soil (Abilene soil) and zero otherwise (Miles soil) and D2 is another binary variable
taking on a value of one for minimum tillage and zero otherwise (conventional tillage).

The main criterion used for choosing the appropriate functional form for nitrate
percolation function was the need to include nitrate leaching even when no inputs were
used. This choice of criterion is particularly important for the Seymour aquifer area
where a portion of nitrate contamination had been argued to have originated from
natural soil nitrates (Harris, pers. comm.). EPIC-WQ simulation of native pasture for
50 years showed a positive (but low) percolation of nitrates. Allowing an intercept for
the leaching function resulted in the initial selection of six functional forms: linear,
semi-log, cubic, quadratic, square-root, and three-halves. Other functional forms were
not considered as they did not have the characteristic imposed by the choice criterion.
The linear form showed a poor fit supporting the hypothesis that nitrate percolation
is a complicated and highly non-linear process. The final selection was made from semi-
log, cubic, quadratic, square-root and three-halves. Using the highest R2 and the lowest
Schwarz criterion, the semi-log (log of dependent variable) form resulted in the best
statistical fit for all crops. A non-nested testing procedure was also used to identify the
preferred functional form among linear, semi-log, cubic, quadratic, square-root, and
three-halves. The procedure is the likelihood dominance criterion of Pollak and Wales
(1991) where the model with the highest likelihood value is preferred. The likelihood
dominance criterion also selected the semi-log form over other forms. The semi-log
form implies that concentration of nitrate percolating to the aquifer is relatively low
for small fertilizer application but gradually increases at an increasing rate with higher
fertilizer application.

4.2   

The coefficient estimates of nitrate percolation functions for the semi-log form are
reported in Table 1. The t-values of the estimated coefficients show that they are all
significant at the 10% level. As the function is in log form, the coefficients must be
translated by taking the exponential. Because of the presence of interaction terms, a
Wald test (Kmenta, 1986, p. 492) was conducted to test the significance of variables
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T 1. Parameter estimates of nitrate leaching functions

Parameter Estimated
value∗

Irrigated cotton Dryland cotton Dryland wheat

Intercept 1·9013 1·40 1·756
(6·74) (2·26) (6·76)

N1 0·0273 0·0414 0·0146
(8·12) (2·89) (2·04)

N2 0·0183 0·0337 0·0135
(7·68) (2·07) (2·45)

N1N2 0·000145 0·00025 −0·00019
(4·18) (2·98) (−3·02)

R −0·222 −0·0219 −0·0240
(−24·31) (−4·14) (−11·31)

RN1 −0·00041 −0·00013
(−1·693) (−2·41)

RN2 −0·00052 −0·00015
(−3·46) (−2·37)

W1 0·0439
(2·42)

W2 0·0278
(1·65)

W3 0·0498
(2·66)

W1W2 0·00556
(2·67)

W1W3 −0·00324
(−1·95)

W2W3 0·00428
(2·04)

D1 0·10363 0·0970 0·113
(3·11) (2·62) (3·09)

D2 −0·0016 −0·0014 −0·041
(−0·321) (−1·97) (−0·252)

D1N1 0·00221 0·0021 0·00263
(3·92) (1·71) (1·89)

D1N2 0·00243 0·0017 0·00221
(3·47) (1·92) (1·76)

D2N1 −0·00231 −0·0019 −0·00649
(−1·35) (−0·378) (−0·183)

D2N2 −0·00319 −0·00193 −0·00632
(−0·479) (−0·523) (−0·386)

R2 0·5928 0·4902 0·5540
Schwarz criterion −0·4176 −0·428 −0·429
Mill’s ratio 3·8945 4·2054 1·8848

(1·279) (1·022) (0·8945)
Selected functional
form Semi-Log Semi-Log Semi-Log

∗ t-statistics are given in parentheses.
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which showed that all variables are significant at the 10% level. The coefficients of N1,
N2, and N1N2 are all highly significant implying that nitrogen fertilizer is one of the
primary contributors of percolated nitrate. The negative signs of coefficients for rainfall
variable (R) and interaction terms for rainfall and nitrogen (RN1 and RN2) show the
effect of rainfall on nitrate concentration, i.e. rainfall reduces the concentration of
nitrate. Interestingly, the concentration of nitrate associated with irrigation has a
positive relationship because of the presence of some nitrate in irrigation water. However,
the magnitude of the coefficients (W1, W2, and W3) is small. The intercept and slope
shifters of the Abilene soil (D1, D1N1, and D1N2) are positive and significant, implying
that the concentration of nitrate percolation would be higher in Abilene soil. Also of
interest is the relationship between tillage practice and nitrate percolation and the
results in this case are mixed. Coefficients for minimum tillage under irrigated and
dryland cotton (D2 and D2N1) indicate that concentration of nitrate would decrease
under minimum tillage although the magnitude is rather small. Other coefficients with
respect to minimum tillage are shown to be insignificant.

Figure 2 illustrates the estimated relationships for three selected scenarios to provide
some qualitative insight. It must be noted that the graphs show the relationship between
nitrate percolation and nitrogen application only. Because of this two-dimensional
nature, variables such as rainfall or irrigation had to be fixed at their average level.
The top panel of Figure 2 shows the relationship between nitrate percolation and pre-
plant nitrogen application under Miles and the Abilene soil for dryland cotton. The
plot shows that the Abilene soil has a higher percolation than Miles soil and the
difference increases with higher levels of nitrogen application. With 40 lb of pre-plant
nitrogen application, the Abilene soil shows a percolation of 21·08 ppm compared with
a 17·59 ppm for the Miles soil. However, with 60 lb of pre-plant nitrogen application,
the difference in percolation is shown to be 10 ppm (49·44 ppm in the Abilene soil vs.
39·01 ppm in Miles soil). The major policy implication is that it might be possible to
attain a percolation limit by allocating crops to different soils. The reduction in farmers’
net income, however, may be significant because of yield difference associated with
different soils.

Figure 2 (middle panel) shows the relationship between nitrate percolation and pre-
plant nitrogen application under conventional and minimum tillage for irrigated cotton.
With a 60 lb pre-plant nitrogen application, nitrate percolation was 13·15 ppm and
11·45 ppm, respectively, for conventional and minimum tillage. Although the reduction
in nitrate percolation was not substantial for minimum tillage, with little or no difference
in crop yield, adoption of minimum tillage can help reduce the percolation of nitrates.

Figure 2 (bottom panel) shows nitrate percolation for irrigated cotton for pre-plant
and split application of fertilizer under a 4-in irrigation level in each of the three
periods. The split application is applied in 50–50 proportion (50% of the fertilizer in
pre-plant application and 50% in post-plant application). In this scenario, nitrate
percolation exceeded the U.S. Environmental Protection Agency (EPA) standard of
10 ppm at 48 lb of pre-plant nitrogen application. A split application (24 lb pre-plant
and 24 lb post-plant) reduces percolation to 7·18 ppm. This suggests that the split
application of nitrogen fertilizer is a viable management practice for controlling nitrate
percolation in the Seymour aquifer.

A few other findings, while not illustrated with graphs, deserve mention. The response
function for wheat shows that the difference in nitrate percolation between all pre-
plant and split application becomes more prominent at higher levels of fertilizer use.
In the case of dryland cotton, the estimated response function suggests that the
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Figure 2. (a) Nitrate percolation in Miles (---) and Abilene Soil (—) for dryland cotton; (b) Nitrate percolation
in convention (—) and minimum tillage (---) for irrigated cotton; (c) Nitrate percolation with pre-plant (—)

and split nitrogen application (---) for irrigated cotton.

concentration of nitrate percolation is higher than irrigated cotton. This finding,
contrary to the popular belief, is open to several interpretations. One possible explanation
for higher nitrate concentration under dryland cotton production is that in the absence
of soil moisture, the crop uptake of applied nitrogen is not as high as irrigated cotton.
Thus, with occasional high rainfall, particularly during non-growing season, the applied
nitrogen percolates into the aquifer with higher concentration. There may exist other
agronomic explanations, the investigation of which is beyond the scope of this paper.

The most noteworthy policy implication that can be drawn from the above analysis
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is that design standards may prove to be successful in controlling nitrate percolation
in the Seymour aquifer region of Texas. In contrast to ambient-based policies or input
taxes and subsidies which are difficult to enforce as well as costly, design standards are
easy to enforce and can be successfully used to minimize NPS pollution. Design
standards such as use of specific tillage practice or soil are observable and this can be
easily monitored.

5. Concluding comments

This study has estimated nitrate percolation response functions for the Seymour aquifer
area of Texas by using a sample selection model and also has demonstrated the need
for using the appropriate estimation technique because of the sensitivity of estimated
relationships for policy analysis. While the study provides some insight into the
relationship between nitrate percolation and selected agricultural management practices,
it does not attempt to investigate economic trade-offs and alternative policies by
conducting a farm-level or regional-level analysis. Perhaps the most promising direction
for future research on this issue would be developing economic models for policy
analysis where the response functions estimated in this study could be incorporated.
Such research would seem particularly relevant because of the recently announced
proposals for the re-authorization of the Clean Water Act which emphasize voluntary
watershed-level planning by developing water quality guidelines and best management
practices tailored to local conditions.

This research was supported in part by the United States Geological Survey, through the Texas
Water Resources Institute, and the United States Department of Agriculture–Natural Resource
Conservation Service, Strategic Planning and Policy Analysis Division. The views expressed are
those of the authors and not of their institution or of the funding institutions.
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