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Abstract

A review of the work carried out during the last two decades by a group in Rouen, on Eulerian and Lagrangian approaches for
predicting the behaviour of discrete particles in turbulent flows, is presented. The opportunity of this review is taken to direct the
reader to a much larger literature and to point out unsolved problems.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The study of multiphase flows is a very vast domain of
research of utmost practical interest because the number of
potential applications is almost infinite. Forgetting about
slug flows, annular flows, and the big realm of transitions
and combinations between these regimes [1], we focus on
the topic to be discussed in this paper, namely the case when
discrete particles are transported by flows. Usually, this case
may be subdivided into three subclasses: suspensions,
bubbly flows and droplet flows. Although some specific
features are attached to each of the subclasses, they will
be considered here in a unified perspective. Furthermore,
we assume that flows are turbulent. The basic issue to
address is therefore to understand and predict the dispersion
of particles induced by continuous turbulent motion.

During the last century, much effort has been devoted by
researchers and engineers to the study of turbulentdiffusion,
starting with the celebrated pioneer observation by
Reynolds that turbulent motion is much more efficient
than molecular motion, by orders of magnitude. The word
diffusion is used here when quantities to be dispersed do not
react to inertial effects and cannot drift under buoyancy in
isothermal flows. They may possess a scalar or vectorial,
more generally tensorial, character. Examples include
marked fluid particles, chemical species, heat, momentum,
velocity curl, and velocity correlations. Conversely, for
discrete particles which react to inertia and to other various
effects produced by the fact that they are aliens with respect
to the carrier fluid, we use the worddispersion. When the
diameterd of the particles tends to zero, dispersion tends to
diffusion. This, however, requires neglecting molecular
diffusion as is usual in turbulent flows. One of the conse-
quences of molecular diffusion for fluid particles is that their
entity is not preserved in contrast with the case of discrete
particles, leading to micro-mixing effects. Therefore, the
concept of dispersion appears to be more general than that
of diffusion.

Industrial applications of turbulent dispersion are miscel-
laneous and concern the design and control of various multi-
phase processes such as droplet combustion in furnaces,
diesel engines, droplet cooling, cyclone separation, and
pneumatic transport. Some processes are directly connected
with energy conversion problems (chemical reactors like
fluidised beds, spray and coal combustion). Bubbly flows
are extensively studied in nuclear reactor engineering.
Pollution transport and dispersal in geophysical flows is
another issue of interest, including military purposes

because chemical and biological attacks may rely on the
use of aerosols and droplets [2].

Therefore, the chemical and mechanical engineer can
hardly avoid coping with the turbulent dispersion mechan-
ism of mass transfer. The researcher will be confronted with
a difficult topic in which some fundamental problems are
still unsolved. For example, we would like to know in closed
form or to predict the relation between Eulerian and Lagran-
gian spectral densities, and also the relation between asso-
ciated scales. Knowledge or prediction of Lagrangian
correlation tensors would be particularly welcome. The
absence of any rigorous solution to such problems will be
troublesome.

In the simplest case, we have to deal with a one-way
problem: given a turbulent flow, to predict the dispersion
behaviour of transported discrete particles. However, par-
ticles are not passive contaminants. The mere presence of a
particle locally modifies the turbulence since, inside the
particle, there is no flow field, i.e. no eddies. This kind of
local modification is expected to be negligible if the particle
diameter is much smaller than the Kolmogoroff scale (note
that this statement implies a sufficient condition). Up to
now, we have always neglected such local turbulence modi-
fications, even when the sufficient condition is not satisfied,
apparently without any damage. This problem must,
however, be considered an open one. However, when the
particle mass loading ratio is increased, global turbulence
modifications may be induced. For example, shear stresses
may be reduced. Introducing particles to it decreases the
expansion of a turbulent jet. Generally, the existence of a
relative motion between particles and the carrier fluid leads
to an extra dissipation of the turbulence energy. We are then
faced with a two-way coupling problem: turbulence modifies
particle behaviour which, in return, modifies the turbulence.
The return may be viewed as the consequence of a micro-
turbulence produced by extra gradients around the particle.

More difficult problems arise in the case of additional heat
and mass transfers between particles and fluid (evaporation),
possibly with simultaneous occurrence of chemical reac-
tions and radiative transfer (combustion). Again, these
issues may be addressed in a one-way or a two-way coupling
formulation. Furthermore, if the particle number-density is
sufficiently large, we may have to account for particle–
particle interactions. This is a four-way coupling problem
which, at the present time, should not be considered as
completely solved, although significant progress has been
made, in particular concerning the influence of collisions
between particles.
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To handle such a large variety of phenomena, two
theoretical approaches are at our disposal, namely the
Eulerian and the Lagrangian approaches, with many variants.
In both cases, however, the underlying physics is essentially
the same, but the Eulerian approach conceptually elaborates
much on it, while the Lagrangian approach remains close to
it. As a consequence, the most complex versions of the
Eulerian approach take the status of models, while the
Lagrangian approach essentially leads to simulations.

More specifically, the underlying physics is as follows.
We must consider a large number of particulate trajectories
that we may call trajectory realisations and, by averaging
over these realisations, we deduce the quantities we want to
know such as particle velocities and particle velocity fluc-
tuations, or number–densities versus space and time.

However, in the Eulerian approach such as that discussed
in this paper, trajectory constructions and subsequent aver-
aging are not explicitly carried out at a computational level.
Instead these operations are implicitly achieved at a concep-
tual level, leading to the introduction of a dispersion tensor.
Therefore, the discrete character of the underlying process is
washed out to provide us with a theory involving a con-
tinuum associated with the particles. The dispersion tensor
is introduced in an equation of transport for mean number–
densities (or probabilities of presence) to be solved. The
conceptual part of the work being carried out by the brain
(not by a computer), Eulerian codes are fast-running. The
price paid for this computational efficiency is that assump-
tions must be introduced to succeed in the formulation of the
dispersion tensor, i.e., the range of applications of the Euler-
ian approach is limited to cases when the concept of the
dispersion tensor makes sense, resulting in a loss of general-
ity. Other authors have, however, provided extensions
outside of such limited cases, with an intensive modelling
effort. In particular, they appear to be well adapted for the
study of densely laden two-phase flows, as we shall
comment later.

Conversely, in the Lagrangian approach, trajectory
realisations are explicitly simulated by the computer
which also carries out subsequent required averaging.
Therefore, the range of applications is dramatically
increased, including those cases when the concept of disper-
sion in the Fick sense is no more acceptable. The price paid
is more time-consuming runs.

Previously, the price was thought to be high by many
users (or potential users). Nowadays, due to the dramatic
progress in the quality and speed of computers, the situation
has changed. In particular, all computations we carried out
with the Lagrangian approach can be reasonably performed
on workstations.

Other comments on the relative advantages and disadvan-
tages of both approaches are available from Refs. [3, 4]. The
question of which of these approaches is preferable is not
solved and, in fact, it is likely that this question does not
make sense. The problem addressed is extremely complex,
and it is certainly better to possess two lines of attack, rather

than only one. Furthermore, to some extent, these approaches
are complementary in many respects. For instance, any
progress achieved in one approach may help make progress
in the other. Examples of such inter-relations between the
Eulerian and the Lagrangian approaches have recently proved
to be of great interest for the study of particle collision [5].

The paper is organised as follows. Section 2 discusses
turbulence predictions. This is required because, whatever
the chosen approach (Eulerian or Lagrangian), prior knowl-
edge of the turbulence field in which particles will move is
required. Section 3 discusses the particle equation of motion
which is necessary to build trajectories, with some speci-
ficity, depending on the considered approach. Section 4 is
devoted to the Eulerian approach. Section 5 and Section 6
concern the Lagrangian approach, Section 5 for the fluid
particle trajectories and Section 6 for the discrete particle
trajectories. All these sections only concern the one-way
coupling case. The two-way coupling problem is discussed
in Section 7. Section 8 discusses the case when additional
heat and mass transfers, not considered in the previous
sections, occur, with the typical example of vaporisation
of droplets, both for one-way and two-way couplings.
Section 9 is devoted to the four-way coupling problem.
Section 10 is the conclusion.

In addition, the bulk of the paper is written as a guideline,
avoiding mathematical expressions. Technicalities are
better reported in Appendices.

2. Knowledge of the turbulence field

Any turbulence modelling or simulation will inevitably
produce inaccuracies which will partly spoil the results on
particle behaviour. Therefore, in order to test particle
predictions without such a spoiling effect, it is highly recom-
mended to rely on experimental data for the turbulence field
when they are available with enough accuracy. A typical
case for which this situation is encountered is grid turbu-
lence. However, a full code for practical applications, with a
two-way coupling, typically proceeds via the following
steps:

1. Turbulence predictions.
2. Particulate predictions (Eulerian approach) or simula-

tions (Lagrangian approach).
3. Iterations involving the two previous steps when two-

way coupling is significant (Lagrangian approach).

Any approach to the description of the turbulence field
may then be used for the first step as far as it provides us
with the required quantities with enough accuracy. Methods
such as direct numerical simulation (DNS) or kinematic
simulation (KS) provide unique opportunities to study
specific effects like particle trapping in eddies [6–9] but
are limited to small Reynolds number flows (DNS) or do
not incorporate all of the physics involved in the Navier–
Stokes equations (KS). Large eddy simulation (LES) allows
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one to handle complex flows [10–12] but the best quality/
price ratio is, up to now, obtained by using a complete
stochastic modelling on which we shall focus in this paper.

Thus, in practice, we rely on a (k–1) model supplemented
with Rodi algebraic relations (ASM, algebraic stress model)
for a more accurate prediction of Reynolds stresses. Details
of this approach are available from [13–17], in the frame-
work of our work, from which the prior literature may be
accessed. In this section, we also restrict ourselves to one-
way coupling so that the equations for these models are by
now quite classical. Later, for two-way coupling, they will
have to be supplemented by many extra-terms to account for
the influence of the particles on the turbulence, leading to
much more complex variants. Basic features are then
recalled below.

For the (k–1) model, we use an improved code originally
based on the Teach-T from the Imperial College of Science
and Technology [18]. Governing equations are the continu-
ity equation, the momentum equation, transport equations
for turbulence energyk and its dissipatione, closure being
obtained by using a last relation expressing eddy viscosity.
Outputs are mean velocitiesUi, turbulence energyk, dissi-
patione and the productionP of turbulence energy through
the interaction between the mean and fluctuating fields.

In a second step, (k–1) outputs are fed to second-order
Rodi algebraic relations [19] to determine the Reynolds
tensor components. These relations take the form of a linear
system of equations (Cramer system) in which the Reynolds
tensor components are the indeterminates. Although origin-
ally written with Cartesian tensors by Rodi, they have been
later rewritten with general tensors under a form invariant
with respect to co-ordinate system transformations, and
specified for the case of axisymmetric flows [13, 17, 20].
We insist here on the fact that the use of general tensor
calculus in this context is not only a smart sophistication
but, conversely, we found that it provides the only practical
and efficient way to obtain Rodi relations in arbitrary co-
ordinate systems. Algorithms for the resolution of the
obtained Cramer system are discussed in Ref. [21].

At this stage, the information gained on the structure of
the turbulence field is not sufficient for the prediction and
simulation of the behaviour of transported discrete particles.
Extra knowledge requires in particular:

1. The functional shape of the Lagrangian velocity correla-
tion coefficientRfL.

2. The evaluation of scales, such as the Lagrangian macro-
scaletL involved inRfL, or Eulerian spatial macroscales.

Note here that, for convenience, these quantities are
discussed in a one-dimensional (1D)-framework. More
generally, tensors should be used and, in particular, we
would have to deal with a tensorRfL, ij. We shall reintroduce
such a tensorial character later.

Such knowledge is required for both the Eulerian and
Lagrangian approaches, but it is of particular relevance to
the Lagrangian approach. Conceptually, the definition and

the use of RfL is rather simple if the turbulence is
assumed to be statistically stationary, an assumption
which is therefore made throughout this paper. The devel-
opment of Eulerian and Lagrangian approaches for statis-
tically unsteady flows must be considered as an open
subject of research, difficult enough to provide work to
many researchers for many years.

Also, RfL has a particularly clear meaning for homoge-
neous turbulence. However, restricting ourselves to such
turbulence would be an unacceptable limitation. This diffi-
culty is bypassed by using a trick which, although not
perfect, will prove to be effective. This trick consists of
using what we may call a tangent homogeneous field, i.e.
a homogeneous field which, in one sense, is tangent to the
actual nonhomogeneous field predicted by the previous
stochastic modelling. In other words, if the turbulence is
not homogeneous, the dispersive behaviour at any point is
assumed to depend on the local properties of the turbulence
at that point. Therefore, we may use a homogeneous field
tangent at that point, having the properties of the nonhomo-
geneous field at that point. For instance, assume that the
Lagrangian macroscaletL reads astL(k,1). Then, at a
point ~x0, tL may be evaluated by usingk�~x0� and 1�~x0�
and we may think of the dispersive behaviour as taking
place in a homogeneous field, tangent at~x0, havingk�~x� �
k�~x0� and1�~x� � 1�~x0�, hencetL � tL�~x0�.

Since statistical steadiness may be viewed as homogen-
eity in time, instead of homogeneity in space, it is likely that
the case of unsteady flows could similarly be investigated by
using the concept of a homogeneous field, tangent with
respect to the time evolution.

Another difficulty is that the determination of the func-
tional shape of the Lagrangian velocity correlation coeffi-
cientRfL is an unsolved problem. We therefore have to rely
on an assumption, with possibilities discussed in Appendix
A. A classical one assumes an exponential decrease with a
characteristic time equal to the Lagrangian time macroscale.
Such an assumption however contradicts Lin’s results (see
Ref. [22]) stating that, for homogeneous turbulence, there is
no finite macroscale associated with the Lagrangian accel-
eration correlation coefficient. We thus demand in our
approach that the coefficientRfL exhibits at least one nega-
tive loop (Appendix B). To account for these remarks, our
proposal is to use the exp–cos Frenkiel [23] correlation
which involves a loop parameterm associated with the
occurrence and the importance of negative loops. With
m� 0, the classical exponential decrease form is recovered.
The best value ofmhas not been determined theoretically up
to now but, from our experience, we recommend the value
m� 1. Note that we have shown that there is an upper bound
for m to avoid negative values of particle dispersion coef-
ficients, namelym , 3.6. An interesting feature is that the
existence of negative loops implies that dispersion may be
more efficient than diffusion, even for dense particles in
homogeneous turbulence [24].

Finally, for the evaluation of scales, the reader should
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refer to Ref. [16] and to references quoted in the sections on
the Lagrangian approach.

3. Equation of motion of discrete particles

The discussion of the equation of motion of discrete par-
ticles encompasses a long story and also a complex one
because it has been controversial. In this section, one of
our aims is to provide a summary of this controversy.

A good starting point is the so-called BBO equation
arising from the works of Basset (1888), Boussinesq
(1903) and Oseen (1927), see Refs. [25–29].

For primary access to it, we would recommend Basset
(1888) (Refs. [25, 26]) whose work can easily be revisited,
leading to the conclusion that the equation is safe. BBO
concerns the case of a spherical, solid particle moving verti-
cally in a fluid at rest under gravity, with velocity zero at
time 0. The restriction to a solid particle is important to write
shear stresses on the surface of the particle but, to some
extent, not essential in so far as, in practice, bubbles or
droplets may have their surface contaminated and then
behave as solid particles (see later comments). Also, as a
consequence of the assumptions, the particle is non-rotating.
Obviously, no particle/particle interaction is involved in the
process since the particle is unique, and the motion is slow
enough so that no micro-turbulence is produced. The
assumptions imply that we are working in a linear approx-
imation of the Navier–Stokes equation. It is then found that
the force exerted upon the particle contains a drag term, the
so-called Stokes drag previously described by Stokes [30],
an added mass term extensively discussed by Boussinesq, a
so-called history term (or Basset term), and possibly a
buoyancy term.

Tchen [31] attacked the problem of generalising the BBO
equation to the case when the fluid is no longer at rest. The
demonstration is carried out in two steps. First, we consider
the case of a particle moving with a velocity (Vp 2 Vf) in a
fluid at rest. This actually adds no physics but simply is a
change of notation in which the particle velocity is assigned
the term (Vp 2 Vf). Next, the mechanical system (particle1
fluid) is endowed with a time-dependent velocityVf(t), lead-
ing to the case of a particle with velocityVp moving in a fluid
with velocity Vf. Due to the fluid acceleration, Tchen states
that it becomes necessary to introduce an extra pressure
gradient term. Integrating the corresponding normal stresses
on the surface of the sphere produces an extra force which
did not appear in the original BBO equation, leading to the
so-called Tchen equation (Appendix C). However, the
Tchen procedure partly relies on intuition, giving rise to a
long controversy.

Having criticised the Tchen equation, Corrsin and
Lumley [32] have proposed a new equation which appears
to be nonlinear with respect to velocities and involves a
second-order fluid velocity derivative with respect to spatial
co-ordinates. In the Eulerian approach, these terms are

troublesome because they cannot be introduced in the stan-
dard theory of dispersion (Section 4), at least not in a simple
way. Criteria are, however, given for neglecting these terms,
allowing us to recover the Tchen equation, which is the one
we use in the Eulerian approach.

Buevich [33] simultaneously criticises again the Tchen
equation, explicitly stating that the Tchen procedure was
intuitive, and the Corrsin and Lumley equation leading to
results that he qualifies as being strange. For example,
Buevich discusses a simple case, that of a steady particle
motion in a fluid whose velocity is constant with respect to
time and also with respect to the space co-ordinate along the
trajectory of the particle moving in a constant direction.
Furthermore, particle and fluid densities are assumed to be
equal. The Corrsin and Lumley equation implies that the
relative velocity between particle and fluid may take on
arbitrary values. The underlying reason for such a physically
incorrect result would lie in an incorrect transformation of
the BBO equation from a co-ordinate system attached to the
fluid to the laboratory co-ordinate system. Relying on a
formulation from Oldroyd and Sedov, Buevich then demon-
strates that the artificial introduction by Tchen of an extra
pressure force disappears and obtains a new equation.

However, according to Maxey and Riley [34], the
Buevich equation is also incorrect. Again, the statement is
demonstrated by considering a simple case leading to results
which cannot be accepted on physical grounds. Thereafter,
they propose a new equation which is a generalisation of a
previously established Riley equation [35].

Maxey and Riley’s equation accounts for the influence of
velocity profile curvatures. When this influence is neglected,
the Riley equation is recovered (Appendix C). We also
mention the Gatignol [36] equation which is similar to the
Maxey and Riley equation.

In the Eulerian approach, we recall that the equation of
motion does not appear explicitly but is implicitly intro-
duced in the dispersion term of the particle transport equa-
tion by using a standard theory of dispersion (STDisp,
Section 4). We use the Tchen equation although it is incor-
rect. In practice, introduced errors have been found to be
small enough to be irrelevant. For instance, when both
Eulerian and Lagrangian approaches are used, they lead to
nearly identical results. The use of another linear equation is
possible but requires a modification of some involved math-
ematical expressions without, however, altering the struc-
ture of the STDisp. For nonlinear equations, we believe that
modifications for the STDisp are not feasible due to math-
ematical difficulties associated with nonlinearities but we
have never seriously attempted to solve this issue.

In the Lagrangian approach, there is no difficulty in
implementing any equation of motion because such a
change of equation only requires modifying a few program
statements. We may then easily handle more complicated
equations than Riley’s. This is actually required in many
situations because Riley’s equation is limited to the case
when particulate Reynolds numbers are small enough. For
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large particulate Reynolds numbers, a modified Riley equa-
tion is used (Appendix C). The modifications introduce
empirical correcting factorsCD, CA, CH for the drag term,
added mass term and the Basset term, respectively. TheCD

factor is given by Clift et al. [37]. ForCA andCH, we refer to
Odar and Hamilton [38]. For fluid discrete particles
(droplets, bubbles), internal recirculation associated with a
modification of the boundary condition at the surface of the
particle may arise, leading to an extra modification of the
drag term. However, in practice, pollutants accumulating at
the particle surface may restore the validity of the solid
boundary condition. Then, fluid discrete particles behave
as solid particles do [37].

Although originally designed for non turbulent con-
ditions, the Tchen and modified Riley equations are used
for turbulent flows, the first for the Eulerian approach, the
second for the Lagrangian approach. We then assume that
they are instantaneously valid. However, to establish them,
it was necessary to detail limit conditions at an infinite
distance from the sphere. These limit conditions conflict
with the space- and time-dependent character of turbulent
flows, i.e. they are, in principle, never satisfied. If we
consider a Kolmogoroff eddy (length scalehk) as being
the smallest relevant domain of space, then we may expect
that limit conditions at an infinite distance of the sphere
make sense when the particle diameterd is much smaller
thanhk. In these circumstances, equations of motion valid
for non turbulent flows could remain valid for turbulent
flows. Again, the conditiond , hk is thought as being a
sufficient condition. In practice, it did not appear to be
necessary because we did not observe significant and
systematic discrepancies between predictions/simulations
and experiments when the condition was not satisfied.
However, no clear limit can be stated for the particle
diameter: particles do not respond to all the fluid fluctuations
and thus the particle diameter must be smaller than the scale
to which the solid particle will quickly respond to [39]. Let
us mention that an extensive discussion on the relevant
turbulent and particle scales has been proposed by Stokes
[40]. The issue must nevertheless be considered open, and
interest in specific studies is warranted.

In some cases, it might also be necessary to add lift forces
to the equation of motion of particles. The reader is referred
to Clift et al. [37] Rubinow and Keller [41], Julien et al. [42],
Saffman [43] and Bretherton [44]. We point out that Saff-
man result is erroneous by a factor of 4p, as later corrected
by Saffman himself in an erratum [45].

In order to estimate in specific cases whether or not lift
forces may be neglected, we suggest reliance on the compar-
ison between lift drift velocity (evaluated by writing a
balance between lift drift forces and drag forces opposing
them) and particle dispersion velocity. If the lift drift vel-
ocity is much smaller than the dispersion velocity, then lift
forces may presumably be neglected. For instance, in Arna-
son’s experiments [46], we estimated lift velocity and
dispersion velocity to be 1 and 50 cm/s, respectively. In

the converse case, we may tentatively add lift forces to the
modified Riley equation. We point out that such a procedure
is, however, not entirely safe. First, for big particulate
Reynolds numbers, creeping flow assumption around the
particle is no longer valid, i.e. the problem to be solved is
no longer linear. Therefore, the principle of superposition of
solutions is not valid and we must not expect that adding lift
expressions to the modified Riley equation provides us with
the correct answer. Next, assumptions underlying the work
of Rubinow and Keller [41] and Saffman [43] are not satis-
fied. In particular, these works assume steadiness (which is
never instantaneously satisfied in turbulent flows). They
provide us with a lift force which is the rotational equivalent
of the translational Stokes drag force when there is no rota-
tion of the particle. As far as we know, the problem of lift
forces exerted on rotating particles in unsteady flows is an
unsolved issue. Very likely, the unsteady case would add
new lift forces. For example, we expect the occurrence of a
rotational history integral which would correspond to the
Basset history integral of the translational problem.

Finally, in turbulent flows, we note that the particulate
Reynolds number should be given a statistical meaning.
Even if the average relative velocity between a particle
and the fluid is zero (null value of the average particulate
Reynolds number), the instantaneous value of the particulate
Reynolds number can only be zero at discrete times. This
issue is discussed in Ref. [47].

4. Eulerian approach

We assume monodispersed particles. The polydispersed
case would be trivially considered by splitting the range of
diameters in a number of subclasses, assuming that each
subclass behaves independently of the others, as discussed
in Ref. [48]. Also, in this section, we essentially concentrate
on a simple version of the Eulerian approach, such as that
used in the so-called codes DISCO-1 and DISCO-2, post-
poning a brief discussion of more complex versions to the
end of the section.

The essential idea in the Eulerian approach is to handle
particulate trajectories at a conceptual level, so that they
eventually do not appear explicitly any more. Thus, in the
Eulerian approach, a continuous scalar field represents par-
ticles. The scalar quantity may be an averaged local particle
number–density, or a probability of presence defined over a
large number of realisations of the laden turbulent flow. The
scalar field is determined by writing and solving a particle
transport equation. As usual, this transport equation
involves a dispersion term representing the effect of turbu-
lence on particles.

The core of the problem thus appears to be the determina-
tion of a dispersion coefficient (more generally of a disper-
sion tensor) for this dispersion term. For such a
determination, we ideally should not rely on empirical
correlations which are always more or less risky to use
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and also add nothing to the understanding, although some
earlier attempts used such an ad hoc approach. Instead, we
shall rely on the construction of a standard theory of disper-
sion (in short STDisp) which, although involving limiting
assumptions, provides us with a firm theoretical framework.
This STDisp is extensively discussed in Refs. [47–51]. The
word standard here refers to the fact that the amount of
modelling is very small and, in well defined cases relying
on a set of sufficient assumptions, there is even no modelling
at all, thus justifying the use of the word ‘theory’ which is
ipso-facto redundant to the use of the word ‘standard’.

The STDisp relies on a standard theory of diffusion
(STDiff) developed by Batchelor [52] and generalising
previous works by Taylor [53, 54], Kampe´ de Fériet [55]
and Frenkiel [23], among others. Batchelor assumes a non-
isotropic, homogeneous, stationary turbulence. Molecular
effects are neglected.

At initial time t � 0 in Batchelor’s formulation, we
consider a volumeV of marked fluid and assume that the
marking quantity is uniformly distributed within the
volume. The analysis of the problem leads to the conclusion
that subsequent modifications in the centre location ofV and
mean concentration diffusion do not depend on the shape of
the volumeV. Marked fluid particle diffusion with respect to
the mean trajectory of the cloud centre is fully determined by
the statistical behaviour of a single fluid particle. Assuming
that the displacements in the various directions of space are
characterised by Gaussian probability density functions, one
then finds that the diffusion quantity evolves according to
the Fick law expressed by using a diffusion tensor.

The representation of diffusion processes with the aid of
the Fick law is indeed classical for long diffusion times,
analogous with molecular diffusion [22]. From experimental
data, one finds that the probability density functions of mean
displacements are indeed Gaussian when the turbulence is
homogeneous without any mean shear, for long diffusion
times but also for short diffusion times. This also theoreti-
cally results from simple expressions relating mean dis-
placements and velocity fluctuation variances, velocity
fluctuations being normally distributed [22]. However, the
assumption of mean displacement normality is not necess-
arily justified for intermediary diffusion times. Therefore,
Batchelor points out that the Fick law owns a phenomeno-
logical character rather than a fundamental one.

The Fick law diffusion tensor is expressed in a simple way
in terms of a displacement tensor which may be expressed in
terms: (i) of a Lagrangian correlation tensor; or (ii) of a
Lagrangian spectral tensor related to the Lagrangian corre-
lation tensor by a Fourier transform. Therefore, knowing the
Lagrangian correlation tensor, the time-dependent diffusion
tensor may be obtained. Then the transport equation may be
integrated. At this stage, the STDiff formulation is
completed.

Batchelor formulation assumes spatial and temporal
homogeneity of turbulence. Therefore, in steady turbulence,
statistical characterisation of fluid particle motion at a point

is also steady. However, for discrete particles, this is not
always the case due, for instance, to inertia. Therefore, the
statistical future of particle motion depends on initial con-
ditions at timet� 0. If we intend to generalise the Batchelor
formulation to the case of dispersion, we must assume that
the statistical characterisation of discrete particle motion at a
point is steady. In particular, it must be the same at time
t � 0 than at any time after. This is the so-called stationary
assumption [50].

If the stationary assumption is not satisfied, the definition
of a tensor (or a coefficient) of dispersion does not make any
sense. The spreading behaviour of a cloud of particles does
not only reflect the Fickian dispersive influence of turbu-
lence but also contains information on the initial conditions
at the injection point (initial particle velocity and also initial
fluctuations of particle velocity). Due to the existence of a
particulate relaxation time, initial conditions require time to
be forgotten. In extreme cases, measured dispersion coef-
ficients would have nothing to do with turbulence character-
istics but would rather characterise the injection process.
Checking of the validity of the stationary assumption
requires the comparison of two time scales: the particle
relaxation time, telling us how fast initial conditions are
forgotten; and the transit time in the turbulence field, telling
us how much time is given to the particles for such a loss of
memory. This assumption is not required in the Lagrangian
approach.

When the transit time is much longer than the particle
relaxation time, the stationary assumption is satisfied and
the STDiff may be generalised to a STDisp. Mathematical
expressions of the STDiff remain valid for the STDisp with
the proviso that quantities concerning fluid particles must be
replaced by quantities concerning discrete particles. In parti-
cular, the dispersion tensor is now expressed in terms of the
Lagrangian velocity correlation tensor of discrete particles
or, through the Fourier transform, in terms of the corre-
sponding Lagrangian spectral tensor.

We again assume that we know the fluid Lagrangian
spectral tensor (see Section 2). From the Tchen equation
of motion, one shows that the discrete particle Lagrangian
spectral tensor is equal to the fluid Lagrangian spectral
tensor multiplied byh 2. The so-called Tchen amplitude
ratio h only depends on fluid (not turbulence) and particle
properties. It may be physically understood as resulting
from a particle filtering effect, turbulence frequencies
being imperfectly transmitted to particle motion. At this
stage, dispersion coefficients may be computed and intro-
duced in a particle transport equation. The STDisp is
completed.

The computation of dispersion coefficients requires time-
consuming numerical integrations. However, when the
Basset term is neglected, integration may be analytically
performed leading to simple algebraic relations [50].
Circumstances under which the Basset term may be
neglected, and/or procedures to check whether this is
possible, are discussed in Ref. [56]. Ref [47] expresses the
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Eulerian formulation in terms of a fundamental ratio of two
time scales: the particle relaxation time and the Lagrangian
macroscale of turbulence. Ref. [47] also examines under
which conditions the Stokes drag term involved in the
Tchen equation remains valid for turbulent flows.

Although the STDisp is, in principle, designed for homo-
geneous turbulence, nonhomogeneous turbulence may be in
practice considered, at least approximately, by:

1. adding a convection term to the transport equation
2. introducing spatial derivatives of the dispersion tensor
3. computing quantities in a local way. For example,

evaluation of the Lagrangian time macroscaletL is
carried out with an expression involving the dissipation
1 of turbulence energy.1 Is obtained from the turbulence
model as a space-dependent variable. Therefore, the
macroscaletL also becomes a space-dependent variable
in contrast with its uniform character in the case of
STDisp in homogeneous flows. In other words, the
dispersion at one point is locally controlled by a fictitious
turbulent field which is tangent to the actual field, i.e.
what we previously called a tangent homogeneous field.

We now come to the discussion of a limitation of the
STDisp which is produced by Tchen equation assumptions.
The use of this equation requires assuming that a discrete
particle must permanently remain in the same fluid particle.
One states that no overshooting is allowed [22]. Even in the
most favourable case when fluid and particle densities are
equal, this assumption cannot be perfectly justified because
of the loss of individuality of any fluid particle which is
stretched, deformed and eventually destroyed by molecular
diffusion.

But furthermore, in most cases of practical interest, there
is a drift between discrete particles and fluid particles due,
for instance, to the influence of volume forces like gravity.
Therefore, overshooting is the rule. The trajectories of one
discrete particle and one fluid particle coinciding at timet
diverge when time goes on to the future or is reversed to the
past. This is the so-called crossing-trajectory effect (CTE)
[57–59]. Owing to this effect, particles cross eddies, leading
to an enhanced loss of memory. One then concludes that
dispersion efficiency is reduced in agreement with experi-
ments. In the Eulerian approach, CTE is taken into account
by introducing a multiplicative semi-empirical correcting
factor to the dispersion coefficient of the STDisp. This factor
contains a new constantCb [15]. Bear in mind, however, that
the Cb-value given in Ref. [15] is erroneous. The published
value should be divided by 2 (all other results are unchanged).

Here we would like to provide a striking image of the fact
that a loss of memory is associated with a reduction of the
dispersion efficiency. In the first case, assumeN gentlemen
grouped together inside a circle in a desert and, att� 0, they
all start walking in random directions. By definition, a
gentleman only drinks water. Therefore, once a direction
of walking is chosen, it is preserved. After one hour, the
gentlemen will be dispersed much. Here, a high memory

leads to high dispersion efficiency. In the second case, we
still haveN men, but they are not gentlemen. Thus, once a
direction of walking is chosen, it is not preserved. In
extreme cases, some of the men will fall down but, in any
case, even if they preserve their speed (a scalar), they will
not preserve their velocity (a vector). Here, a loss of
memory leads to low dispersion efficiency. To some extent,
this is the essence of the CTE where the enhanced effect of
collisions with eddies is replaced by the deleterious effect of
alcohol.

The above discussed Eulerian approach has been imple-
mented in codes generically called DISCO (for DISpersion
COmputing). Results and validations are provided in Refs.
[13–15, 60, 61] which are specifically devoted to the Euler-
ian approach. Other results are discussed in Ref. [3] and
incidentally provided in references concerning the Lagran-
gian approach for the sake of comparisons (see quoted
references in the following sections).

More general Eulerian approaches may be designed, then
relying on modelling. Some assumptions of the STDisp may
be removed with a more intense conceptual effort. This
enables us to go beyond the range of applications of the
STDisp which, even extended to nonhomogeneous flows
and corrected for CTE, remains limited due to underlying
assumptions. For instance, the STDisp transport equation
involves mean particulate number–densities but does not
account for number–density fluctuations which, by analogy
with the Reynolds stresses, must certainly play a role in a
refined description. Such generalisations for the STDisp also
lead to specific difficulties in a closure problem generated by
the presence of particles, in particular in the description of
interfacial transfers between the two phases. A consequence
is the introduction of new modelling constants, a somehow
unpleasant feature. Obviously, checking such more complex
Eulerian approaches by intensive experiments becomes
essential. For details, the reader is referred to Refs. [62–
64]. In any case, the STDisp should be recovered from
these generalised approaches as a limit case, providing a
test of validity and consistency. We should also mention
that significant progress, somehow analogous to the Euler-
ian approach, has been accomplished by relying on an
analogy with the kinetic theory of gases, but many develop-
ments are still necessary [65, 66].

Generalised Eulerian approaches, generically called
Eulerian models, then become akin to so-called two-fluid
models [1] and, conversely, a two-fluid model may be
viewed as a Eulerian model. Such two-fluid models appear
well suited to the study of dense multiphase flows, for
instance for the understanding and prediction of fluidised
beds.

However, we believe that these models lead to consider-
able difficulties in accounting for complex phenomena such
as vaporisation and combustion, particle/wall interactions,
coalescence and break-up, big particulate Reynolds number
cases, two-way coupling and particle/particle interactions
(four-way coupling). Although interest in the development
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of Eulerian models for such more complex phenomena is
warranted, we here have a strong motivation for the devel-
opment of another approach, namely the Lagrangian
approach that we are now going to study.

5. Lagrangian approach for fluid particle trajectories

5.1. Generalities

We provide in this subsection some general information
aiming to introduce classification of the different Lagran-
gian approaches which have been developed and used
during about the last two decades. Whatever the Lagrangian
method used, the main problem in turbulent flows, is deter-
mining the fluid instantaneous velocity field at the discrete
particle location, all along the trajectory of the tracked
discrete particle. Obviously, this problem is crucial because,
owing to various effects such as inertia and gravity, discrete
particle trajectories and fluid particle trajectories do not
coincide. However, fluid particle trajectories may be viewed
as reference trajectories and, in any case, we have to predict
them. The equation for such a prediction is, in principle,
very simple due to the fact that a fluid particle (or a discrete
particle exhibiting special properties such as being
nonbuoyant and/or having a vanishing diameter) instanta-
neously follows the surrounding velocity field. Therefore,
we have:

xi�t 1 dt� � xi�t�1 Uidt

in whichxi(t) is the location of the fluid particle at timet, Ui

is the instantaneous fluid velocity anddt an increment of
time, small enough so thatUi is essentially constant during
d t. The instantaneous velocityUi is equal to the mean vel-
ocity which is known (for instance from turbulence model
predictions) plus a fluctuationui, which is unknown.
However, we know the variances of each component ofui

(again from the turbulence model predictions) and we may
assume, for simplicity, thatui satisfies a Gaussian prob-
ability density function. This is not enough to toss a value
of the fluctuationui since it is compulsory to also satisfy the
Lagrangian velocity correlation coefficientRfL discussed
previously (Section 2 and Appendices A and B). Indeed,
we have commented on the strong relationship existing
betweenRfL (more or less memory) and the dispersion
(diffusion) efficiency (Section 4). We may then introduce
a classification of the Lagrangian approaches depending on
how this issue is handled. This classification starts from the
simplest approach to the more sophisticated one, intro-
ducing an order which, not surprisingly, coincides with
the chronological order.

1. degree 0. There, forces acting on discrete particles are
expressed only in terms of mean values. In other words,
the velocity fluctuationsui are taken as equal to 0 mean-
ing that the relevance ofRfL is not even considered.
Obviously, the subsequent problem to determine the

relationship between fluid particle trajectories and
discrete particle trajectories does not make sense in
such an approach. It may be viewed as a ballistic
approach in which the influence of the turbulent field
on the discrete particles is not taken into account. This
crude approach may be successful in some cases, for
instance for large and dense particles travelling in a
turbulent flow like bullets. However, this approach is,
to some extent, outside of the scope of this paper since
the stochastic ingredient required to generate dispersion
phenomena is lacking. This is why we symbolically
assign a degree 0 to it.

2. degree 1. There, fluid velocity fluctuations are generated
by a stochastic process in which velocity is maintained
constant during constant time intervals equal to the
Lagrangian time macroscaletL. This is the so-called
eddy lifetime approach which has been, and still is,
very popular [67–71]. The correlation coefficientRfL is
not explicitly considered in this approach but, clearly,
some memory effect is introduced in the stochastic
process. In fact, it may be analytically demonstrated
that the chosen stochastic process generates a correlation
coefficientRfL, which linearly decreases from 1 at a delay
equal to 0 down to 0 at a delay equal to 2tL. This is the
shape (A1) of Appendix A. Although this shape is crude,
the eddy lifetime approach may provide reasonable
results. As we shall soon see, this must be partially due
to compensating effects in the evaluation of scales.

3. degree 2. This approach is similar to the previous one but
the times in which velocity fluctuations are kept constant
are no more constant. Instead, these times are randomly
chosen and satisfy a Poisson distribution based on the
time macroscaletL. This approach may then be called a
modified eddy lifetime approach, or a random eddy life-
time approach. Again the correlation coefficientRfL is
not explicitly considered but it may be analytically
demonstrated that the present process generates a
decreasing exponential shape ofRfL. This is shape (A2)
of Appendix A, i.e. Frenkiel shape withm � 0. This
approach is conceptually more attractive than the
previous one since an exponential decrease ofRfL is
more realistic than a linear decrease. For details, see
Refs. [72–74].

4. degree 3. Degree 0 is not relevant to dispersion simula-
tions, as previously mentioned. At degrees 1 and 2, a
stochastic process is a priori chosen, generating a pos-
teriori a Lagrangian correlation coefficient which cannot
be controlled. In degree 3, we account for the fact thatRfL

is actually a predominant quantity, at least conceptually,
and takes it as an input. More importantly, the procedure
is designed in such a way that anyRfL-shape may be a
priori chosen and introduced in the code. The stochastic
process, in its details (but not in its whole scheme) is then
slaved to the chosen correlation. We may then call this
approach the correlation slaved approach. In particular, it
allows one to easily test the influence of the shape of the
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correlation coefficient on the particle diffusion (disper-
sion) phenomenon. However, in practice, as previously
mentioned, we favour the exp–cos Frenkiel shape with
m � 1. With m � 0, degree 2 is then automatically
recovered as a special case and we may check that
predictions from degree 3 withm� 0 agree with predic-
tions from degree 2.

5.2. The slaving process

The slaving process satisfies the following properties:

1. The probability density function of the velocity fluctua-
tions is assumed to be normal. This assumption may, in
principle, be relaxed, allowing possibly to test the influ-
ence of pdfs on diffusion (or dispersion). For predictions
in turbulent flows, the relaxation of this assumption
would require knowledge of the actual pdf. The accuracy
with which this pdf should be known depends on the
sensitivity of particle behaviour to it. Up to now, this
issue has not been studied but interest in such a study
is warranted.

2. The stochastic process must reproduce one point correla-
tion of velocity fluctuations, known from the turbulence
model (or from experiments).

3. Finally, this stochastic process must also correctly repro-
duce the fluid particle Lagrangian correlation function of
velocities along the trajectory, according to the chosen
shape ofRfL.

The chosen Lagrangian correlation function is rewritten
under the form of a matrix A (the correlation matrix) which
is symmetric and definite positive. Matrix components are
velocity correlations at timesid t andjd t, in whichd t is the
time step for trajectory simulations. From matrix A, we may
deduce uniquely another matrix B by invoking a so-called
Cholesky factorisation. The aim is to generate a vectorU
whose components are velocity fluctuations along the trajec-
tory, at time steps regularly separated by the incrementdt,
and complying with the chosen Lagrangian correlation. A
vector Y with uncorrelated, centred, unit variance compo-
nents is first randomly generated. One then shows that
U � BY (see Appendix D for details).

This process involves many operations so that the reader
may wonder whether it would not be too time-consuming.
Actually, due to the fact that the correlation history is well
reproduced, time steps in the slaving process may be much
larger than in eddy lifetime approaches, so that runs are
essentially not more time-consuming.

Originally designed for 1D-dispersion, the procedure has
later been generalised to 2D- and 3D-cases. Details may be
found in Refs. [3, 75–81]. In these references, we also
provide validations relying on comparisons between the
Lagrangian approach (computer program PALAS: PArticle
LAgrangian Simulation) and the Eulerian approach, theor-
etical results, experimental data. The quoted references also

contain results and validations concerning the case of
discrete particles that we are now going to discuss.

Also, Appendix E provides an extra discussion, with
emphasis on scales and the influence of inaccuracies when
evaluating these scales.

6. Lagrangian approach for discrete particle trajectories

The simulation of the trajectory of a discrete particle
relies on integrating the equation of motion of the particle.
Very often, the following simplifications may be introduced:

1. Basset term is neglected. The interest in this simplifica-
tion when it is allowed is that the Basset term is an
history integral which is time-consuming to evaluate.
Conditions allowing one to neglect the Basset term are
discussed in Ref. [56].

2. When turbulence intensities are small enough, temporal
derivatives of velocity fluctuations may be neglected
with respect to mean velocity derivatives.

Now, the simulation of a discrete particle trajectory is a
far more complicated task than for fluid particles. The main
problem is that, to integrate the equation of motion from
time t to time (t 1 d t), we must know the fluid velocity
fluctuation at the location of the discrete particle. However,
velocity fluctuations along the discrete particle trajectory are
correlated, but they are not correlated via the fluid particle
Lagrangian correlation function that is assumed to be
known. They are correlated via a discrete particle Lagran-
gian correlation function that is unknown. Therefore, the
simulation technique described in the previous section
cannot be used along the discrete particle trajectory.

In the slaving process approach, this problem is handled
by simultaneously launching a fluid particle and a discrete
particle, which coincide at the initial time of the trajectory
construction. The fluid particle trajectory will serve to drive
the discrete particle trajectory. This fluid particle trajectory
is simulated by using the technique presented in Section 5.
At each time step, one then knows the velocity fluctuation of
the fluid at the fluid particle location. In order to determine
the required fluid velocity fluctuation at the particle loca-
tion, we use Eulerian transfer of velocity fluctuations from
the fluid particle location to the discrete particle location, i.e.
fluid velocity fluctuations at the discrete particle location are
determined by a random process satisfying a Eulerian
spatial correlation between trajectories. At this stage,
knowledge of spatial Eulerian scales is therefore required
(Section 2). The mathematical formulation of the Eulerian
transfer again relies on the introduction of a correlation
matrix and of a Cholesky factorisation as in the previous
section.

However, the driving fluid particle can only play its role
when the distance between trajectories is smaller than an
Eulerian spatial macroscale. Otherwise, trajectories become
uncorrelated. Therefore, the distance between trajectories is
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compared with the Eulerian macroscale at each time step.
When it becomes too large, a new driving fluid particle is
launched from the discrete particle location while tracking
of the old one is given up (see Appendix F for details).

The above procedure allows the simulation of discrete
particle trajectories constrained to satisfy essential Lagran-
gian and Eulerian correlations appearing in any turbulence
field. When the discrete particle drifts with respect to the
turbulence field, it travels through eddies leading to an
enhanced loss of memory, so that (as we have seen) the
dispersion efficiency is decreased (crossing trajectory
effects).

Our present procedure for discrete particle trajectories
naturally simulates the CTE without introducing any new
constant. More generally, Lagrangian simulations discussed
in Sections 5 and 6 do not introduce new constants. It is the
basic reason why they have the status of a simulation, not of
a model. Any involved constant is associated with the turbu-
lence field, not with the particle behaviour.

We must however remark that the Eulerian transfer
process is not conceptually perfect. Effectively, letAB be
the correlation between two velocity fluctuations along the
fluid particle trajectory, andBC the correlation between two
velocity fluctuations,B being taken on the fluid particle
trajectory andC on the discrete particle trajectory, then
AC^ AB BC. The consequence of this mathematical fact
may be illustrated as follows. We assume that we simulta-
neously track two fluid particles, one driving and the other
driven. The fluid particle Lagrangian correlation function
along the driving trajectory is correctly simulated because
it is an input to the Cholesky factorisation. However, after
Eulerian transfer, it will not be perfectly recovered along the
driven fluid particle trajectory. More sophisticated proce-
dures in the same kind of spirit might be imagined to over-
come this problem. However, in practice, the effort has not
been found to be necessary.

Numerous comparisons between simulations and exper-
iments are provided in Refs. [3, 75–81]. Refs. [80, 81] discuss
a case of 3D-particle dispersion with CTE in which ferro-
fluid droplets are submitted to a nonhomogeneous magnetic
field. From the results presented in these papers, we
conclude that the Lagrangian approach is satisfactory.

7. Two-way coupling

When the mass-loading ratio of particles increases, it
becomes necessary to take into account the influence of
particles on the turbulence. The problem has been exten-
sively studied in the past and is still a main research topic
in the two-phase flow community. Due to the complexity of
the involved mechanisms, both experimental studies and
numerical attempts have been developed. Among them, let
us mention experiments in particle laden jets [82–84], direct
numerical simulations that are mostly devoted to the influ-
ence of particles on the fluid turbulence energy and its

dissipation [7, 10], large eddy simulations to account for
preferential concentration [9] and theoretical studies [85, 86].

Gore and Crowe [87] defined a criterion which is based on
the ratio of the particle diameterdp and the integral length
scale of the flowLE. They found that turbulence is attenuated
for small values ofdp/LE (,0.1) and increased for large
values (.0.1). Nevertheless, the relevant parameters
which are involved in the two-way coupling are not
restricted to the ratiodp/LE. If the particle diameter is larger
than the Kolmogorov scale, the particle will affect the
energy distribution of the surrounding flow. The particle
Reynolds number (Rep � dpuVp-Ufu/n) is linked to the struc-
ture of the flow around the particle. For largeRep particles
are generating turbulent wakes which will modify the turbu-
lence of the carrier fluid. An important parameter is the
particle relaxation time (tp � (rp 1 r f/2)dp

2/18m), which
leads to the Stokes numberSt � tp/t f when it is compared
to the fluid integral time scalet f. As quoted by Sato [88] for
Stokes number of the order of unity, a mean slip velocity
between the two phases is observed and thus it leads to
momentum transfer from the particle to the fluid. This trans-
fer increases with an increase in the loading ratio. Direct
numerical simulations [7, 10] have shown the complexity of
the problem, which should not be considered as completely
solved at the present time, although significant progress has
been achieved.

The most commonly used turbulence model remains the
so-called (k–1) model. To introduce the two-way coupling
in the simulations, the equations of the turbulence model are
then modified by adding source terms in the balance equa-
tions for momentum, turbulence energy and dissipation. For
momentum and turbulence energy, it is not necessary to
introduce any new constant. Corresponding source terms
can be accurately computed from the record of particle
energy and momentum at the entrance and at the exit of
finite difference cells [89]. Conversely, a new constant is
required to model the particle source term in the dissipation
equation. Therefore, the simulation becomes a model. The
obtained governing equations for the prediction of the turbu-
lence field then generalise the (k–1) ones. They will later be
given in a more general context (Appendix H).

The structure of the code PALAS is then also modified to
account for the two-way coupling. In a first step of the run,
the nonladen turbulence field is predicted by using the
original governing equations of the (k–1) model (supple-
mented by ASM ones), and a sufficient amount of particle
trajectories is simulated.

From these simulations, source terms are evaluated and
introduced in the modified turbulence model. A new set of
trajectories is later simulated in the new turbulence field,
and so on. The number of iterations between the turbulence
and the particulate modules to obtain convergence of the
process is typically 3. However, in dense or strongly
coupled two-phase flows, possibly with phase change or
chemical reaction, the convergence can be quite difficult
to reach [90].
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Validations by comparisons with experimental data have
been found satisfactory [79, 91], more particularly in
particle laden jets.

8. Heat and mass transfers

The Lagrangian approach is very suitable to handle
complex phenomena. Here, we discuss the case when ad-
ditional heat and mass transfers occur between the discrete
particles and the surrounding fluid, with the typical example
of droplet vaporisation. We have then also to track heat and
mass transfers along the discrete particle trajectories. We
start with a description of vaporisation models.

8.1. Droplet vaporisation models

One of the main assumptions in vaporisation models is
the so-called ‘corrected spherical symmetry’ assumption,
which means that spherical symmetry is assumed for heat
and mass transfers between the droplets and the surrounding
fluid, and that convection effects are taken into account by
introducing correlation laws [92, 93].

A more complete list of assumptions is as follows:

1. spherical symmetry
2. quasi-steady gas film around the droplet
3. uniform physical properties of the surrounding fluid
4. uniform pressure around the droplet
5. liquid/vapour thermal equilibrium on the droplet surface.

To take advantage of the assumption of thermal equi-
librium on the surface of the droplets, the droplet temperature
(particularly on this surface) must be determined. This may
rely on the so-called ‘infinite conductivity model’ in which
the temperature inside the droplet is assumed to be uniform,
or on the ‘conduction limit model’ in which the conduction
temperature equation is solved inside the droplet, or more
completely, on the ‘circulation model’ where internal
circulation can also be involved [94–97]. See details in
Appendix G.

These models include more or less sophisticated simula-
tions of the vaporising droplet behaviour but do not provide
any information on the influence of turbulence on the
particle behaviour. Such an influence may be predicted by
implementing these models in an one-way Lagrangian
approach where, besides tracking the dynamical behaviour
of the droplets, we also track simultaneously their vaporis-
ing behaviour. For instance, simulations have been carried
out for methyl alcohol droplets in grid turbulence [98].
Particular attention has been paid to the respective influence
of fluctuating temperatures, fluctuating vapour mass frac-
tions and fluctuating velocities on mean diameters and
diameter distributions. An important result is that the turbu-
lence produces a broadening of the probability density func-
tion of diameters, which cannot be neglected, particularly
when significant temperature fluctuations occur in the flow

under study. This broadening has a strong influence on the
spatial distribution of droplets, since the dispersion
efficiency depends on the diameter of particles. Hence, in
the case of spray combustion, the structure of the flame will
depend much on the diameter pdf broadening induced by
turbulent fluctuations.

8.2. Two-way coupling

In many situations, the mass loading particle/fluid ratio is
too large to allow one to be satisfied with the one-way
approach discussed in the previous subsection. We then
have to use a two-way coupling scheme, describing the
modification of the turbulence field by the particles, simi-
larly to that discussed in Section 7. In particular, the struc-
ture of the code again implements iterations between
turbulence predictions and particulate predictions. Besides
momentum and energy exchanges between the continuous
and the discrete phases (involved in Section 7), we now also
have to implement other exchanges produced by the vapor-
isation [99]. The vapour, which is given by droplets to the
fluid, is a source of mass and, furthermore, vaporisation
induces modifications in momentum and energy exchanges.
The most difficult work in implementing such a two-way
coupling consists of adequately rewriting the governing
equations for turbulence predictions. Details are provided
in Appendix H.

9. Four-way coupling

9.1. Generalities

Let us start from a two-way coupling case, in its full
generality, i.e. including phase exchanges between the parti-
cles and the carrier fluid. Now, assume that the number–
density of particles is so big that particles will interact,
either in an indirect way through hydrodynamic forces on
a particle induced by the presence of the other particles, or
directly, such as by collisions or coalescence. We are then
faced with a full four-way coupling problem in full general-
ity, to be discussed, in this paper, in the framework of
Lagrangian approaches.

The terminology ‘four-way’ comes from the fact that, if a
particle A influences a particle B, then, reciprocally, particle
B must influence particle A, by action and reaction. The
terminology ‘hydrodynamical’ arises from the literature
but does not mean that the carrier fluid is necessarily in a
liquid state.

A classification of particle laden flows in terms of the
importance of inter-particle collisions is based on the ratio
of the particle relaxation timetp and the characteristic time
of collisionst c [100]. In the framework of the kinetic theory,
for a statistically homogeneous distribution of dynamically
identical particles,t c depends on the particle volume frac-
tion a , the particle diameter and the particle kinetic energy
kp �tc � �24=

��
p
p

a=dp
�������
2kp=3

p �21�. The dilute regime is
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defined fortp/t c p 1 and the dense regime is fortp/t c q 1.
For dense two-phase flow the averaged time between two
collisions is smaller than the particle relaxation time, so that
the particles do not have time to recover their own behaviour
between two collisions. In dilute two-phase flow, the fluid
influence is the dominant effect, since the time between two
collisions is large enough for the particle motion to be
mainly controlled by the fluid.

The four-way coupling problem in its full generality is
still unsolved, but, in recent years, was the object of much
effort. This problem can be viewed as representing the
present frontier of two-phase flows with discrete particles.
Different approaches have been recently and are currently
being studied [5], leading to very encouraging results and, in
some cases, to definite ones, namely (i) the use of a direct
numerical simulation of both the fluid flow and of the
embedded particles, giving insights on underlying physical
phenomena [101, 102]; (ii) an Eulerian approach in which
collisions between particles are described by using a kinetic
theory approach [102]; (iii) a Lagrangian simulation based
on a single particle tracking [103, 104]; and (iv) a Lagran-
gian simulation based on several particle trajectories [105,
106].

Let us focus on Lagrangian approaches and assume
that we only consider particle collisions. Also assume
that probabilities for collision events can be evaluated.
Then it is possible to simulate single particle trajectories.
Along each trajectory realisation, a random process may
be used to decide when a collision occurs and, tossing
the characteristics of the particle partner in the collision,
to describe this collision. Here, we may view a discrete
particle as surrounded by a cloud of probability acting on
this particle. By analogy with the double solution in-
terpretation in quantum mechanics where a microparticle
is accompanied by a probability wave, we shall call this
approach the double solution approach. This is approach
(iii) above.

Approach (iv) is the most natural one to account not only
for collisions but also for hydrodynamic interactions
between particles. Here,N particles are simultaneously
launched and hydrodynamic forces may be evaluated at
each time step, allowing one to provide a Lagrangian simu-
lation of the simultaneous trajectories for a cloud of
particles. This is the approach to which the rest of this
paper is devoted.

Obviously, there is a drastic limitation in it, namely the
fact that N cannot be too big. We however forecast that
realisations overN-particle trajectories may help to define
probabilities of events so that this approach could allow the
development of refined double solution approaches
(although this last statement is still more or less intuitive).
We shall return to this issue on several occasions.

Also, at the present time, the usual two-way coupling is
not yet considered so that the four-way coupling problem is
considered in a restricted framework that we may call a
degenerated four-way coupling problem.

9.2. Hydrodynamic interactions

In the N-trajectory Lagrangian approach,N particles are
simultaneously tracked and we evaluate hydrodynamic
interactions and/or collisions between particle pairs, at
each time-step along particle trajectories, so that the motion
of a single particle is correlated with the motion of the other
surrounding particles. Of course, a given particle is more
influenced by those particles which are close to it, rather
than by particles which are far away from it. This is why
the N-trajectory approach may be realistic in practice,
although, in an actual flow, the numberN is actually infinite
from the point of view of computer capabilities.

Hydrodynamic interactions are deduced from the sedi-
mentation theory relying on the use of a mobility matrix.
For small enough particle Reynolds numbers, the mobility
matrix allows one to express the instantaneous velocities of
interacting particles versus their distance, diameters, vel-
ocity differences, and also fluid properties. The inverse
matrix, known as the resistance matrix, may then be used
to define a set of differential equations for particle displace-
ments (see Appendix I for details). When compared with
one-way equations of motion (such as Riley [35] or
Maxey and Riley [34] ones), the main difference then arises
in the drag term which now involves the hydrodynamic
coupling between particles. We then obtain a set of equa-
tions whose cardinality is equal to the number of interacting
particles to be solved (Appendix J).

9.3. Applications

The above formalism may be used to describe the
behaviour ofN sedimenting particles in a fluid at rest and,
actually, was originally designed for such applications. See
Refs. [107–111] for examples. It can also be implemented in
a Lagrangian approach in whichN particles are simulta-
neously followed in a turbulence field. It is then found
that the influence of hydrodynamic interactions becomes
small when the turbulence intensity increases, say beyond
1%, smaller in particular than the influence of collisions. An
inverse behaviour is observed for collision effects, depend-
ing on the investigated velocity direction with respect to
particle alignment (increase of fluctuating velocities in parti-
cle centre direction, decrease in perpendicular direction). No
influence on particle behaviour for 50 randomly distributed
particles has been observed in isotropic turbulence. For non-
isotropic flows, an effect of return to isotropy of the fluctu-
ating motion of the particles is observed. The significance of
this effect is strongly dependent on particle turbulent disper-
sion and particle relaxation time. The influence of collisions
is decreased by increasing turbulence intensity (the more the
particles are rapidly dispersed, the more the influence of
collision is reduced), and increased by increasing particle
relaxation time. The simultaneous tracking ofN particles,
however, allows one to evaluate collision probabilities
which could, in the next step, be included in a double
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solution approach. This leads us to the frontier of our present
knowledge, to the point where our ideas would become too
speculative for such a paper.

10. Conclusion

In this paper, Eulerian and Lagrangian approaches to
predict and/or simulate the dispersion behaviour of discrete
particles in turbulent flows have been presented and
discussed. From numerous validations carried out by
comparing theoretical results and experimental data, we
conclude that both approaches are suitable for the purpose.

The main focus, however, concerned the Lagrangian
approach which is well suited to the simulation of complex
phenomena, avoiding a significant increase of model
constants. Examples of such complex phenomena may be
found in two-way coupling situations when the turbulence
acts on the transported particles which, in return, react on
the turbulence and modify its properties when the mass-
loading ratio is large enough. The two-way coupling
problem has also been considered when additional heat
and mass transfers take place between the particles and
the carrier fluid, such as in the case of vaporising droplets.
In the presence of evaporation (one-way or two-way), it is
found that a monodispersed cloud of droplets becomes a
polydispersed cloud with skewed diameter probability
density function. Since dispersion phenomena depend on
the diameter, we also obtain a space-dependent diameter
probability density function in which the smallest droplets
typically tend to disperse faster towards the edges of the
flow. A next step would be to consider the case of combus-
tion, leading to enhanced complexity produced by the occur-
rence of chemical reactions and of radiative transfer.

Besides this line of research leading from isothermal
dispersion to combustion problems, current efforts are
devoted to the so-called four-way problem in which par-
ticle–particle interactions take place, under the form of
hydrodynamical interactions and/or collisions. In the
Lagrangian approach, instead of successively launching
particles in the flow, the basic idea relies on a simultaneous
launching allowing, conceptually, an easy handling of par-
ticle–particle interactions. In this form, the problem is very
challenging. More Eulerian correlations must be taken into
account, leading to a random process of greater complexity.
Also, simultaneous launching of particles leads to a
dramatic increase of storage requirements such as the
numberN of particles to be simultaneously tracked cannot
be very large. Although limited in its range of applications,
this approach can, however, provide relevant information. It
may help to design a double solution approach in which only
one particle would be tracked, being nevertheless
surrounded by a cloud of probability such as defining the
probability of collision. Such an approach might also be
used for coalescence or break-up.

Some of our assertions concerning the four-way problem

may be a bit speculative. However, currently intense efforts
are being devoted to this issue and forthcoming results will
certainly help to clarify it. In any case, starting from a well-
established knowledge, we felt it necessary to project
ourselves to the future.
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Appendix A. Functional shape of the Lagrangian
velocity correlation coefficientRfL

The simplest available shape is the linear decrease
according to:

RfL �t� � 1 2
t

2tL
�A1�

decreasing from 1 att � 0 down to 0 att � 2tL. Next, we
have the classical exponential decrease:

RfL �t� � exp�2t=tL� �A2�
and the Frenkiel [23] family:

RfL �t� � exp
2t

m2 1 1
ÿ �

tL

" #
cos

2mt

m2 1 1
ÿ �

tL

" #
�A3�

in which m is the loop parameter, giving back the exponen-
tial decrease form� 0.

Finally, we mention Sawford’s [112] expression reading
as:

RfL �t� � 1

1 2
�����
Rep
p exp 2

�����
Rep
p

t=TL

� �
2

�����
Rep
p

exp t=TL

ÿ �h i
�A4�

in which:

TL � tL 1 1
1�����
Rep
p

� �21

�A5�

Rep � 16a2
0

C4
0

Rel
15

�A6�

Rel � l
���
�u2
p

y
�A7�

a0 � 0:13Re0:64
l �A8�

Here, the Reynolds numberRel is based on a Taylor
turbulent scale, a velocity fluctuation scale

���
�u2
p

and on the
kinematic viscosityn. CO is taken as the Kolmogoroff
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constant or as a solution of the relation:

tL

tk
� 2

CO

Rel���
15
p 1

CO

2a0
�A9�

in which t k is the Kolmogoroff time scale. Let us mention
that this correlation is fairly insensitive to the exact value of
CO.

Eqs. (A1)–(A3) do not satisfy the requirement:

dRfL �t�
dt

ut�0 � 0 �A10�

but Eq. (A3) exhibits negative loops (form ± 0) as we
require to satisfy as closely as possible relation Eq. (A14)
in Appendix B. The fact that Eq. (A3) does not satisfy
Eq. (A10) is not very troublesome. Indeed, Fourier trans-
forming, it appears that the fluid Lagrangian spectrum is
badly estimated for high frequencies which have little influ-
ence on particulate dispersion, which is controlled by rather
big eddies.

Sawford’s expression satisfies Eq. (A10) so that it may be
possibly preferred. It has, however, not been extensively
used in the historical development of the topic discussed
in this paper. However, in practice, uncertainties in the
shape ofRfL may be compensated by uncertainties in the
evaluation of scales [104], so that the interest in an investi-
gation of Sawford’s expression is not warranted.

Appendix B. On the shape ofRfL (t)

Let us consider a one-dimensional turbulent motion in a
homogeneous stationary turbulence [22]. Letv(t) anda(t) be
the fluid fluctuating Lagrangian velocity and the fluid fluc-
tuating Lagrangian acceleration, respectively. Then, we
have:

v�t� � v�0� �
Zt

0
a�t 0� dt 0 �A11�

Defining the acceleration correlation coefficient as:

AL�t� � a�t�a�t 1 t�
a2

�A12�

we find:

dRfL �t�
dt

� cste
Zt

0
AL�t� dt �A13�

But the limit of
dRfL �t�

dt
for t ! ∞ is zero, leading to:Z∞

0
AL�t� dt � 0 �A14�

i.e. there is no acceleration integral time scale. This implies
thatAL(t) possesses at least one negative loop. But we also
have from Eq. (A13):

AL�t� � cste
d2RfL �t�

dt2
�A15�

and, therefore, the second derivative ofRfL must also exhibit
at least one negative loop. This condition is not satisfied by
the correlations Eq. (A1) and Eq. (A2) of Appendix A. It
may, however, be better satisfied ifRfL itself possesses one
negative loop, hence our demand leading to the use of
Frenkiel’s expression.

Note, however, that negative loops may be absent from
RfL and hence Eq. (A15) will be satisfied. Indeed, using Eq.
(A14) and Eq. (A15), we find:Z∞

0
AL�t� dt � cste

Z∞

0

d2RfL �t�
dt2 dt � cste

dRfL �t�
dt

u0 �A16�

Thus, when the first derivative of the correlation function
is 0 att� 0 and fort!∞ (as it should), the non-existence of
an acceleration integral time scale is automatically satisfied.
Such is the case for the Sawford correlation, but not for the
linearly and exponentially decreasing shapes. Frenkiel’s
family provides a (partial) remedy to this situation because,
in this case,R0 fL(t) at t � 0 is proportional to 1/(m2 1 1).

Appendix C. Equations of motion

This appendix provides equations of motion which are
relevant to the topic of this paper. For the Eulerian approach,
we use the Tchen equation [29] reading as:

dV
dt

1 aV 1 c
Zt

2 ∞
dV
dt
�t 2 t�21=2 dt

� aU 1 b
dU
dt

1 c
Zt

2 ∞
dV
dt
�t 2 t�21=2 dt 2

2�s2 1�
2s1 1

g

�A17�
in which:

d
dt
� 2

2t
1 Vj

2

2xj
�A18�

a� 18n
�s1 1=2�d2 �A19�

b� 3
2�s1 1=2� �A20�

c� 9�n=p�1=2
�s1 1=2�d �A21�

and:

s� rp

rf
�A22�

The temporal derivative is evaluated along the discrete
particle trajectory. Also,d is the diameter of the particle
while rp andr f are the density of the particle material and
of the surrounding fluid, respectively,V andU are the vel-
ocity vector of the particle and of the fluid respectively, and
g is the gravity vector. The extra force resulting from the
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extra pressure gradient term reads as:

Fpress� pd3

6
rf

dU
dt

�A23�

and is incorporated in the termbdU/dt of Eq. (A17). This
term is the one which has mainly been discussed in the
controversy concerning the Tchen equation.

For the Lagrangian approach, we use a modified Riley
equation [35] reading as:

rp
pd3

6
dV
dt
� 2

pd2

8
rf CD�V 2 U�uV 2 Uu

2 rf
pd3

6
CA

d�V 2 U�
dt

1
pd3

6
rp 2 rf

� �
g

1 rf
pd3

6
DU
Dt

2
pd2

4
CH

�����
rfm
p
p

×
Zt

2 ∞
d�V 2 U�

dt
�t 2 t�21=2 dt

�A24�
in which:

CD � 24
Rep

1 1 0:15Re0:687
p

� �
Rep # 200 �A25�

CA � 1:052 0:0066= A2
C 1 0:12

� �
�A26�

CH � 2:862 3:12= A2
C 1 1

� �3 �A27�

AC � uV 2 Uu2

du
d�V 2 U�

dt
u

AC # 60 �A28�

with the particulate Reynolds number reading as:

Rep � uV 2 Uud
n

�A29�

and

D
Dt
� 2

2t
1 Uj

2

2xj
�A30�

that means the extra pressure gradient term is now evaluted
along the fluid motion.

If Rep , 1, then the Riley equation is recovered. Modifi-
cations introduced to account for large particulate Reynolds
numbers are available from equations in Clift et al. [37] and
Odar and Hamilton [38].

Appendix D. The slaving process for fluid particles

For the sake of simplicity, the procedure is explained in a
1D-formulation.

Let u(nd t) be the fluid fluctuating velocity at time (nd t).
Our aim is then to determine a vector of correlated random

variables:

U � �u�0�; u�dt�; u�2dt�…; u�idt�;…� �A31�
the correlation between the components ofU having to
agree withRfL.

We then define a correlation matrixA, with elementsaij,
reading as:

A�
u�0�2 : :

u�0�u�dt� u�dt�2 :

u�0�u�2dt� u�dt�u�2dt� u�2dt�2

26664
37775 �A32�

This matrix is positive definite and symmetric. It is, in
fact, convenient to use a reduced matrixR, with elementsrij,
according to:

rij � up�idt�up�jdt� � u�idt�u�jdt����������
u2�idt�

q ���������
u2�jdt�

q �A33�

so that, instead ofU (Eq. A31), we now have to determine a
vectorU* reading as:

Up � �up�0�; up�dt�; up�2dt�;…; up�idt�;…� �A34�
Starting from a vectorY (yi) of noncorrelated random
numbers with a Gaussian distribution (such thatyi � 0
and yiyj � dij ), and assuming a matricial linear relation
betweenR andY, we then search for a matrixB* satisfying:

Up � BpY �A35�
SinceA (and thenR) is positive definite and symmetric, we
may invoke the so-called Cholesky factorization telling us
that:

R� BpBpT �A36�
in whichB* T is the transpose ofB*. Knowing the correlation
matrixR, Eq. (A36) allows one to determineB* and then, by
Eq. (A35), we obtainU*.

Of course, as time goes on, the size of the correlation
matrix could grow without any limit. This is actually
avoided by limiting the size of the correlation matrix, for
example by assuming that correlations are 0 when the time
delayt exceeds 5 times the Lagrangian time macroscaletL.

Finally, if RfL is chosen to have a Frenkiel [23] shape, let
us mention that the elementsrij of R read as:

rij � exp
2uj 2 iudt

�m2 1 1�tL

" #
cos

muj 2 iudt

�m2 1 1�tL

" #
�A37�

Appendix E. On scales

For fluid particle trajectories, the Lagrangian time macro-
scaletL must be evaluated. We may consider the ideal case
of homogeneous and isotropic turbulence to exemplify
problems associated with this evaluation (for more real
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cases, see the literature, in particular Ref. [16] in whichtL is
extended to a tensorial timetLij).

Then, following Tennekes and Lumley [113], the eddy
viscosityn t may be estimated by:

nt < u2
fLtL �A38�

in which ufL is the fluid Lagrangian velocity fluctuation.
Relying on the (k–1) closure equation, we also have:

nT � Cm
k2

1
�A39�

in which cm � 0.09. We then have:

tL < 0:14
k
1

< 0:2
u2

fL

1
�A40�

Unfortunately, the above constant 0.2 actually depends on
the authors. From experiments and simulations, it should be
somewhere between 0.2 and 0.6, as extensively discussed in
Ref. [114].

Therefore, it is important to discuss the influence of an
uncertainty in the value oftL on the diffusion phenomenon.

We start with Fig. A1 explicitly showing different shapes
for RfL, namely according to the Frenkiel expression (for
m � 0, and for m � 1) and to the Sawford expression.
Here, we have considered a homogeneous, isotropic, and
steady turbulence, with a rms fluctuating velocity corre-
sponding tou2

f equal to 0.017 m2/s2 and a Lagrangian
time macroscale equal totL � 91 ms. Under such circum-
stances, the Frenkiel expression withm � 0 and the
Sawford expression lead to similar results (excepted if
we zoom in on small time delays).

Now, anticipating a bit on the Lagrangian approach for
discrete particles, Fig. A2 presents mean square displace-
mentsy2 of discrete particles, versus time, again for different
RfL-shapes. The turbulence is a grid turbulence with char-
acteristics of the flow studied by Snyder and Lumley [115],
previously discussed in Ref. [104]. The discrete particles are
pollen particles and the results of the experiments by Snyder
and Lumley are also reported in the figure. We see that the

Frenkiel correlation withm � 1 agrees very well with the
experimental results, while the Sawford expression leads to
smaller values, and the exponential decrease correlation still
with smaller values. The relative difference between
extreme values is about 20%. Here, such comparisons
between differentRfL-shapes make sense because the scales
have been evaluated from the experiments and directly
introduced in the predictions. These scales are the time
macroscaletL (involved in RfL) and Eulerian scales used to
account for crossing trajectory effects (Section 6).

A less favourable situation is when scales have to be
evaluated by modelling expressions, such as Eq. (A40) for
tL. The ^10% of relative difference between extreme
values in Fig. A2 can then be generated by a^10% change
in the value oftL. See also Ref. [116] for further details on
this issue. This discussion exemplifies the importance of a
precise enough knowledge of the turbulence field, including
the prediction of scales. Direct numerical simulations [10]
or large eddy simulations [11] may help to improve such
scale predictions, by possibly providing more accurate
expressions of scale evaluations.

Appendix F. The slaving process for discrete particles

We simultaneously track a fluid particle (with trajectory
built as in Appendix D) and a discrete particle (with trajec-
tory built from the equation of motion), starting from the
same point at some initial timet0. The fluid velocity fluctua-
tion at location P of the particle is determined by transfer-
ring the fluid velocity fluctuation at location F of the fluid
particle to P, by using Eulerian correlations (Fig. A3). The
fluid particle is surrounded by a spherical domain of radius
LD, in which LD is a correlation length scale. When the
discrete particle leaves the correlation domain surrounding
the fluid particle, both trajectories become uncorrelated and
the discrete particle trajectory can no longer be driven by the
pilot fluid particle trajectory. Then a new pilot fluid particle
trajectory is used, starting at the location of the discrete
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particle (Fig. A3). This procedure simulates the effect of
crossing trajectories. In a simpler version, we may also
change the fluid particle at each time step, but this scheme
requires much smaller time steps for the construction of fluid
particle trajectories and thus longer computing time.

The transfer from the fluid particle location F to the
discrete particle location P also uses a correlation matrix
and a Cholesky factorisation. The correlation matrix is
now a spatial correlation matrix involving Eulerian correla-
tions, reading as (in the case of a 2D-formulation):

u2
1�F� : : :

u1�F�u2�F� u2
2�F� : :

u1�F�u1�P� u2�F�u1�P� u2
1�P� :

u1�F�u2�P� u2�F�u2�P� u2�P�u1�P� u2
2�P�

266666664

377777775 �A41�

If we use again a Frenkiel shape for Eulerian correlations,
we then have:

ui�F�ui�P� �
��������
u2

i �F�
q ��������

u2
i �P�

q
� exp

2r

�n2 1 1�LEi

� �
cos

nr

�n2 1 1�LEi

� �
ui�F�uj�P� � ui�F�uj�F�

� exp
2r

�n2 1 1�LEij

" #
cos

nr

�n2 1 1�LEij

" #
�A42�

When scales have to be evaluated they are expressed as
follows:

LEi � CitLi

��������
u2

i �F�
q

andLEij � Cij tLij

����������
uuiuj�F�u

q
�A43�

where the constantsCi andCij are fixed to 1 when no infor-
mation can be used from experimental data.

Appendix G. Vaporisation models

With the assumptions of corrected spherical symmetry,
the non-dimensional vapour mass flow rateL reads as [88]:

L � 2
Le1

ln�1 1 BM� �
�mCvap

pDl
�A44�

in whichLe1 is the Lewis number andBM the Spalding mass
transfer number, reading as:

Le1 � l

CvaprD1
�A45�

BM � Ys
1 2 Y∞

1

1 2 Ys
1

�A46�

Also, m̊ is the vapour mass flow rate,Cvap is the specific
heat of the vapour,D is the droplet diameter,l is the ther-
mal conductivity of the fluid,r is the fluid density,D1 is the
diffusion coefficient of the vapour, andYs

1 andY∞
1 are vapour

mass fractions on the droplet surface and far from the
droplet, respectively.

It is then found that the equation of evolution of the
droplet diameter reads as:

dD
dt
� 22Ll

rlDCvap
�A47�

wherer l is the liquid droplet density.
In the infinite conductivity model, it is possible to

explicitly provide a rather simple equation of evolution of
the temperatureTs of the surface of the droplet. This
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Fig. A3. The pilot fluid particle trajectories and the driven discrete
particle trajectory.

Fig. A2. Influence ofRfL-shapes on dispersion, and comparisons with experiments.



equation reads as:

dTs

dt
� 6

D2

l

rlCl
× �T∞ 2 Ts�Nu2

L
Cvap

L

" #
�A48�

whereCl is the specific heat of the liquid,T∞ is the fluid
temperature,L is the latent heat of vaporisation, andNu is
the Nusselt number defined by:

Nu� L

exp�L=2�2 1
� qg

l�T∞ 2 Ts�
D

�A49�

whereqg is the heat flow rate on the droplet surface.
In order to account for the influence of convection on

droplet vaporisation, correlation laws are used both for
heat and mass transfer modifications under the film theory
assumption. Following Faeth [117], the Nusselt numberNu
is then expressed as:

Nu� Nupln�1 1 BT� andNup � 2 1
0:55Re1=2

p Pr1=3

1 1
1:232

RepPr4=3

 !1=2

�A50�
whereBT is the Spalding heat transfer number,Rep is the
particle Reynolds number andPr is the Prandtl number. A
similar relation is written for the Sherwood number, but with
the Prandtl number replaced by the Schmidt number.
Several other correlations are available for the Nusselt and
Sherwood numbers which have been compared in Ref.
[118].

An important issue in droplet vaporization rate is the
knowledge of the physical properties in the gaseous film
around the droplet. Following Hubbard et al. [119], the
averaging ‘1/3 rule’ should be used, namely physical prop-
erties of the fluid in the gaseous film around the particle have
to be approximated at a reference state ‘2/3 of the droplet
surface1 1/3 of the fluid far from the droplet’. That leads to
change of the drag coefficientCD of the equation of motion
of the particle because the kinematic viscosityn involved in
the particle Reynolds number must now be evaluated in the
aforementioned reference state. From our experience, the
behaviour of droplets is very sensitive to the physical prop-
erties around the droplet, i.e. to the definition of the refer-
ence state.

Appendix H. Turbulence governing equations for two-
way coupling

Equations are written for a stationary, incompressible
flow under conservative forms, in order to include source
terms (mass, momentum, energy). We have to deal with
mean flow equations (continuity, momentum, temperature,
vapour mass fraction) and with turbulent quantity equations
(turbulence energy, dissipation, scalar fluctuation transport)
[95, 114].

The continuity equation reads as:

2

2xi
�rUi� � �Sm �A51�

in which �Smis the mass source term produced by the vapor-
isation process.

The momentum equation reads as:

2

2xj
�rUi Uj� � 2

2xi

�P 1
2
3
rk

� �
2

2

2xi

2
3
�m 1 mT�

2Uj

2xj

" #

1
2

2xj
�m 1 mT� 2Ui

2xj
1

2Uj

2xi

 !
1 Sui

�A52�
in which �P is the mean pressure andmT the turbulent
viscosity. Sui

is the momentum source term, which is the
sum of two contributions according to:

Sui
� Spui

1 Sui
�A53�

The first contribution results from the interaction between
the two phases, without any phase change, and depends on
the interaction forces between the fluid and the particles. It
reads as:

Spui
� n 2mp

dVi

dt
2 gi

� �� �
�A54�

in which n is the mean number of particles per unit volume,
mp is the particle mass,Vi is the particle velocity,gi is gravity
and , . indicates mean values over all the particle
trajectory realisations.

The second contributionSmui
is the gas momentum flux

ejected by the particle during its vaporisation. Assuming
that the vapour is discharged into the fluid with a mean
velocity nearly equal to the droplet velocity, we get:

Smui
� n SmVih i �A55�

depending on the mass sourceSm.
The mean temperature equation reads as:

Uj
2

2xj
rUj

�T
� �

� 2

2xj

m

Pr
1

mT

PrT

� �
2 �T
2xj

 !
1 �SH=CP �A56�

where �T is the mean temperature,�SH is the enthalpy source
term,CP is the fluid specific heat capacity,Pr andPrT are the
molecular and turbulent Prandtl numbers, respectively. The
enthalpy source term is the sum of two contributions:

�SH � �SpH 1 �SmH �A57�
The first contribution represents the heat captured by the

droplet for its heating and for vaporising a mass�m of liquid
per unit time, while the second contribution represents the
heat which is released by the droplet into the fluid as the
result of mass transfer accompanying the change from the
liquid state (at temperatureTs) to the gaseous state (at
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temperatureTref). These contributions read as:

�SmH � n �mCvap Ts 2 Tref

ÿ �D E
�A58�

�SpH � n 24pr2
sqg

D E
�A59�

The equation of transport of the mean vapour mass frac-
tion reads as:

2

2xj
rUj

�Y
� �

� 2

2xj

m

Sc
1

mT

ScT

� �
2 �Y
2xj

 !
1 �Sm �A60�

whereScandScT are the molecular Schmidt number and the
turbulent Schmidt number, respectively.

For the two-way turbulence energy equation, we first
apply the Reynolds decomposition to the momentum equa-
tion, yielding:

2

2t
ru0i 1

2

2xj
r�Uju

0
i 1 Uiu

0
j 1 u0iu

0
j 2 u0iu0j�

� 2
2p0

2xi
2

2

2xi

2
3
m
2u0k
2xk

 !
1

2

2xj
2ms

0
ij 1 S

0
ui

�A61�

in which:

s
0
ij � 1

2
2u

0
i

2xj
1

2u
0
j

2xi

 !
�A62�

is the fluctuating part of the strain tensor.
Multiplying Eq. (A61) byui

0, summing on subscripti, and
averaging, we obtain:

2

2xj
rUjk 1

1
2
ru0ju0iu0i 2 2mu0is0ij 1 p0u0j

� �
� 2ru0iu0jSij 2 2ms0ij s0ij �I�

1 Su0i u
0
i �II �

2rk
2Uk

2xk
2

2
3

u
0
i
2

2xi

2u
0
k

2xk

0@ 1A 2
1
2
ru0iu0i

2u0k
2xk

1 p0
2u0k
2xk

2 rUiu
0
i
2u0k
2xk

�III �
�A63�

Part I corresponds to the usual turbulence energy equation
of the (k–1) model (Section 2). Part II is a two-way term
produced by the fluctuations of the momentum source term.
From Eq. (A53), we see that this term contains a contribu-
tion, which does not involve any phase change (correspond-
ing to the two-way coupling in Section 7) and a contribution
depending on the phase change. Part III is only generated by
phase changes and we are now going to elaborate more on it.

Using Eq. (A51) and neglecting fluctuations of the fluid

density we get:

2Uk

2xk
�

�Sm

r
�A64�

2u0k
2xk

� S0m
r

�A65�

so that part III may be rewritten as:

�III � � 2k �Sm 2
1
2

u0iu0iS0m 2 U 0iu0iS0m 2
2
3
m

e
ru0i

2S0m
2xi

1
1
r

p0S0m �A66�

The term (1) depends on the mean mass source term,
while the other terms depend on correlations involving fluc-
tuations of this mean mass source term. In the framework of
a Lagrangian approach, terms (2) and (3) can be directly
evaluated without any assumptions and therefore do not
require any modelling [114]. Modelling is in principle
required for terms (4) and (5). No solution has been estab-
lished to model term (4); in practice, however, it appears
reasonable to neglect the correlation between velocity fluc-
tuations and spatial derivatives of mass source term fluctua-
tions. Also, it appears reasonable to neglect the correlation
between pressure fluctuations and mass source term fluctua-
tions [term (5)], in analogy with the correlationr 0u0i which is
exactly 0 in homogeneous and isotropic turbulence [22].

Eq. (A64) may then be rewritten as:

2

2xj
rUjk � 2

2xj

mT

sk

2k
2xj

1 Sk �A67�

Sk � G 2 CDr1 1 Sk �A68�

G� mT
2Ui

2xj
1

2Uj

2xi

" #
2Ui

2xj
�A69�

is the one-way usual turbulence energy production term.Sk

is the two-way extra source term involving two contribu-
tions:

Sk � Spk 1 Smk �A70�
The first contributionSpk depends on the particle mass load-
ing (without any phase change) while the second contribu-
tion Smk is due to the vaporisation process. They read as:

Spk � S0pui
u0i �A71�

Smk� S0mui
u0i 2 k �Sm 2

1
2

u0iu0iS0m 2 �Uiu
0
iS
0
m

� S0mui
u0i 1

1
2
�Ui

�Ui
�Sm 2

1
2

UiUiSm

�A72�

Next, the extra dissipation due to the particles is assumed
to be proportional to the extra energy production. Thus, we
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obtain a source termSp1 for the dissipation1 reading as:

Sp1 � C13
1

k
Spk �A73�

in which 1/k is the inverse of a characteristic time required
for dimensional reasons, andC13 is a new constant. In the
presence of vaporisation, we similarly obtain a new extra-
sourceSme which is modelled as in Eq. (A73) withSpk

replaced bySmk. The equation for the rate of dissipation
then reads as:

2

2xj
r �Uj1
� �

� 2

2xj

mT

s1

� �
21

2xj

 !
1 S1 �A74�

in which:

S1 � C1
1

k
G 2 C2r

12

k
1 S1 �A75�

with the extra source term:

S1 � C13
1

k
Spk 1 Smk

� �
�A76�

Let us finally consider the transport equation for a scalar
fluctuation, designatedu . The modelling approach is similar
to that for the previously discussed quantities so that we

shall be more concise. It is found that:

2

2xj
r �Uju

02
� �

� 2

2xj

mT

su

� �
2u 02

2xj

 !
1 Su 0 �A77�

in which su is a constant close to 1 as is usual in such
modelling.

Furthermore, we have:

Su 0 � Cu1mT
2 �u

2xj

2 �u

2xj
2 Cu2r

1

k
u 02 1 Su 0 �A78�

in which the extra source term reads as:

Su 0 � S0uu 0 2 u 02Sm 2 u 02Sm 2 2uu 0Sm

� Su
0u 0 1 �u �u �Sm 2 uuSm �A79�

This appendix provides an overview of the way to obtain
governing equations for the two-way coupling case, in
thepresence of phase exchanges. Checking these equations
would require much work for the reader, i.e. our presenta-
tion is rather complete but too concise for a precise under-
standing of all the details. A more complete explanation
would take too much time, spoiling the balance between
the different parts involved in this paper. Further details
may, however, be found in Refs. [95, 114].
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Continuity equation:
2

2xj
rUj � Sm

Transport equation:
2

2xj
rUjF � 2

2xj

mt

sF

2 �F

2xj
1 �SF

F �SF (turbulence model) �SF � �SpF 1 �SmF (extra source terms)

Ui
2

2xi
�P 1

2
3

k�2
2

2xi

2
3
mt

2Uj

2xj
1 SUi

SpUi
� hSpn 2 mp�dVi

dt
2 gi�i

SmUi
� nhSmVi i

k G2 CDr1 1 Sk Spk � S0pUi
u0i

Smk� SmU0i u
0
i 1

1
2
�Ui

�Ui
�Sm 2

1
2

UiUiSm

1 C1
1

k
G 2 C2r

12

k
1 S1 S1 � C13

1

k
Sk

cpT SH SpH � 2nhL _m1 QL i

SmH � nh _mCvap�TS 2 T0�i

y Sm Sm � nh _mi

u 02 Cu1mt
2 �u

2xj

2 �u

2xj
2 Cu2r

1

k
u 02 1 Su 0 Su 0 � S0uu 0 1 �u �u �Sm 1 uuSm



However, we believe that it is convenient to the reader to
provide below a table giving a summary of the structure of
the two-way governing equations.

Deleting all extra terms associated with heat and mass
transfer exchanges, we then recover the simpler two-way
coupling case discussed in Section 7. Deleting all extra
terms, we recover the classical one-way governing equa-
tions of Section 2.

Appendix I. Description of hydrodynamic interactions

We assume that particles are solid and spherical, that the
particle Reynolds number is small compared with 1 and,
also, we neglect the effect of particle rotations.

Following Jeffrey and Onishi [120,121], particle hydro-
dynamic forces then read as:

~F�1�
~F�2�

24 35 � m
A�1��1� A�1��2�

A�2��1� A�2��2�

" #
~Vp�1�2 ~U�~x�1��
~Vp�2�2 ~U�~x�2��

24 35 �A80�

in which ~F�a� is the force exerted by particlea on the
surrounding fluid, which can also be expressed as:

~F�a� � 2
Z:

sa
s:~n ds �A81�

whereSa designates the surface of the sphere,s is the stress
tensor, and~n the unit vector perpendicular to the surface,
pointing outward. Also,m is the fluid viscosity,A(a )(b ) are
the elements of the resistance matrix,~Vp�a� is the transla-
tion velocity of particlea and ~U�~x�a�� is the fluid velocity at
location ~x�a�. Furthermore, each elementA(a )(b ) of the
resistance matrix is actually a second-order tensor referring
to particlesa andb .

The resistance matrix is symmetric:

A�a��b�ij � A�a��b�ji �A82�

and the exchange between two spheres with radiia1 anda2

must not change the hydrodynamical forces:

A�1��2��~r ; a1; a2� � A�2��1��2~r ; a2; a1� �A83�
We may then write:

A�a��b�ij �~r� � XA�a��b� �~r�eiej 1 YA�a��b� �~r��dij 2 ei :ej� �A84�

where~e� ~r=r is the unit vector between the sphere centres
(oriented froma to b) and XA�a��b� and YA�a��b� are scalar
functions depending on the sphere radii and on the distance
between their centres, called resistance functions.

We then makeA dimensionless (but without changing the
notationA, for convenience), according to:

A�a��b� � A�a��b�

3p�aa 1 ab� �A85�

s� 2r
aa 1 ab

�A86�

l � aa
ab

�A87�

The interaction force relation Eq. (A80) then can be
rewritten as:

~F�1�
~F�2�

24 35 � 3p�a1 1 a2�m
A�1��1� A�1��2�

A�2��1� A�2��2�

" #

�
~Vp�1�2 ~U�~x�1��
~Vp�2�2 ~U�~x�2��

24 35 �A88�

At this stage, we are left with the evaluation of the func-
tions XA�a��b� and YA�a��b� . These resistance functions have
been determined by Jeffrey and Onishi [121], leading to
functions which are different forX and Y, and depend on
whether the particles are close or greatly separated. They are
expressed as polynomial expansions in terms of powers ofs
(Eq. A86) andl (Eq. A87).

For instance, in the case of separated spheres, we have:

XA�1��1� �s; l� �
X∞
k�0

f2k�l��1 1 l�22ks22k �A89�

XA�1��2� �s; l� � 22
1 1 l

X∞
k�0

f2k11�l��1 1 l�22k21s22k21 �A90�

in which:

f0 � 1 �A91�

f1 � 3l �A92�

…

f6 � 16l 1 108l2 1 281l3 1 648l4 1 144l5

…

�A93�

Explicit expressions for the resistance functions may be
rather easily obtained by means of symbolic computations,
for instance by using the formal calculus software Maple.

To provide the reader with explicit expressions, let us
consider the case of two identical (same nature, same radius)
particles, withaa � ab , i.e. l � 1. In the separated sphere
approximation, we then obtain:

XA�1��1� � 1 1
9
4

s22 1
93
16

s24 1
1197
64

s26 1 … �A94�

XA�1��2� � 2
3
2

s2
19
8

s23 2
387
32

s25 1 … �A95�

YA�1��1� � 1 1
9
16

s22 1
465
256

s24 1
14745
4096

s26 1 … �A96�
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YA�1��1� � 2
3
4

s2
59
64

s23 2
2259
1024

s25 1 … �A97�

and, in the case of the close sphere approximation, we have:

XA�1��1� � 1
4

1
1 2 4s22 2

9
40

ln
1

1 2 4s22

� �

2
3

112
ln

1
1 2 4s22

� �
ln

1
1 2 4s22

� �
1

3
4

1
17
10

s22 1
127
560

s24 2
4057
2240

s26 1 … �A98�

XA�1��2� � 1
2

1
s�1 2 4s22� 2

9
40

ln
s1 2
s2 2

� �

2
3

112
ln

1
1 2 4s22

� �
ln

s1 2
s2 2

� �
1

1
140

s21

1
151
280

s23 1
8077
5600

s25 1 …

�A99�

YA�1��1� � 2
1
6

ln�s2 2�1 0:99518461 … �A100�

YA�1��2� � 1
6

ln�s2 2�2 0:2711991 … �A101�

By studying these expressions, we found thats � 2.5
provides a good criterion as the frontier between the two
limiting regimes of separated and close sphere approxima-
tions.

For three spheres (and more than three spheres), the situa-
tion appears to be much more complex than in the case of
two particles, due to difficulties encountered in the analyti-
cal construction of the resistance matrix. However, under
reasonable assumptions and following Durlofsky et al.
[122], it remains possible to define a mobility matrix,
which leads to a resistance matrix by inversion.

Following Durlofsky et al. [122], we then have a mobility
matrix which reads as:

M �

m�a��a� m�a��b� m�a��g� :

m�b��a� m�b��b� m�b��g� :

m�g��a� m�g��b� m�g��g� :

: : : :

26666664

37777775 �A102�

in which the elements are second-order tensors given by:

m�a��b�ij �~r� � xm
ab�~r�ei :ej 1 ym

ab�~r��dij 2 ei :ej� �A103�
In a so-called fourth-order approximation, Durlofsky et al.

established that:

xm
aa � xm

bb � 1 �A104�

xm
ab � xm

ba � 3
2

s21 2 s23 �A105�

ym
aa � ym

bb � 1 �A106�

ym
ab � ym

ba � 3
4

s21 1
1
2

s23 �A107�

m�a��a�11 � m�a��a�22 � 1 �A108�

m�a��a�12 � m�a��a�21 � 0 �A109�

(while higher-order approximations would involve
unknown terms).

In this approximation, the mobility matrix is well defined.
It is also positive definite and symmetric, so that we can
obtain its inverse, the resistance matrix, by using a Cholesky
factorisation.

Appendix J. Equation of motion with hydrodynamic
interactions

As an example, let us consider the case of sedimenting
particles in a fluid at rest, in the Stokes regime. Then no fluid
velocity is involved in the equation of motion of particles.
For an isolated single particle, the equation of motion reads
as:

rp
dVp

dt
� 3

4
1
d
rf CDVpuVpu 1 �rp 2 rf �~g �A110�

With hydrodynamic interactions it is generalised to:

rp
dVp

dt
� 3

4
1
d
rf CDVpFI 1 �rp 2 rf �~g �A111�

in which FI possesses the same dimension as a velocity and
incorporates the action on the tracked particle of another
particle in its vicinity.

In the case of two spheres, we then obtain a system of two
coupled equations reading as:

d
dt

~Vp�a�
~Vp�b�

24 35 � 3
4d

rf

rp

A�1��1� A�1��2�

A�2��1� A�2��2�

" #

�
CD�a� ~Vp�a� u~Vp�a�u
CD�b� ~Vp�b� u~Vp�b�u

24 35 1 �1 2
rf

rp
�~g

�A112�
When the distance between the two spheres is greater than

a length scaleLi (taken as equal to 50 times the larger parti-
cle diameter), then interactions are negligible and the matrix
A reduces to unity. The system (A112) may be integrated by
using a fourth-order Runge–Kutta scheme.

More generally, forn interacting particles, we have to
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integrate:

d
dt

~Vp�k1�
::::

~Vp�ki�
::::

~Vp�kn�

266666666664

377777777775
� 1 2

rf

rp

 !
~g

2
3rf

4rpd

R�1��1� : R�1��j� : R�1��n�

:::: : :::: : ::::

R�i��1� : R�i��j� : R�i��n�

:::: : :::: : ::::

R�n��1� : R�n��j� : R�n��n�

26666666664

37777777775

×
CD�k1� ~Urel�k1�u ~Urel�k1�u
CD�kj� ~Urel�kj�u ~Urel�kj�u
CD�kn� ~Urel�kn�u ~Urel�kn�u

26664
37775

�A113�

References

[1] Wallis GB. One dimensional two-phase flow. New York:
McGraw-Hill, 1969.

[2] Gouesbet G. Particules discre`tes et de´fense. Confe´rence
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