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Abstract-We exploit recent developments on impinging single particle capture laws and rational 
correlations for inertial impaction on a circular cylinder in high Reynolds number crossflow [Israel 
and Rosner (1983) Aerosol Sci. Technol. 2, 45-51; Wessel and Righi (1988) Aerosol Sci. Technol. 9, 
26-601 to predict the local size distribution ofparticles deposited by impaction on a cylindrical target 
when the mainstream particle suspension is “log-normal”. Because of both the aerodynamics of 
selective impingement, and the nature of the sticking/rebound law, we show that the granular 
deposit particle size distribution (hereafter abbreviated (PSD)w) is generally quite different from 
mainstream particle size distribution (PSD),, by so much that (PSD)w generally cannot be 
characterized accurately by single-mode log-normal distribution parameters. Apart from its rel- 
evance in correcting for systematic errors in aerosol sampling from high-speed streams, this local 
variation of the “granular deposit” PSD along with information on deposit morphology, must be 
known (in addition to the total mass accumulated per unit area) to predict, say, the loss in convective 
heat transfer rate associated with the growth of a fouling layer. Three distinct classes of single solid 
particle capture laws are considered: constant capture fraction (independent of impinging particle 
velocity and angle of incidence), “on-off” capture behavior expected for impaction on a clean, 
particle-free, smooth solid surface, and particle capture on a dry, sufficiently thick, granular deposit. 
Our (PSD), results are cast in terms of following accessible dimensionless parameters: sensitivity of 
capture fraction to particle incident velocity and angle, ratio of mainstream velocity to the critical 
(threshold) velocity for particle rebound (at, say, normal incidence), ratio of mean particle size in the 
mainstream to the critical size required for impaction on a cylindrical target in crossflow, spread of 
log-normal mainstream particle size distribution, and the characteristic “slip” Reynolds number for 
the critical size particle in the mainstream. 
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NOMENCLATURE 

constant in equation (9) (= 0.158) 
normalized log-normal distribution function, equation (18) 
normalized distribution function in the deposit 
pooled particle size distribution function in the deposit over upwind target surface 
quasi-steady particle drag coefficient; Section 2.3 
particle diameter, (6v/n)‘13 
circular cylinder (target) diameter, Fig. 1 
Nusselt number-weighted dimensionless deposition rate 
reference deposition rate; equation (30) 
normalized (with respect to gas mainstream velocity) particle impingement velocity; Section 2.4 
Heaviside function (Section 2.2) 
thermal conductivity of the deposit 
thermal conductivity of the gas 
particle number density distribution function (= dNJdo) 
total particle number density 
heat transfer Nusselt number (see e.g. Rosner, 1986); Section 4 
Reynolds number based on target cylinder diameter (= UdJv) 
Reynolds number based on particle diameter (= Udp/v) 
Reynolds number based on critical size particle 
capture (sticking-) fraction upon local impaction 
Schmidt number (= v/D) 
particle Stokes number [ = t /tflow = (d, /WJl 
effective particle Stokes num&r ( =w$ei@>, 1) 

*Author to whom correspondence should be addressed. 
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Stk elf ET critical effective Stokes number for onset of inertial impaction 
(i for circular cylinder at Re:” + cc) 

t, particle stopping time (Stokes drag) 
T absolute temperature 
U gas mainstream velocity 
u particle size (volume) 

4,it or 4, volume of smallest particle capable of inertial impaction 
6 number mean particle volume 

odep number mean particle volume in the deposit 
us median volume of log-normal distribution of particles 
V, particle velocity at incipient impaction (Fig. 1) 

V,,,, or V,, critical velocity for rebound 

Greek letters 
/I coefficients in curve-fit for particle angle of incidence 
E local void fraction in microgranular deposit 

v or rl].. local impingement efficiency 
qcap target capture efficiency when s = 1 

tJ angle measured from the stagnation line (cf. Fig. 1) 
Bi local impingement angle with respect to local normal (cf. Fig. 1) 

L9 max maximum angle at which impaction can occur (for a particular mainstream particle size) 
p dynamic viscosity of carrier gas 
v gas momentum diffusivity (= p/p,) (“kinematic viscosity”) 

lmensionless particle volume (= v/v,,J 
gorg5 d’ dimensionless mean particle volume (= ls/vcrit) 

r & dimensionless mean particle volume in the deposit 
Irdep dimensionless median volume of the log-normal particle size distribution in the deposit 

es gas mass density 
p,, mass density of each particle 

o8 or os. m geometric standard deviation of log-normal distribution 
08,dcp geometric standard deviation of log-normal distribution in the deposit 

f$, particle volume fraction (= CiVNp) 
@ fraction of total mainstream population 
$ correction factor accounting for non-Stokesian drag behavior ofparticles for Re, > O(l) (cf. Fig. 2b) 

wp particle mass fraction p&,/(p, + &A) 

Abbreviations, subscripts 
BL gaseous boundary layer 
crit critical (incipient impaction in prevailing environement) 

crit or cr critical (at the transition between capture and rebound) 
eff effective (corrected e.g. for non-Stokes drag; see Israel and Rosner, 1983) 

g pertaining to gas 
Gr pertaining to granular deposit 

h pertaining to heat transfer 
H pertaining to Heaviside (“bare” surface) capture/rebound law 

lim limit 
lot local 

max maximum 
n normal component (cf. Fig. 1) 

Of f order of magnitude 
PSD particle size distribution 

reb pertaining to rebound 
ref reference value of 

stick particles which are captured 
wrt with respect to 

w pertaining to the target surface (“wall”) 
co pertaining to mainstream 

0 0 
{ ) argument of a function 

1. INTRODUCTION 

1.1. Importance of the size distribution of deposited particles 

An understanding of the inter-relationships between the particle size distribution in a 
deposit and in the mainstream source “suspension” is clearly necessary in sampling 
applications. In such cases a target is deliberately introduced in a stream for the subsequent 
analysis of its captured particle sizes, morphology and/or chemistry. In the present paper, 
we initially consider the “direct” problem of predicting the particle size distribution in 
deposits at various positions along the surface of a circular cylinder target in crossflow 



Particles deposited by inertial impaction on a cylindrical target in dust-laden streams 1259 

knowing: (a) the aerodynamics of the situation, (b) the mainstream particle size distribution 
(taken here to be log-normal) and (c) the particle capture (or rebound) law (Section 2.2). Our 
methods for solving the “inverse” problem-i.e. predicting (PSD), from measurements of 
(PSD)w using our knowledge of the aerodynamics of impingement and the mechanics of 
particle rebound, are presented in Section 4. 

In another important class of applications, initially clean heat exchanger surfaces exposed 
to high-temperature flowing suspensions--e.g. ash or soot particles in fossil fuel (oil) or coal 
combustion products, can acquire a sufficient fraction of this solid material to cause 
a noticeable decline in gas-side convective heat transfer performance associated with the 
local growth of a microgranular insulating “fouling” layer. The extent of degradation in 
heat transfer performance associated with the fouling layer not only depends on the total 
volume of particles deposited per unit area of target surface, but also on the local void 
fraction and size distribution of the particles in the deposit (see e.g. Rosner and Tandon 
(1995) and Section 4) (especially when the granular deposit morphology (solid fraction, etc.) 
and particle thermal properties are size dependent). We demonstrate here that this distribu- 
tion ((PSD)w) is often rather different from the particle size distribution in the mainstream, 
((PSDM 

We recently developed and illustrated an efficient method to predict inertially induced 
particle deposition rates on cylindrical targets (Rosner and Tandon, 1995; Rosner et al., 
1994). In the present paper, we explicitly predict the local deposit particle size distribution in 
high-velocity particle-laden environments with log-normal particle size distribution in the 
mainstream. For this purpose, we exploit recent developments in the area of inertial 
impaction (Israel and Rosner, 1983; Wang, 1986; Wessel and Righi, 1988; Konstandopoulos 
et al., 1993) and invoke recently developed single particle sticking (capture) laws for 
impaction on granular deposits (Konstandopoulos, 1991; Rosner et al., 1992) and for 
impaction on clean smooth solid surfaces (Wang, 1986; Dahneke, 1971). For simplicity, we 
confine ourselves to engineering environments with negligible post-deposition particle 
sintering. We examine the canonical (and best-understood) geometry of a circular-cylin- 
drical target in a spatially uniform, high Reynolds number cross-flow (cf. Fig. 1) and 
introduce a modest number of approximations to predict the local particle size distributions 
on the target surface. For convenience, our results will be cast in terms of following 
parameters: ratio of mainstream velocity U to threshold (critical) velocity for rebound from 
the solid surface ( Vc& j), ratio of mean particle size, V, to the threshold size, ucr, required 
for impaction on the circular cylinder target in the prevailing flow environment, spread, rrg, 
of the mainstream particle size distributions (here assumed ‘log-normal’), and the character- 
istic “slip” Reynolds number, Re,,,,it, for critical size particles in the mainstream. To our 
knowledge, there are no reported experimental measurements of particle size distribution 
on a cylinder in cross-flow, although Kim and Kim (1991) have reported particle size 
distributions in a deposit on a flat target under conditions where combined inertia and 
thermophoresis were the dominant mechanisms of deposition. 

--~- 4 
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Fig. 1. Flow configuration and nomenclature; particle impaction/deposition on a circular cylinder 
in the crossflow of a particle-laden gas stream. 
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The present paper is structured as follows: in Section 2 we state the principal assumptions 
underlying our analysis of deposit particle size distributions, including a brief account of 
our choice of single particle capture laws and inertial impaction correlations. In Section 3, 
we present results for particle size distributions at several “sampling” positions on the 
upwind side of a circular cylinder in crossflow, for a log-normal size distribution of particles 
suspended in the mainstream. Section 4 includes comments on our results and their 
implications and offers a simple method which, in principle, solves the “inverse” problem of 
predicting (a predictable portion of) (PSD), from (PSD)w data. Section 5 concludes with 
a summary of our principal findings and comments on extensions suggested by this work. 

2. MATHEMATICAL MODEL AND FORMULATION 

2.1. Basic assumptions and cases explicitly considered 

By combining recent results on the impaction of initially suspended particles on the 
surface of a circular cylinder target in high Reynolds number spatially uniform crossflow, 
with single particle capture probability laws (when individual solid particles strike solid 
surfaces) it is possible to formulate/calculate the local size distribution of the captured 
particle population for such a target exposed to a flowing suspension of particles, say, 
log-normally “distributed” in particle size. To incorporate the essential phenomena in 
a simple manner without making unrealistic idealizations we make the following basic 
assumptions: 

(Al) Local particle impaction frequencies, velocities, and angle of incidence can be 
calculated with sufficient accuracy from recently available correlations summarizing the 
results of individual suspended non-Brownian particle trajectories calculated for steady, 
inviscid flow of a uniform suspension past an isolated circular cylinder target (Fig. 1). 

(A2) Important systematic departures from Stokes drag law (owing to the local particle 
slip+ Reynolds numbers) can be adequately accounted for by using a modified (“effective”) 
Stokes number which corrects for non-Stokesian drag in computing characteristic particle 
stopping time or distance in the prevailing viscous carrier gas (Israel and Rosner, 1983). 

(A3) Even for impaction on granular deposits, suitable single particle capture probability 
laws at particular velocities and incidence angles can be invoked to predict capture fractions 
in engineering applications where suspended particles of different size arrive over a broad 
range of impact velocities and incidence angles. 

(A4) “Rebounding” particles neither appreciably influence incoming particles, nor de- 
posit in appreciable numbers upon re-impaction .on the same target. 

(A5) The mainstream population of suspended particles is approximately log-normal 
with respect to particle volume and, while the particle mass loading, q,, in the mainstream 
may not be very small, the uolumefraction, &, corresponding to the total particle number 
density N, and mean particle volume V (i.e. 4, = N,C) is negligible. 

(A6) On the scale of the target diameter the mainstream suspended particles are uni- 
formly distributed in space and are individually negligible in size. 

(A7) Particles in the deposit do not sinter and do not result in any evolution in local 
deposit particle size distribution subsequent to capture. 

(A8) In low volume fraction systems where the suspended particles are large enough for 
inertial impaction to be the dominant mechanism of arrival and deposition, particle number 
densities are low enough for Brownian coagulation to be neglected in the target neighbor- 
hood. 

(A9) Erosion (or resuspension) of particles in the deposit caused by subsequent imping- 
ing particles is neglected (however, see Section 2.2). 

‘Slip here is in the sense of the continuum multi-phase community and not that of aerosol science community 
(particles small compared to the molecular mean free path). Of course, in both cases the concern is systematic 
departures from Stokes drag law. 
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Some of these assumptions are critically examined by Rosner (1986), Tandon (1995), 
Rosner and Tandon (1995) and Rosner et al. (1995). 

2.2. Single particle capture probability laws 

Our purpose here is to apply the (admittedly incomplete) micromechanical theory of 
particle capture stickingfiaction, s [which provides the functional form of s when particular 
projectile particles are directed at particular target materials (including granular deposits) 
at a known velocity V, and angle of incidence 8i (cf. the target outward normal)] to predict 
local particle capture rates and hence deposit particle size distributions for a cylindrical 
target immersed in a polydispersed suspension of such particles. We consider three distinct 
and idealized classes of single particle capture laws, as follows: 

Constant capturefiaction. The simplest “law,” and one which has been used for many 
previous engineering estimates of fouling, is that capture occurs for some constantfraction 
s < 1 of impacts, irrespective of VP and 0i. This case will be called “constant capture 
fraction” and frequently labelled (and/or presented) for the limiting case s= 1. When 
s = const < 1 then all s = 1 functions shown remain applicable because of our normaliz- 
ation procedure in reporting (PSD)w. 

Perfect capture on clean solid surfaces only below threshold normal velocity. The second 
type of sticking law we consider is the individual particle capture behavior expected on 
a “clean” (particle-free) smooth surface (see e.g. Wang, 1986; Dahneke, 1971). In the simplest 
of such situations, an impacting particle is captured only if the normal velocity component, 
V p, ,, , of the impacting particle is less than the size-dependent critical velocity, VP, &I), here 
taken to be an experimentally determined quantity. Thus, if the normal velocity component 
of the impacting particle is greater than this critical velocity, a rebound event occurs. We 
assume, further, that the rebounding particles do not appreciably influence incoming 
particles, nor deposit in appreciable numbers upon reimpaction downstream on the same 
target. Thus, the simplest sticking probability function for a particle impacting on a bare, 
smooth solid surface can be conveniently written: 

s=$l+), (1) 

where L%‘(X) is the so-called Heaviside (unit) step function, with the following property: 

Jr(x) = 
i 

1, x20, 
0, x < 0. 

(2) 

The inertial impaction correlations we have used to calculate the normal component of the 
impacting velocity, VP,, ( = VP COSfdi)) t a each point on the upwind facing surface of 
a circular cylinder target in crossflow will be discussed in Section 2.3. The size dependence of 
the impacting particle critical velocity has been taken to be 

v,. CM = VP. cr fv,,) * WV,,) - 1/Z = VP, CT fv,,) .(Y - 1’2 (3) 

although empirical exponents different from - -$ are readily incorporated into such calcu- 
lations (Wang and John, 1988). Wall et al. (1990) report critical velocity as a function of 
particle size for various combinations of projectile and target materials. Here v,, is the 
volume of a particle of smallest size capable of inertially impacting in the prevailing 
environment calculated using methods discussed in Section 2.3. Our choice of exponent 
- ) to describe the size dependence of impacting particle critical velocity seems to be 

a reasonable one, based on results presented in Wall et al. (1990). We present our results 
(Section 3) in terms of the specifiable dimensionless “rebound parameter” U/V,,,&,,), 
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where U is the mainstream velocity.: In this scheme, the asymptotic limit U/V,,,,@,,) = 0 
corresponds to a sticking probability of unity irrespective of impact velocity. More complex 
dependencies on angle of incidence (see e.g. Xu et al., 1993; Wang and John, 1988) and 
alternate VP,&)-dependencies will be considered in extensions of the present paper. 

Incident particle capture by a ‘granular’ deposit. Recently, the sticking behavior of 
impacting particles on a dry “granular” deposit has been studied by Konstandopoulos 
(1991) and Rosner et al. (1992) using particle-level micromechanical computer simulation 
techniques. This important but complex case is still not fully understood, but we can already 
illustrate some of its distinguishing characteristics by invoking a sticking probability law 
based on these preliminary dynamical simulations. For the case of mono-sized particles 
impacting on a dry granular deposit, the relevant parameter is apparently the absolute 
impact velocity V,, (and not its normal component). If the impact velocity, VP, is less than 
some critical velocity, the impacting particle is inevitably captured. But above this particle 
critical velocity, the sticking probability does not fall abruptly to zero; rather, it exhibits an 
exponential “tail” (see Fig. 2). Based on the abovementioned computer simulations, the 

0 Y 
P.cn, 

(4 IMPACT VELOCITY V,, Vp,,,omal 

1 

dlnyr _P 
dlnRe, 

0.1 1 10 100 1000 
(‘4 Rep 

Fig. 2. (a) Single particle capture probability laws (particle velocity dependence). Cases shown: 
capture on a clean solid surface, and incipient capture by a granular deposit. (b) Non-Stokesian 
correction factor 1(1 for calculating effective Stokes number at characteristic particle Reynolds 

number Rep (log-log). 

r A typical value of U/v,,fv,,f is 9.5, for a polystyrene latex particle of critical size 5 pm impacting on a stainless 
steel target and mainstream velocity of 5 ms- ’ (Cheng and Yeh, 1979). 
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sticking probability, s, for impacting particles on dry granular deposit is therefore tenta- 
tively approximated as follows: 

(4) 

The parameter xD defines the sensitivity of sticking probability to incident particle velocity 
when the particle velocity is greater than the critical velocity and directed normal to the 
target. The indicated function 0 defines the (comparatively weak) dependence of capture 
fraction on incidence angle (with respect to the underlying target) of the impacting particle. 
We neglect the particle size dependence of 2” and the dependence of particle critical velocity 
on impingement angle, based again on the available (if not yet comprehensive) dynamical 
simulations of Konstandopoulos (1991). Therefore, for our illustrative particle-on-deposit 
simulations we choose the following relations for the parameters xn and 0: 

0 = 1 + 0.2. Oi (Oi in radians) 
xn = 0.8 (5) 

As in the case of impaction on a clean smooth solid surface, we assume that V,,,, for 
impaction on a granular deposit is insensitive to angle of incidence and has the particle size 
dependence of equation (3)-a dependence which should be regarded as provisional-i.e. 
used here only for illustration purposes in the absence of definitive evidence to the contrary. 

While, undoubtedly, the particular laws and parameter choices in equation (5) will have 
to be generalized, our “granular deposit” (PSD)w results below should be viewed as 
representative of what will happen when the single particle capture behavior does not 
depend only on the normal component of the velocity and has a non zero “tail” at impact 
velocities above some V,, CT (see Fig. 2a) (expected to be much smaller for impact on deposits 
compared to impact on hard solid surfaces and insensitive to incidence angles). 

Resuspension (or erosion) of particles in the deposit caused by subsequent impinging 
particles will be neglected in the analysis which follows. Despite recent work on resuspen- 
sion (John et al., 1991; John and Sethi, 1993), a self-consistent theory (which can predict 
erosion yields for particles of different sizes, velocity and angle of incidence impacts on 
granular deposits) is not available.# We are now developing particle-level micromechanical 
models for estimating erosion yield laws for impaction on a granular deposit, and these 
results will be incorporated in extensions of this work. 

2.3. Inertial impaction for a cylindrical target in crossjow; Stkeff correlations 

Defined as the ratio of the characteristic stopping time t, ( = &,d$Sp) to the flow time 
tflow (- (dJ2)/U) the Stokes number, Stk, which dictates particle impaction behavior in any 
aerodynamic environment, is conventionally computed assuming the linear Stokes drag law 
(see e.g. Friedlander (1977) or Rosner (1986)). In an analysis of inertial impaction on spheres 
and circular cylinders in high-speed streams Israel and Rosner (1983) introduced a general- 
ized Stokes number, Stk,,,, which takes into account the non-Stokesian drag on the particles 
and possible systematic modifications of tflow (e.g. due to the adjacent targets; see e.g. 
Konstandopoulos et al., 1993). It may be calculated in terms of conventionally defined 
Stokes number and particle Reynolds number (Re,) via 

Stk,,, = Stk . $fRe,) . (6) 

I Crude approximations have been made to estimate deposit erosion yield behavior by treating the deposit to be 
‘semi-ductile’ (with erosion behavior qualitatively similar to that of metals) (see e.g. Miller et al., 1992). Although we 
are interested in the erosion of deposits by impacting particles, as a first step towards that goal, we have developed 
a rational, convenient method to predict solid target cylinder erosion rates for metals (Rosner et al, 1995; Kho 
et al., 1995) and ceramics (Khalil and Rosner, 1995) when erosion yield data are available. 
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The non-Stokes drag correction factor, $fRe,), can be calculated from (Israel and Rosner, 
1983): 

rl/fRe,) = g j”’ d RF’ 
p o G&e j Re’ 

(7) 

and is seen to have the necessary property $ -+ 1 when the drag coefficient Cn + 24/Re 
(Stokesian limit). A useful empirical approximation to extensive CufRe) data, accurate up to 
Re, = 0f103), is 

CD E ;[I + 0.158 (Re)2’3]. 

This representation leads to a correction factor II/ which can be explicitly expressed in terms 
of Re, as 

~ = 3{$Reb13 - tan-’ f&Rei’3)} 

c312 Re, (9) 

This convenient relation, with c = 0.158, has been used for all (PSD)w calculations reported 
here, as well as the construction of Fig. 2b (with log-log coordinates). The integrations over 
particle volume required to calculate the particle size distribution in the deposit will be 
carried out using the dimensionless particle volume variable 5 z u/u,,. However, all inertial 
impaction correlations (Israel and Rosner, 1983; Wang, 1986; Wessel and Righi, 1988; 
Konstandopoulos et al., 1993) are given in Table 1 in terms of the efictive Stokes number of 
equation (6), or explicitly 

When use is made of the result that the singular size u,, (= ndz,.,/6) corresponds to 
Stk eff, CT = & (for a circular cylinder target at Re:j2 B 1) the algebraic (transcendentaly 
relation between the variables Stk,,, and l is easily seen to be obtainable from (using 
equations (9) and (10)): 

Stk,,, = f t1’3. J ~Rek!f,tl’~ - tan-’ (&Rei!$rt1’9) 

J c Reb% - tan- 1 (& Rei!zr ) 
(11) 

where Re,, CT) the value of Udp,cr/~g (of the order unity for many cases of present interest), 
will remain as an important parameter in all of the following calculations. 

Table 1. Constants in correlation equations 12 and 13 for estimating particle local impingement velocity, angle 
and dimensionless collision frequency (after Wessel and Righi (1988)) 

Correlation constants 

Correlation parameter, I Stk,rr range Pi Bz 

Target efficiency, qcap 0.125 + 0.5 0.01978749 0.5136545 
> 0.5 1.54424 - 0.538313 

Maximum angle experiencing 0.125 + 0.5 0.696596 - 1.822407 
impingement, &&r/2) > 0.5 0.1722744 - 0.271871 

Impact velocity, 1 VP (0)1/U 0.125 -+ 0.8 0.0209863 0.8762208 
> 0.8 1.038627 - 0.327754 

Impact velocity, 1 VP fO,)j/U 0.125 + 0.5 1.925045 - 6.38525 
> 0.5 - 0.242589 0.234317 

83 

- 0.0482858 
0.2020116 

1.1452745 
0.06049905 

- 0.403482 
0.1115756 

3.796702 
- 0.0446577 

Correlation 
equation 

equation 12 
equation 13 

equation 12 
equation 13 

equation 12 
equation 13 

equation 12 
equation 13 

n If it were not for the non-Stokesian correction $fRe,), Stk,, for particles large enough to remain in the 
continuum regime would simply be proportional to 5 213 (i.e. projectile particle surface area). 
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For a circular cylipder target in crossflow, the basic inertial impaction functions: overall 
impingement efficiency (qcap), the maximum angle of experiencing impingement (&,,,), the 
impact speeds at the forward stagnation point ( Vpo) and at the maximum angle experiencing 
impingement (V,,) have been recalculated via numerical integration of the particle trajec- 
tory equations and the results are correlated by Wessel and Righi (1988) (W&R) henceforth 
using the notion of an effective Stokes number, Stk,,, recommended by Israel and Rosner 
(1983). The correlation forms used are 

r = B1 ln (8StkA + PZ (Stk,ff - &) + 83 (Stk,ff - &))’ (12) 

or (cf. Israel and Rosner, 1983) 

I-=(1 +/&(Stk,,-i)-’ +Bz(Stk,,,-~)-Z+B,(Stk,,,-~)-3}-’, (13) 

where the recommended values for the coefficients appearing in these formulae are repro- 
duced in Table 1. In addition, Wessel and Righi (1988) provide a set of correlations for 
“local” normalized impingement efficiency (q,,,,(0); cf. Section 2.3) at any angular position, 8, 
in terms of the overall impingement efficiency (qcap) and the maximum angle, 19,,,, experi- 
encing impingement (e,,,). 

7L 8 
Q&e) =;$%os Te . 

( 1 
(14) 

ntax max 

The impact speed (V,(0)) of a particle at any point (0 < e,,,) on the surface is correlated 
with the above mentioned values V,,, VP0 and 8,,, via 

v,(e) = -(v,, - V,+~OS &+- + vpm. 
( ) 

(15) 
max 

The complement (a@)) of the angle of incidence ei (Fig. 1)) depends on the maximum angle 
experiencing impaction and an exponent, b, also correlated with Stk,,, via 

$={I-(&)“3’, (16) 

where 

Bt 83 b=l+&&+--r+ 
eff Sk,, =!i 

(17) 

and, according to Wessel and Righi (1988) p1 = 0.1851488, BZ = - 0.0205901 and 
p3 = 0.001530146. Thus, in our present notation h = &/(x/2) = 1 - [crfe)/(lr/2)]. In closing 
this section we note that compact alternative correlations for yl,,,, and V,fe)/LJ have also 
been provided by Wang (1986), however we have chosen not to “mix” correlations from 
different sources. 

The correlations defined above for functions ylloc, V, and f$ have been described in terms 
of effective particle Stokes number, which can be calculated for a particle of given size using 
equation (11). These functions are used in evaluating particle size distribution in the deposit 
(equations (20) and (21)-Section 2.5). The capture fraction, s, appearing in these equations 
depends on the impingment velocity VP and impinging angle ei, both of which are 
themselves function of impacting particle size u and position 8 on the upwind side of the 
circular cylinder. 

2.4. Particle size distribution in the mainstream 

Using particle volume u( = xdz/6 for a sphere of diameter d,) as the basic size variable, the 
normalized mainstream distribution function C,(u) appearing in Section 2.3 is defined such 
that the mainstream number density of particles with volume u f (du/2) is given by 
N&,(u) * du, where N, is the total particle number density. While the quadrature expres- 
sions given below for the normalized distribution function C&u) (Section 2.5) admit any 
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C,(u) of particular interest, all of the remaining calculations here will be based on the 
single-mode, two-parameter continuous distribution function in the mainstream: 

which is said to be “log-normal” since v. C,(u) is Gaussian in the particle volume variable 
In u. A particular value of the spread parameter of special interest here is ~7~ = 2.3, corres- 
ponding closely to coagulation-aged populations in the continuum regime (see e.g. Fried- 
lander, 1977; Rosner and Tassopoulos, 1989)). Rather than using the geometric mean 
particle volume ug to characterize the average particle size in the population, we choose 
instead the number-mean volume defined by the integral of UC,(U) over all particle sizes in 
the mainstream population, where, for a log-normal population (see e.g. Rosner and 
Tassopoulos, 199 1): 

V = vg exp (ln20,/2). (19) 

As noted earlier, the product V. N, is the total uolume fraction 4P, m of the mainstream 
aerosol, assumed here to be a very small number (6 1). 

2.5. Local size distribution of captured particles 

For the log-normal distribution C, (equation (18)) and the single particle capture 
probability law sfu, 0) (Section 2.2) calculated in terms of local impingement velocity, angle 
and dimensionless collision frequency (Section 2.3), we calculate below the deposit local 
particle size distribution from the normalized quadrature expression: 

(20) 

The sticking coefficient, s, and the dimensionless local impingement frequency, qlocr at 
each position 0 and particle size u are evaluated using the relation between effective Stokes 
number, Stk,,,, and dimensionless particle volume, 5 (= u/u,,) (equation (1 l)), where u,, is the 
critical volume, i.e. the volume of the smallest particle capable of inertial impaction on the 
target in the prevailing environment, and Rep,.,, the Reynolds number based on main- 
stream velocity and diameter of critical size particle. The above integral can easily be 
calculated and reported in the equivalent nondimensional form: 

(21) 

We present our results as the normalized deposit particle size distribution C&.&, at 
different “sampling” positions 8 on the upwind surface of the circular cylinder for each of the 
single particle sticking laws discussed in Section 2.2. For the cases where (PSD), can itself be 
approximated by a log-normal distribution we also report the standard deviation, 
(Tg&p and number mean ‘$ep, of the deposit particle size distribution (PSD),. 

In some applications, all deposit particle populations on the upwind target surface may be 
‘pooled’,” in which case one would obtain a size distribution C&.,(r) which is a suitably 
weighted combination of the above mentioned local distribution functions Cdepfu, 8). In 
such cases, we expect 

(22) 

where, from equation (20), the indicated “weighting” function F(0) can be expressed as 

F(e) =fftW (23) 

1 AS, for example, if the target undergoes continuous rotation such that C!d,/2 4 U. 
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in terms of the target position-dependent integral over all particle sizes: 

and its upwind surface average: 

(25) 

Typical results for this “upwind-pooled” (PSD), will also be included in Section 3, at least 
for the case s = const. We notice that the interpretation of such pooled data will inevitably 
be compromised by the loss of information associated with spatial averaging. Moreover, 
since a cylindrical target lends itself (via physical rotation of the active sampling “sector”) to 
angle-dependent PSD,-information, we recommend that this feature be exploited to con- 
firm one’s understanding of the nature of the mainstream population C,(v) and the 
operative capture law s(V~(V, B)/U;OifU, ejj. 

3. RESULTS AND DISCUSSION 

3.1. Deposit particle size distribution 

For the log-normal distribution C, and the single particle capture laws, local impinge- 
ment angle and efficiencies discussed in Section 2, we have calculated the normalized 
deposit local size distribution ((PSD),) at different positions on the upwind surface of 
a circular cylinder using equation (21). The spread of the local particle size distribution in 
the deposit is often quite different from the spread of the particle log-normal size distribu- 
tion in the mainstream and, for most cases (PSD), cannot be accurately represented by an 
approximate log-normal distribution function. However, for those cases where (PSD), can 
be represented as a log-normal distribution, we calculate (using methods discussed in Raabe 
(197 1)) and report the geometric standard deviation, cg,dep The mean dimensionless particle 
size in the deposit reported in Fig. 7 can be used to calculate the median particle size for the 
deposit log-normal distribution using 

5 g. dep = tddep * exp f - 4 ln’%dep). (26) 

In Figs 3-6, we show the computed normalized (PSD), for different sticking laws (H in 
these figures corresponds to the Heaviside-type sticking law (equations (1) and (2)) describ- 
ing sticking behavior on smooth (“bare”) solid surfaces while the abbreviation “Gr” refers to 
the sticking behavior on a granular deposit; (equation (4)) at different positions on the 
upwind surface of the circular cylinder in crossflow for a log-normal mainstream particle 
size distribution. We report here our results for a mainstream standard deviation, g‘8, of 2.3, 
i.e. the “self-preserving” spread corresponding to coagulation-aged populations in the 
continuum regime (see e.g. Rosner and Tassopoulos, 1989). 

3.2. Constant capture fraction 

For the case of impact-velocity independent constant sticking law (here labeled s= l), 
when the mean dimensionless particle size in the mainstream, C, is small, a major fraction of 
the particles fall in the subcritical range and do not deposit by mechanism of inertial 
impaction. Therefore, for such cases, particles from only the large size “tail” of the 
distribution in the mainstream are able to deposit, leading to_ a deposit size distribution very 
different from log-normal. As the mean dimensionless size, 5,) in the mainstream increases, 
a smaller and smaller fraction of particles lie in the subcritical range incapable of impacting 
the target, so that, for large values of mean particle size in the mainstream the deposit 
distributions are very close to log-normal distributions. The spreads of these populations 



1268 D. E. Rosner et al. 

01 

6 
001 

‘a” 
0 

0001 

00001 

(A) 

H-Sticking Law 

lE-005 

F=lO 
- F=30 
-- f=lOO 
-_F=300 
-_F=500 
-~=I000 

lo r 
i 

1t 

H-Stlckmg Law 
e=0;u/vcr=10.0 

! 

Re =1 
Psi 

_F=l 
- f=3 

f=lO I - F=30 
-- p=100 
-.$=a00 
-f=500 

0.1 

_ 001 
a 

‘s 
0 

0001 

00001 

1 E-005 

Granular Deposd 
a =o;u/vcr = 1 0 

Fle =l 

Fig. 3. Local particle size distribution in deposit at angular position 0 = 0. Cases shown: 
(A) s = 1; (B) impaction on clean smooth surface with U/K,(t),,) = 0.1; (C) impaction on clean 
smooth surface with U/V&,,) = 1.0, (D) impaction on clean smooth surface with U/V,,@,,) = 10; 
(E) impaction on granular deposit with U/V,,(U,~) = 0.1; (F) impaction on granular deposit with 
U/V,,fo,,) = 1.0; (G) impaction on granular deposit with U/V&,,) = 10. In (H) we show the 
spreads of the deposit particle size distribution for cases when these are approximate log-normal. 
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Fig. 4. Local particle size distribution in deposit at angular position 6 = 30”. Cases shown: 
(A) s = 1; (B) impaction on clean smooth surface with U/V,&) = 0.1; (C) impaction on clean 
smooth surface with U/V,,(u,,) = 1.0; (D) impaction on clean smooth surface with U/V,,fv,,) = 10; 
(E) impaction on granular deposit with U/V&,,) = 0.1; (F) impaction on granular deposit with 
U/V,,~U.~~ = 1.0; (G) impaction on granular deposit with U/Y&,,) = 10. In (H) we show the 
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smooth surface with U/Vc,(uc,f = 1.0; (D) impaction on clean smooth surface with U/V&.,f = 10; 
(E) impaction on granular deposit with U/V,&) = 0.1; (F) impaction on granular deposit with 
U/V&,,) = 1.0; (G) impaction on granular deposit with U/V&,,) = 10. In (H) we show the spreads 

of the deposit particle size distribution for cases when these are approximate log-normal. 
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Fig. 6. Local particle size distribution in deposit at angular position 6 = 60”. Cases shown: 
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smooth surface with U/V&,) = 1.0; (D) impaction on clean smooth surface with U/V,&) = 10; 
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spreads of the deposit particle size distribution for cases when these are approximate log-normal. 
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(F) 0 = 75” (H-Heaviside sticking law; Gr-impaction on granular deposit). 

are not very different from the spread in the mainstream (0*=2.3). However, the mean 
particle size of these distributions starts higher than the mean volume in the mainstream but 
approach the mainstream value for high mean particle size in the mainstream (Fig. 7). 

It is interesting and instructive to compare these results with the earlier conclusions of 
Rosner and Tassopoulos (1989,1991), and Rosner (1989) for the special case of “power-law 
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capture” from a log-normal mainstream distribution-i.e. particle deposition under condi- 
tions where rebound is not a factor (say s = 1) and b = 8 In St,,,/Ja In u = const, where St, is 
the mass transfer (Stanton) coefficient (Rosner, 1986,1989). In that case the spread g&.&p of 
the particle population in the deposit is exactly the same as the particle spread cB in the 
mainstream, but the mean particle volume (u, or V) in the deposit is systematically shifted by 
the ratio (Rosner and Tassopoulos, 1991) 

(27) 

which differs from unity whenever the exponent b is nonzero-i.e. when St,,, is particle size 
dependent. Thus, if (for Brownian diffusion of dense spherical particles across an isothermal 
turbulent boundary level at SC $ 1) b = - 0.235 (Rosner and Tassopoulos, 1989) the mean 
particle size in the deposit will be less than in the mainstream by the factor 0.922 (when 
g8 =2.3) since the capture of larger particles is less efficient. In the absence of rebound 
phenomena, inertially modified particle deposition leads to positive values of the exponent 
b (i.e. larger particle capture is favored) and we expect that the mean particle volume in such 
deposits would exceed that in the mainstream4.g. for “eddy impaction” with b = + 1.333 
(Rosner and Tassopoulos, 1989) we find i&& = 1.59. For the presently considered case of 
inertial impaction on a circular cylinder in crossjlow, there is no single value of the exponent 
b applicable over the supercritical size range of interest (Rosner and Tassopoulos, 1989) so 
that equation (27) is not applicable to the deposited population(s). 

3.3. Capture on clean solid surfaces 

For the simplest case of impingement on clean solid surfaces, a particle is captured only if 
its normal velocity component, up,_, is less than some size-dependent critical velocity,** 
V&u). Therefore, the deposit only contains particles from the small size, yet supercritical 
portion of the mainstream distribution. As the mean particle size in the mainstream 
increases, only an insignificant fraction of these particles are in the sub-critical region 
resulting in approximate log-normal (PSD),. With further increase in the mean particle size 
in the mainstream, a larger fraction of these particles rebound upon impaction on the 
surface (Fig. 8), resulting in particles captured from the small size end (which is supercritical) 
of the mainstream log-normal distribution. As the rebound parameter (ratio of the main- 
stream velocity U to the threshold critical velocity, V,&vcr) increases, a larger fraction of 
impacting particles rebound, leading to narrower distributions in the deposit. 

When the mainstream velocity is very much larger than the threshold velocity for the 
particle capture/rebound transition (evaluated at the particle size corresponding to incipi- 
ent impaction) then only slightly supercritical size particles can be captured, with the 
remainder of the impacting particles rebounding. This implies that, of all particles in the 
mainstream distribution, the target will only be able to capture a small “slice”, correspond- 
ing the fraction: 

(28) 

of the total population (i.e. those particles capable of impacting but not rebounding).” 
Indeed, when t&b is very close to v,, this integral may be approximated by 

??* More generally, the critical velocity is dependent on angle of incidence (Wang and John, 1988; Xu et al., 1993). 
Such cases will be readily studied in our follow-on work. 
ti In considering the “inverse” problem of constructing C,(o) from Cd&)-information (Section 5) it is clear that in 
such a case we will only be able to reconstruct at most this “slice” of C,(u) (see Fig. 10). 
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The behavior of <tJ,” = (u,,~/u,,)~‘~ at very large values of rebound parameter LriVP,,,fuCr) 
may be studied using, say, the impact velocity correlation of Wessel and Righi (1988). Our 
results for forward stagnation point are shown in Fig. 9 over a range of the non-Stokesian 
parameter Re,, from 0 (Stokes drag) to 10. The corresponding behavior of ~)stick is shown in 
Fig. 10 for a mainstream population spread of 2.3. Increasing the rebound parameter, 
U/V&,,), leads to a decrease in the mean particle size in the deposit (Fig. 7) as a larger 
fraction of particles rebound upon impact with the surface. 

3.4. Capture on granular deposit 

In the case of particle impaction on a granular deposit, a particle is still captured when its 
impact velocity, VP, is less than some size-dependent critical velocity, however, above this 
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Fig. 10. Plot of fraction of mainstream particles capable of both impacting and sticking at forward 
stagnation point, as a function of the rebound parameter U/K,fo.r). 

threshold velocity the capture fraction decays exponentially to zero (Section 2.2). As with 
the increase of mainstream mean particle size, beyond a certain velocity, a larger fraction of 
the mainstream particle population rebound from the granular surface, the spreads of the 
deposit particle population on such surfaces are much smaller than the mainstream 
population spread. As the rebound parameter increases, a larger fraction of the particles in 
the mainstream rebound from the surface, resulting in deposits with narrower spreads and 
smaller mean particle sizes. 

3.5. Position dependence 

For the case of sticking fraction law independent of both impact velocity and angle, the 
spread of (PSD), decreases (Figs 3-6) while the mean particle size in the deposit increases 
(Fig. 7) at higher angular position, 8, because only a smaller fraction of particles are capable 
of inertially impacting there. Similarly, for the case of particle capture on clean-smooth and 
granular surfaces, when the mean particle size in the mainstream is small, particles which 
can be captured in the forward stagnation region are incapable of inertially impacting at 
higher angles. But, as the mean size in the mainstream increases, a larger fraction of these 
particles which rebound in the forward stagnation region are captured at larger angles. 
Thus, the size distribution at such locations is shifted toward larger size particles resulting in 
higher mean size particle (Fig. 7). While (PSD),-data at any location may lead to recon- 
struction of only a part of supercritical portion of C,(u) (Section 4), the complete C,(u) 
may be reconstructed with the help of (PSD),-data from other target locations on the same 
body (Fig. 11). 

3.6. “Pooled” deposit particle size distribution 

In log-log plot Fig. 12a we show some examples of out “pooled” C&u) results for the 
simplest case of constant sticking fraction (s = l), using the computational methods dis- 
cussed in Section 2.5. Because such target does not “see” the subcritical size particles 
contained in C,(V), the mean particle sizes in such “pooled” populations, shown in Fig. 12b, 
are found to be systematically higher than the corresponding mainstream mean particle 
sizes. This is also shown in Fig. 12a, which superimposes u&,(t) for the particular case 
Fm = 30. 

4. IMPLICATIONS AND APPLICATIONS 

The local size distribution of particles in the deposit will usually be required in addition to 
the total rate of deposition (Rosner and Tandon, 1995; Tandon, 1995) to predict, say, the 
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Fig. 11. Construction of C,(r) distribution from Cdepft’f data (solid line: part of mainstream 
distribution that can be reconstructed; dotted line: actual mainstream distribution). 
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Fig. 12. (A) Pooled deposit particle size distribution on the upwind target surface, and (B) mean 
particle size in such a distribution [case shown: (TV = 2.3, s = 1 and Rep,FT = I]. 

convective heat transfer reduction associated with fouling layer growth on heat exchanger 
surfaces.** Rosner and Tandon (1995) have recently shown that the fractional reduction of 
convective heat transfer & with time t can be formally approximated: 

-A& 1 S’,(DR),,,dr k,. +NQ4 . D _ 

4:, [ 1 - 1 -(E) dt kdeg NuhfO) h 
(30) 

where <E) is the average void fraction in the deposit, (DR),,, is the reference deposition rate 
(= (r?N,U),) (which can be slowly varying), k, and kdep are the thermal conductivities of 
the gas the deposit respectively. Nub is the heat transfer Nusselt number and &, is the 

*$A similar statement can be made for radiation heat transfer since the absorptivity of the layer will generally also 
be (PSD),-dependent. 
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dimensionless, Nusselt number-weighted, upwind surface-averaged deposition rate defined 
and calculated for different sticking laws in Rosner and Tandon (1995) and Rosner et al. 
(1994). Thus, to make reliable predictions of convective heat transfer reductions, rational 
estimates of the local granular deposit solid fraction (1 - (E)) and deposit thermal conduct- 
ivity (kdep) will generally be necessary. These quantities are often sensitive to the local 
particle size distribution (PSD),, which we calculate here. 

For “sampling” applications the local size distribution formulation and results ob- 
tained/discussed here can be used to solve the canonical “inverse” problem-i.e. inferring 
the corresponding mainstream particle size distribution ((PSD),) based on the observed 
deposit particle size distribution ((PSD),) by correcting for aerodynamically induced 
distortions, position dependence and particle rebound behavior. In terms of equation (21), 
this is equivalent to solving the indicated integral equation for the “unknown” function 
C,(t), having measured the (PSD),: C,,&, Q and knowing the local dimensionless 
impaction frequency I]~~&, 0) and capture fraction law: sfV&, 0)/U; Bi f& 0)). By differenti- 
ating with respect to 5 and formally integrating the result between some convenient 
reference value &r> 1 and any larger c-value we find that C,(t) can, in principle, be 
constructed from: 

(31) 

an interesting and simple result which should, of course, be independent of the location 0 of 
the (PSD),-data used or the value of tref > 1 chosen. In effect, then, this is a formal direct 
solution to the inverse problem of constructing the PSD,: C,(5) from local (PSD), data: 
C,&, Q-data, at least for 5 2 cref > 1 and to within a multiplicative constant C,(&,&“* 
Needless to say, this procedure imposes no restrictions on the shapes of either PSD, or 
(PSD),. However, we remind the reader that the accuracy of the inertial impaction 
correlations which underlay our calculations of Q~~(S, 0) and, implicitly, sf& O), degrades in 
the immediate vicinity of the critical Stokes number Stkeff,,, = l/8 (i.e. near u = v,, or 4; = 1) 
(Rosner et al., 1994). Until corrected using rational asymptotic expansions valid near 
Stk eff,crit (Fernandez de la Mora, 1981,1984), this fact should be taken into account in 
selecting the above mentioned value for rrcf > 1. 

In Fig. 11 we illustrate the construction of the distribution C,(u) from Cd&)-data. In 
this figure, the solid curve corresponds to that portion of the mainstream distribution which 
can be reconstructed and the broken line is the remainder of mainstream distribution. For 
the constant sticking fraction case, at locations away from the forward stagnation point, 
smaller particles in the mainstream are incapable of impacting/depositing. Thus, informa- 
tion about mainstream particles unable to impact inertially is “lost” and this part of the 
mainstream distribution cannot be reconstructed from the available (PSD),-data (Fig. 11). 
For impact on smooth, solid surfaces, besides the small particles unable to impact, there are 
much larger particles which do not deposit because they rebound upon impact at higher 
(normal) velocities. For such a case, only a “slice” of the mainstream distribution can be 
reconstructed from (PSD),-data (Fig. 11). While (PSD),-data at any one location on the 
target may lead to such a “gap” in the inferred supercritical portion of C,(u) (Fig. 11) (set by 
the local rebound of these particles) this gap can be filled, at least partially, with the help of 
(PSD),-data from other sampling locations on the same overall target (body) and/or 
(PSD),-data from another, independent target of a different diameter exposed to the same 
mainstream. 

Because local size distributions are often sensitive to the nature of the single particle 
capture law the observed (PSD), obtained under known test conditions (including PSD, 
could, in principle, be used to extract rational estimates of the nature of the sticking law 
and/or a relevant parameter contained therein; e.g. the dimensionless rebound parameter 

I* To determine this constant and, hence, absolute C,(u)-values, from the normalization condition {~Cmfofdu = 1 
will require a PSD, shape assumption for the inaccessible subcritical region 0 < v < u,,~,. 
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U/V,,+,,). In the absence of reliable single particle capture data (e.g. V,,&, ei~; Fig. 2, 
Wang and John, 1988) for the materials in question, this might be a reasonable provisional 
method for making extrapolations to other environmental conditions, including predicting 
deposit properties of more complex-shaped solid surfaces fabricated from the same solid 
material. Put another way, only the “correct” capture/rebound law will allow the same 
C,(u) distribution to be constructed from (PSD),-data obtained at all target locations. 

5. CONCLUSIONS AND FUTURE WORK 

By combining the essential features of single particle sticking probability laws sfVp, 0i) 
with what is now known about particle inertial impaction on a circular cylinder target in 
high Reynolds number crossflow, we have developed and illustrated here an efficient 
method to predict the local size distribution of deposited particles. While our illustrative 
results cover the anticipated dimensionless parameter ranges of current interest, the re- 
quired formulae are also provided to deal with more complex cases of particular interest to 
the reader. 

Perhaps not surprisingly, the local size distribution of particles in deposits can be 
significantly distorted when compared with the particle size distribution (here taken to be 
log-normal) in the mainstream. Indeed, in some cases they are distorted to such an extent 
that it is not feasible to characterize them even approximately as log-normal (e.g. in the case 
of deposition on clean-smooth solid surfaces at high values of the rebound parameter, 
U/V’&,,)). For the case of an impact velocity- _and angle independent-(constant) sticking 
coefficient, the (PSD), spread for large values of 5, is approximately the same as the spread 
of the mainstream distribution, while the mean volume in the deposit distribution is higher 
than the mean volume in the mainstream. Populations sampled on granular coated surfaces 
are predicted to have smaller spreads and smaller mean particle size than the corresponding 
values in the mainstream. Generally, (PSD),-spreads decrease while mean particle sizes 
increase at higher angular positions, 8 from the forward stagnation point. 

Our formulation also leads to a simple solution of the “inverse” (canonical sampling) 
problem-i.e. that of constructing (a predictable fraction of) PSD, from a knowledge of 
(PSD),, the local impingement efficiency function and the operative capture (or rebound) 
law. 

To predict, say, the convective and/or radiative heat transfer reduction associated with 
fouling layer growth on heat exchanger surfaces, besides local particle deposition rates 
(Rosner and Tandon, 1995; Rosner et al., 1995) and particle size distributions (computed 
here), information about the deposit morphology will be required to determine the thermal 
and radiative properties of the deposit (e.g. Tassopoulos et al., 1988); Tassopoulos and 
Rosner, 1995). This level of information will usually require computationally intensive 
micromechanical modelling at the individual particle level (Konstandopoulos, 1991; Rosner 
et al., 1992,1994). Such work is currently in progress. We are also extending our theoretical 
methods to predict local deposition rates and size distributions for particles deposited by 
inertial impaction from spatially nonuniform and polydispersed particle-laden streams, as 
often encountered in sampling (Geller et al., 1993) and engineering applications. 
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