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Abstract

The evaluation of average properties over a block or element is required for most numerical methods used for the
solution of unsaturated flow equations. In this study, it is shown that the accuracy of a particular averaging scheme depends
on the type of model used for unsaturated material properties. A systematic and thorough error analysis of the averaging
techniques for some commonly used soil characteristic curves is performed. It is shown that the two-point Gaussian
quadrature is consistently more accurate than the arithmetic, geometric, and harmonic means for all types of constitutive

models.

Introduction

Numerical methods are widely used for modeling flow
through unsaturated porous media. Difficulty in finding
analytical solutions due to the nonlinearity of the governing
equations, and availability of high speed computers have
both contributed heavily towards the popularity of numeri-
cal methods. These methods, however, have their own
drawbacks, such as lack of convergence of the iterative
solutions, difficulty in selection of averaging method for
properties over discrete blocks or elements and choice of
appropriate space and time discretization.

Various weighting schemes to evaluate the “average”
conductivity over a finite-size block or element have been
suggested in the past. Schnabel and Richie (1984) demon-
strate that the pressure and moisture profiles generated by
using various weighting schemes to determine the average
parameters, do not intersect one another. Therefore, we
assume that the error observed in the results obtained from
any weighting scheme using just one element would repre-
sent the overall error for that scheme. The relative ordering
of errors resulting from various averaging schemes are obtained
by comparing their results for a single element. This assump-
tion enables us to simulate a large number of problems and
perform a detailed error analysis. A comparison of numeri-
cal errors obtained using a single element and that from a
large number of elements showed that this assumption is
true in all the cases.

Background
For transient unsaturated flow problems, various
schemes for estimating interblock hydraulic conductivity in
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the finite-difference method were compared by Haverkamp
and Vauclin (1979). These schemes included the arithmetic,
geometric, and harmonic means of the nodal conductivities;
the conductivity corresponding to the arithmetic, geometric,
and harmonic means of nodal heads; upstream weighting,
series expansion, and linear extrapolation. The weighting
scheme for the moisture capacity term was not discussed.
They used a constitutive model utilized by Haverkamp et al.
(1977) to represent the soil characteristic curve (Gardner,
1958), compared their results with a quasi-analytical solu-
tion and concluded that the geometric mean of conductivity
values is the best weighting scheme. They also mentioned
that the space increment has negligible effect on the accu-
racy when using the geometric mean. The relative order of
errors from different schemes was also found to be insensi-
tive to the element size.

For horizontal and vertical flow through porous
media, various averaging schemes were compared by
Schnabel and Richie (1984) for the case of fixed pressure
head at both the top and the bottom boundaries. These
schemes included the arithmetic, geometric, and harmonic
means of conductivity values; upstream weighting and an
integrated conductivity. Constitutive equations similar to
the Brooks and Corey (1966) equation were used, and an
analytical solution was utilized to compare the errors of
different weighting schemes. They concluded that the choice
of weighting scheme is most critical where large pressure
gradients occur. The integrated mean, when possible, was
considered the best choice and the geometric mean was the
next best. The harmonic mean resulted in maximum errors
and its use was not recommended.

Warrick (1991) examined alternative strategies for the
determination of the interblock conductivity to arrive at the
correct Darcian velocity for the case of specified head at
both boundaries. He found that the calculated velocities
can, in some case, be as high as 130 times the actual velocity
if the arithmetic mean of conductivities is used. For
extremely large gradients, the geometric mean resulted in a
flow much smaller than the actual flow. Moreover, upstream

Vol. 33, No. 6—GROUND WATER —November-December 1995



weighting was found to be no better. An alternative weight-
ing scheme using variable weights was found to work well.
However, the weights are dependent upon the pressure and
the gradient, and have to be computed during the simulation
resulting in about 50% increase in computational time.

Li (1993) used Simpson’s one-third rule to obtain the
average conductivity over an element for the finite-element
method and found it to be better than the arithmetic and
geometric mean schemes. It, however, requires the evalua-
tion of the conductivity value at an additional point in the
middle of the element and will marginally increase the com-
putational time. He applied his simplified Newton iteration
scheme to both specified-head and specified-flux conditions
at the top, and compared the numerical results with “dense
grid” solutions. The method was found to converge faster
than the Picard iteration scheme, while the computational
effort per iteration was nearly the same.

In this study, we compare the steady-state results
obtained from various weighting schemes to determine the
best scheme for averaging of block conductivities. We
assume, as discussed earlier, that the error for one element
would be representative of the overall error. The exponen-
tial form of the constitutive relations (Gardner, 1958) is
analyzed first, since an analytical solution for the steady-
state profile is available (e.g., Yeh, 1989). Both fixed-head-
type and flux-type boundary conditions are examined.
Comparison of the performance of these schemes for some
other relations (Brooks and Corey, 1966; Gardner, 1958;
Haverkamp et al., 1977; van Genuchten, 1980) is then under-
taken. Only infiltration problems are analyzed in this study,
and upward flow is not considered. Analysis of errors for
various types of constitutive relations and inclusion of two-
point Gaussian integration scheme for the averaging of
conductivity are believed to be significant additions to the
existing literature on the subject.

Governing Equation

The governing equation for steady-state one-dimen-
sional infiltration through a porous medium can be written
as

99,
dz,

=7i— [k, ( Z‘: +1)]=0

where z, is the vertical coordinate (L), positive upward;
q, represents the Darcy velocity (L/T), positive downward;
yris the pressure head (L); and K is the hydraulic conductiv-
ity (L/T) which is a function of the pressure head under
unsaturated conditions (¢ < 0). The boundary conditions
are

atz, = 0 Yo = Yo (2a)
atz, = L,: Yo = Y

oy, (2b)
or K, (¥) ( e + 1) = Qu1

where i, is the constant pressure head (L) at the bottom,
¥, 18 the specified pressure head (L) at the top for the
fixed-head boundary condition, gq,, is the constant rate of

infiltration (L/ T) for the flux-type boundary condition, and
L, is the length of modeled domain (L). For convenience,
equation (1) and boundary conditions (2) are written in
dimensionless form as

P Ew _
. [xw) ( o+ 1)]=o0 3)
and
atz =0 Y= Yo (4a)
atz = L: ¥ = yn
9 (4b)
or K(w)(a—f+1)=q

in which the pressure heads and the lengths are made non-
dimensional by multiplying with a parameter a having
dimensions of 1/ L (this parameter depends upon the type of
constitutive relation used) and the flux and conductivity are
made dimensionless through a division by the saturated
hydraulic conductivity K, (L/ T). Thus

K
Y=ay, z=aliz, K=— and q———q*l

s s

©)

We now apply the Galerkin technique to equation (3) to
obtain the discretized equations. Details of the procedure
are not given here as it can be found in a number of
textbooks (e.g., Istok, 1989) and technical papers (e.g., Yeh
et al., 1993). Application of the technique to equation (3)
results in the following matrix equation

[Al{y} +{G} —{Q}=0 (6)

where {{/} is the nodal pressure vector, A is the conductivity
matrix, G is the gravity vector, and Q is the flux vector. The
matrix and the vectors are given by
LN N;
a; = f K — dz
¢ dz 9dz

g= | K—dz 0

4 = [Niqlo

in which N; and Nj are shape functions. Note that the vector
Q, in the absence of any source or sink, will have nonzero
entries only in its first and the last rows, i.e., corresponding
to the bottom and the top boundaries. Assuming a linear
variation of pressure within an element, the derivatives of
the shape functions would be constant over the element and
the element matrix [A] and vector {G} can be written as

K 1-1
[a]:A_z[—l 1]

(-1
@=k{" } ®)
_ 1 Az
with K=— [ Kdz
Az ¢

in which Az is the element length.
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Averaging Schemes

A variety of schemes can be used to average the conduc-
tivity values over an element in equation (8) on the basis of
the pressure heads at the two nodes. The schemes analyzed
in this study are:

1. Arithmetic mean of conductivities (AC)

K= 0.5(Ki + Kiur) 9)

where K; and Ki.+; are the nodal conductivities.
2. Geometric mean of conductivities (GC)

K= (Ki Kiﬂ)o'5 (10)
3. Harmonic mean of conductivities (HC)
K= 1 (11)
1 1
05( —+—)
Ki K+

4. Conductivity at the arithmetic mean of pressure
head (AP)

K = K[0.5(i + i1)] (12)
where ¢ and i+ are the nodal pressure values.

5. Conductivity at the geometric mean of pressure
head (GP)

K = K[ ¥ie1)>'] (13)

6. Conductivity at the harmonic mean of pressure head
(HP)

K= K( 1 : 1 ) (14)
05(—+—)
i Y
7. Conductivity at the upstream node (UC)
K = K[Max (¢, ¢rie1)] (15)
8. Numerical integration of conductivity (NC)
K= é W, K (%) (16)

where g denotes the Gaussian quadrature points, and W is
the weight. Only two-point quadrature is utilized in this
study as the computational effort is comparable to the other
schemes. Simpson’s three-point rule as used by Li (1993) is
not considered for the numerical integration as it requires
more computational time and is expected to have the same
order of accuracy as the two-point Gauss quadrature. The
weights are given by Wi = W, = 0.5 and the quadrature
points are located at 0.21 Az and 0.79 Az

9. Integrated conductivity (IC)

_ 1 it
K=—— [ K@ dy (17)
Yivt — iy,

These schemes are referred by their two-letter symbols
from here on. Scheme IC requires the functional relation-
ship between the conductivity and pressure to be analyti-
cally integrable which may not be possible for most constitu-
tive relationships.

948

Methodology

Following Warrick and Yeh (1990), we can examine the
case of constant flux by starting from the bottom node,
where pressure is known, and obtain the pressure at the next
node, ., from

K _
— %~ Yo) +t K—q=0 (18)
Az

Equation (18) is simply the finite-difference form of Darcy’s
law assuming that the pressure ¥ varies linearly with z. Since
K depends both on o and ., an iterative scheme has to be
used to arrive at the correct value of ¢,. Here, Newton
iterations are applied to equation (18) to obtain

Yra — Yo q
f(;pa)=—AZ—+1—?=o (19)
and its derivative
Py == Ry L (20
K* dy. Az
The iterative procedure itself can then be described by
old
ww=ww—g&% @1

with the starting value of , taken equal to . Since we
consider only infiltration problems and not cases with
upward flux, i, is constrained to be between o — Az and 0.

Once the pressure at this node, ., is obtained by using
equation (19), the pressure at the next node, ¥», is found by
repeating the procedure with , replacing . Thus at each
iteration, there is only one unknown, thereby avoiding the
formulation of a derivative matrix as is done in traditional
methods. Also, instead of solving a system of equations, one
equation at a time is solved thus reducing the computational
time and storage requirements. A comparison of the con-
ventional finite-element method and the proposed node-by-
node scheme is performed in the next section. It should be
mentioned that a numerical solution of desired accuracy for
the specified flux-type boundary condition can be obtained
by writing equation (3) as

Yiz) i

7 —

dy (22)
o q 1
K

and then using standard numerical integration programs to
find the z corresponding to any . It will, however, require
more computation time as typically 20 or more quadrature
points are used for an accurate solution (Warrick, 1991).
Also, the results are not obtained at uniform intervals of
depth.

For the specified head boundary condition, the numer-
ical value of “average” conductivity is computed from the
applicable scheme [equations (9)-(17)] and the analytical
value is obtained by dividing the value of g, obtained from
the appropriate equation in the Appendix, by the head
gradient. Two different values of o, corresponding to Ko =
0.1 and 107, respectively, are used and the specified head at



the top is varied from o — Az to saturation. Two values of
Az,0.1 and 0.01, are used for the numerical simulations. The
constitutive relations used to describe the variation of the
hydraulic conductivity with the pressure head are listed in
the Appendix along with the analytical solutions for some
particular cases. Where possible, the errors in the numerical
scheme are obtained by comparison with the analytical
solution. The error is quantified by the difference in the
order of magnitude of the numerical and analytic solutions:
Numerical value
error = log ———————— (23)
Analytical value

Thus, an error value of + 1 indicates that the numerical value
is one order of magnitude larger than the analytic value and
a value of —1 represents a numerical value an order of
magnitude smaller than the analytic value. This definition of
error is used because it treats the positive and negative errors
in a symmetric manner. It should be mentioned that an
accurate numerical integration could have been used to
obtain the “exact” results, but to apply scheme IC, analyti-
cally integrable parameter values are chosen.

For steady-state flow, the flux type and the specified
head boundary condition are numerically equivalent. To
solve the specified head case, we can solve a sequence of
specified flux problems and match the obtained head at the
top with the given value. Thus, it is expected that the order-
ing of the errors from different averaging schemes would be
similar irrespective of the boundary condition. A numerical
example confirming this is described in the next section.

Results and Discussion

The errors for a single element are analyzed first for all
the constitutive relations and then a multielement problem
is solved to demonstrate the efficiency of the node-by-node
solution method over the conventional finite-element
method.

Exponential Relation

The exponential constitutive relation [equation (A1)]is
used first, and the average conductivity obtained from the
numerical solution is compared with the analytical solution
using (A3) and the head gradient. The case where both the
boundaries are fixed head boundaries is analyzed first. An
excellent analysis of such problems was performed by
Warrick (1991) for the exponential and van Genuchten type
constitutive equations. The range of parameter values was,
however, not very extensive and not all types of averaging
schemes were analyzed. The logarithmic errors for various
schemes are shown in Figure 1 for various values of the
specified head at the top, {1, and with Az = 0.1. Due to the
exponential form of the conductivity-pressure relations,
schemes GC and AP are identical for completely unsatu-
rated conditions. As expected, the integrated scheme (IC)
gives the best results. The results from scheme NC are much
better than all other schemes. Schemes AC, GC, and GP are
also seen to be sufficiently accurate, except near saturation
where GP has large errors. Also worth noting is the fact that
forinfiltration in a “wetter”soil, i.e., when y, is less than o,

all schemes give almost exact results. This is due to the fact
that the bounds on ¢, under such cases are Yo and o — Az
and for small values of Az, all the averaging methods would
be sufficiently accurate. It should be mentioned that the
error in the numerical solution is not solely due to the
averaging scheme. From equation (18), the numerical solu-
tion for q is a multiplication of the “average” conductivity
with the head gradient. This gradient is obtained by assum-
ing a linear variation of head with distance. For infiltration
into very dry soils, the gradient would be very large and,
more importantly, the pressure profile would be very non-
linear. Using a gradient based on the linear variation of
pressure thus introduces an error into the numerical solu-
tion. In this study, we do not attempt to separate the two
effects, the averaging of conductivity and the nonlinearity of
pressure profile; we lump them together to obtain the
numerical error.

Similar results are obtained for Az = 0.01 except that
the schemes NC and IC are almost exact. Comparison of
results for Az=0.1 and Az=0.01 (not shown) demonstrates
that the relative ordering of the accuracies of various
schemes is independent of the grid size. The results for yro
corresponding to Ko = 107 further confirm this behavior.
The ordering, however, is seen to be dependent on the value
of yro from Figures 1 and 2, particularly for schemes GP and
HP. Also, Figure 2 shows that for the exponential relation,
the average conductivity obtained from schemes GP and
HP may be larger or smaller than the exact value. Therefore,
a statement like “the use of geometric mean of pressure
values will result in the underprediction of the flux” cannot
be made.

Figure 3 shows the variation of error for the specified
flux condition at the top. The bottom boundary is kept at K,
=0.1 and the flux at the top is varied from 0 to a maximum
value which will result in saturation at the top. Comparison
of Figures 1 and 3 shows that the type of boundary condi-
tion specified at the top, whether constant head or constant
flux, does not affect the relative order of accuracy of various
averaging schemes. Both the specified head and the specified
flux-type boundary conditions are analyzed for the other
constitutive relations also, but the results for the flux-type

05 T T T
—D0— AC
04 | —&—— GC,AP

Error

Vi
Fig. 1. Error for the exponential model for Ko = 0.1 and Az=0.1.
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Fig. 2. Error for the exponential model for Ko = 10~ and Az =
0.1.
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Yy
Fig. 4. Error for the power law for Ko = 10~ and Az = 0.1.

boundary conditions are not presented for the sake of
brevity. Also, the results for Az = 0.01 are not shown
because the behavior of the error is similar to the case where
Az=0.1.

Power Law

To ascertain the effect of the constitutive relations, we
next use the power law form (A4) for the conductivity-
pressure relation and repeat our simulations. Since a general
analytical solution is not available for this case, the particu-
lar case of n = 3 is considered for the analysis. This enables
us to use scheme IC and the exact solution is then given by
(A6). Due to the form of equations, schemes GC and GP are
identical in this case for unsaturated conditions. Also, equa-
tion (A6) has to be solved iteratively for q. For this purpose,
the starting value of q is taken as that given by equation (18)
with the average conductivity equal to the integrated
conductivity.

From Figure 4 it is seen that scheme IC gives almost
exact results. Numerical integration (NC) and geometric
means (GC and GP) are better than the rest of the schemes.
Note that near saturation the geometric means (GC and GP)
perform better than numerical integration (NC). Similar
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Fig. 3. Error for the exponential model for K; = 0.1 and Az=0.1
for the specified flux boundary condition at the top.

Error

V¥,
Fig. 5. Error for the Gardner model for Ko = 0.1 and Az = 0.1.

results are obtained for Ko = 0.1 except that NC is consis-
tently better than all other schemes, even near saturation.

Gardner Model

A modified form of the power law, which was found to
fit the available data better, was suggested by Gardner (1958)
and can be written as equation (A7). Analytical solutions for
various values of the exponent were obtained in that paper
and one of them is listed in the appendix (A9). For the
comparison of the various averaging schemes, we use a value
of 2 for the exponent and use equation (A9) as the exact
solution to get the error in the numerical solution. Figure 5
shows the logarithmic errors for different averaging schemes
for Ko = 0.1. Schemes NC and IC are again seen to be the
best. The geometric mean (GC and GP) appears to be the
best averaging method out of the remaining schemes in this
case. Similar trends are observed for Ko = 107, except that
the geometric mean outperforms the Gaussian integration
(NCQ).

van Genuchten Model
The model proposed by van Genuchten (1980) [equa-
tion (A10)] is probably the most widely used constitutive



Y,

Fig. 6. Error for the van Genuchten model for Ko =0.1and Az=
0.1.

model at present. Therefore, even though an analytical solu-
tion is not available, we apply the various averaging schemes
to this model and compare the resulting numerical errors.
The “exact” solution is obtained by numerical integration of
the governing equation written in the form of Darcy’s law. A
value of 2 for the exponent is used and the numerical errors
are shown in Figure 6 fcr Ko = 0.1. Again, the scheme NC
seems to provide the best results in this case and the geo-
metric mean (GC and GP) appears to be better than the rest.
Similar results are obtained for Ko = 107,

Multielement Problem

A number of problems using different constitutive rela-
tionships and a wide ran;ze of values for the specified head at
the bottom boundary and specified flux at the top boundary
are solved using both the conventional finite-element method
and the node-by-node method with various element sizes. In
addition to requiring considerably less computer storage,
the node-by-node method is found to be anywhere from 8 to
14 times more efficient in terms of the CPU time. Figure 7
shows the pressure profiles obtained for a 10-element case

Fig. 7. Pressure profile for the multiclement problem using
exponential model with Ko = 107 and q = 1.

for infiltration in a column of dimensionless length equal to
0.1. Exponential constitutive relationship is used for the
conductivity-pressure curve and the bottom and top bound-
ary conditions are Ko = 10~ and q = 1, respectively. The
results from both the conventional finite-clement method
and the node-by-node method are identical, and the results
using the integrated conductivity (IC) are virtually indistin-
guishable from the analytical solution. Only the four
schemes with smallest errors are shown in Figure 7, which
clearly shows the validity of assuming the single-element
error to be representative of the overall error of a scheme.

Summary and Recommendations

Various averaging schemes to determine the block
conductivity values for finite-size elements have been exam-
ined. The error obtained from the numerical model is found
to depend upon not only the averaging scheme but also the
type of constitutive model used to describe the dependence
of soil hydraulic conductivity on suction. The general obser-
vation for all constitutive models is that the upstream con-
ductivity scheme provides an upper bound, as is obvious
from its definition, and the harmonic conductivity scheme
provides a lower bound for the exact value. The integrated
conductivity, as expected, is closest to the analytical solution
and should be used whenever possible (cf., Schnabel and
Richie, 1984), e.g., for the exponential model. However, for
most practical cases it will not be possible to obtain the
analytical expression for the integrated conductivity. Then,
the Gaussian integration using two integration points is
consistently the best scheme under most flow situations and
should be preferred over all other schemes as the computa-
tion time is of the same order. For some situations (e.g.,
Figure 4), however, it may underpredict the flux by an order
of magnitude. In these conditions, use of more integration
points is suggested, though it will increase the computa-
tional burden. The geometric mean is found to be more
accurate than the arithmetic or harmonic means for most of
the flow situations considered in this study and in some cases
outperforms the Gaussian integration scheme (see Figure 4).

We have not attempted to quantify the effect of the
parameter n in the constitutive conductivity relations and
have considered a single value of n for this study. Further
work is needed to address this issue. Also, only steady-state
infiltration problems are analyzed here. For transient condi-
tions, an additional term involving the averaging of the
moisture capacity or the moisture content (depending on
whether it is a pressure-formulation or a mixed form of the
governing equation) will have to be considered. Moreover,
analytical solutions for transient flow situations over a finite
domain are not widely available. For the exponential model,
analytical solutions for homogeneous and two-layer soil
(Srivastava and Yeh, 1991) can be used to extend the present
work.
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Appendix

Various soil-characteristic equations used in this study,
and the analytical solutions used for comparing the numeri-
cal accuracy are listed below:

(a) Exponential model:
K=e¢" for ¥y <0 and K=1 for ¢y =0 (Al

ellll _ elﬁo
Kic=—— (A2)
Y1 — Yo
e'lll _ elﬂo"AZ A3
q - l _ e—AZ ( )

in which Kc is the integrated conductivity, and ¢ and ,
are the pressure values at the bottom and top, respectively,
of the soil column of length Az.

(b) Power law:
K=(—¢)" for y=—1 and K=1 for ¢y = —1 (A4)

in which n is a fitting parameter.
Forn =23,
_ ¥t o

= AS
R (AS)

IC

1 |
[ Siml=a =11 =it = " + ¢ -

1 1— 29"y ¥
—(3)1/2 arctan( —-———(3)1/2 )] " = —Az q”3 (A6)

(¢) Gardner model:

1
K=—""— for ¢y <0
1L+ (=¥
and K=1 for y=0 (A7)
Forn=2,
arctan(— — arctan(—
Kic = (—¥o) (—yn) (AS)
Y1 — Yo
fi < — e, q< It
or yn PE— 1e., q

Yo— A ¥t A

— e—2qA1Az (A9a)
Yo+ Al Y1 — Al

for ¢ > ie,q>1:

1 - l/loAZ
arctan(A»y) — arctan(Az¢o) = A2(q — 1) Az (A9b)
with A1 =[(1 —q)/q]”* and A;={[q/(q— )]
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(d) van Genuchten model:
1 — _wn—l 1+ _wn—mZ
= Lm0 oy AL
[1+ (=¥
wherem=1—1/n.

No analytical solutions could be obtained. Some
approximate analytical solutions are available in the litera-
ture (Zimmerman and Bodvarsson, 1989) but an iterative
solution using numerical integration is preferred.
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