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ABSTRACT 
A thorough analytical study is performed to identify the range of influ- 
ence of each term of the general equations for flow within a fluid satu- 
rated porous medium. The first part of the analysis results into a set of 
algebraic equations useful in identifying the most appropriate flow 
regime for a given configuration (e.g. physical properties, geometry, 
etc.). In the second part, a unique heat transfer correlation for the gen- 
eral time dependent flow is obtained. This new correlation is success- 
fully compared against theoretical and empirical results from the litera- 
ture for the asymptotic flow regimes of Darcy and clean fluid, and for 
the Forchheimer regime. Predictions from the theoretical correlation 
for other (intermediate) flow regimes are also compared against 
numerical results available in the literature. 

Introduction 

The study of natural convection within a fluid saturated porous medium heated 

from the sides is motivated, from a practical point of view, by the broad range of 

applications such as in petroleum reservoir, building insulation, heat storage beds, 

nuclear waste repository, grain storage, and underground water contamination. 

Existing flow models, from the simplest to the most complex, include the Darcy 

model [1], the Forchheimer-extended Darcy model [2], the Brinkman-extended Darcy 

model [3], and the general model [4]. The literature offers little guidance about the 

limitations of each model and their range of validity. This issue was stressed 
recently by Nield [5]. 

Attempts to develop a unique theoretical heat transfer correlation, valid for the 
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range covered by the general model, have been so far unsuccessful [6]. Theoretical 

heat transfer correlations found in the literature are derived from simplified flow 

models. For instance, Weber [7] and Bejan [8] developed heat transfer correlations 

using Oseen-linearization technique and Darcy model in a cavity with isothermal 

walls. Latter on, Bejan [9] extended the analysis for the isoflux case using the same 

technique. Heat transfer correlations considering Forchheimer-extended Darcy 

model were obtained by Poulikakos and Bejan [10] applying scale analysis and 

Oseen-linearization technique. The same flow model was studied also by 

Poulikakos [11] considering isoflux boundary conditions. 

Prasad and Tuntomo [12] performed an extensive numerical study of natural 

convection within a vertical porous medium cavity using the Forchheimer- 

extended Darcy flow model. They reported two semi-empirical heat transfer 

correlations based upon their numerical results, one valid for Darcy regime and 

another for Forchheimer-extended Darcy regime. 

Heat transfer correlations for Brinkman-extended Darcy model were obtained by 

Tong and Subramanian [13] using a Weber-type boundary layer analysis and by 

Lauriat and Prasad [14] based upon numerical results. 

General Equations 

Consider a rectangular fluid saturated porous medium cavity with impermeable 

surfaces. Thermophysical properties considered constant, with the saturating fluid 

being of Oberbeck-Boussinesq type, the general set of non-dimensional equations 

that governs the fluid motion within the cavity [15] is 

3U 3V 
- -  + - -  = 0 ( 1 )  
3x 3Y 

8U V.VU 03P (~2 F (~2 Pr 
q~-~-z + =---+q~JPrV2U-03X Da ff U -  Da U (2) 

03V + ~¢.VV- 03P ~- q~JPrV2V- ¢2F V V-¢2pr  V +  q~2RaPr0 (3) 
03~ 03Y Da Da 

X °30+ V.VO = V 20 (4) 
03z 

--> 
where V is the vector velocity with horizontal, U, and vertical, V, components, and 

value, V I' equal to ~/~ + V 2 . Initial and boundary conditions, required absolute 

to solve equations (1)-(4), are respectively U = V = 0 = 0 at x = 0, 0 = 0.5 at X = 0 and 

0 = -0.5 at X = L/H,  adiabatic top and bottom surfaces and no-slip surfaces. 

Momentum equation (3) represents a balance among the following terms, from 
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left to right: transient, convective inertia, pressure, Brinkman, Forchheimer, Darcy, 

and buoyancy. For simplicity, but without loss of generality, the nondimensional 

inertia coefficient, F, is written following the model proposed by Ergun [16]: 

/ Da ~ 1/2 
F -- 1 7 5  

The independent nondimensional parameters that govern the heat transfer and 

fluid flow within the cavity are then: porosity, q~, viscosity ratio, J, modified Prandtl 

number, Pr, Darcy number, Da, Rayleigh number, Ra, and volumetric specific heat 

ratio, K. Also influential is the cavity aspect ratio, L/H. 

Theoretical Analysis 

General Flow Model 

In this section, the effective ranges of various flow models quoted in the heat 

transfer literature are investigate by using the method of scaling. Scale analysis, is 

shown [17], for several different heat transfer phenomena, to be very effective in 

providing physical insight with a simplified mathematical approach. 

Identifying the region within which the scaling is performed is of critical 

importance [18]. In the present case, the chosen scaling region extends from the hot 

wall (left vertical surface) towards the center of the cavity, being limited by the 

thickness of the upward flow layer, 8 < L/2H (distinct layers along hot and cold 

walls). Scaling the Y-momentum equation, eq.(3) becomes 

~ V,V2~- AP,-t~J V (~2F V2, ~2pr V,(~2RaPr0 (6) 
x Pr ~-,  Da Da 

By neglecting the vertical component of the laplacian in the scaling of the Brinkman 

term, it is implicitly assumed that 8 < 1. The two constraints for the flow thickness, 

5, are then mutually exclusive: if L/2H > 1 than 8 < 1, otherwise 6 < L/2H. 

Recognizing the correct nondimensional temperature scale within this region as 

0~0.5, and substituting the inertia coefficient, F, leads to 

~-- (~2 
V'V2x t~JPr ~-'V 0.143~ 1/2Da 1/2 V2' (~2prDa V,--Ra P r 2  (7) 

In writing eq.(7), it is postulated that the pressure gradient term of eq.(3), having the 

same scale as the buoyancy term, can be neglected. This assumption, verified 
numerically [19], is used only to simplify the analysis: the more usual and laborious 
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approach of cross differentiating eqs.(2) and (3) in order to eliminate the pressure 

gradient term would lead to exactly the same scaled result. 

The only term of eq.(7) that can not be neglected in any circumstance is the 

buoyancy term, the 'moto' of the natural convection phenomenon.  The effective 

range of each term in eq.(7) can be determined by comparison with the buoyancy 

term. 

Steady State Regime 

For a fluid saturated porous medium with Prandtl  number  greater than or equal 

to 1, scaling the energy eq.(4) in the steady state regime gives the proper  scale of 3 as 

V-1/2. The steady state version of eq.(7) can be written relative to the convective 

inertia term scale as 
O. t43 q~l/2 I~ 2 Pr ~2 

- , Ra Pr ( 8 )  1 ~JPr ,  Da 1/2 ' VDa 2V 2 

According to eq.(8), the convective inertia term becomes negligible when  

,2 
l << ~ RaPr (9) 

Equation (9) is a constraint for the velocity scale, V. The V-scale depends upon the 

two possible flow regimes, namely Darcy regime of Forchheimer regime. For Darcy 

regime to be valid, from eq.(8), 

qb 2 Pr q~2 Ra Pr (10) 
V Da 2V 2 

or, in terms of velocity, 

VD a - 1 Ra Da (11) 
2 

Combining eqs.( l l )  and (9), a criterion for neglecting the convective inertia 

term when Darcy regime is valid can be written as 

Da << 2 00 2 Pr (12) 
Ra D 

where the modif ied Rayleigh number,  Ra D, is defined as (RaDa). This new 

parameter  becomes increasingly important  as the Darcy number  is reduced. In fact, 

when  Da ~ 0, Ra D becomes the only parameter  to influence the solution of eqs.(1)- 

(4) (as demonstra ted later on, the decay time of the transient regime is proportional 

to Darcy so the influence of the parameter  X is very limited for practical purposes). 

The velocity scale of Forchheimer regime, obtained by comparing the 

Forchheimer term against the buoyancy term in eq.(8), is 
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V F ~ 1.87 d~ 3/4 (Ra Pr) 1/2 Da 1/4 (13) 

Combining eqs.(13) and (9), the convective inertia term can be neglected in the 

Forchheimer regime if 

Da << ~ (14) 
49 

Equations (12) and (14) extend the scale analysis results of Lauriat and Prasad [14]. 

They compared the convective inertia term scale, obtained with the velocity scale of 

Darcy regime, against the scale of the Brinkman term. The result, valid only for 

Brinkman-extended Darcy flow regime, showed that the inertia term is negligible 

when ¢2pr >> 1. Noting that the porosity is a decimal number (always between 0 

and 1) the convective inertia term should be negligible only for Pr > O(10)! One 

should not be too impressed by this correct result since the validity range of 

Brinkman-extended Darcy model is very narrow as demonstrated later on in 

connection with eqs.(17) and (18) for Pr > 1, and with eqs.(20) and (21) for Pr _< 1. 

The valid range of each model, Darcy or Forchheimer, can be determined by 

comparing the velocity scales of eqs.(ll) and (13) keeping in mind the empirical 

evidence that the system naturally selects the smallest velocity. So, Forchheimer 
regime overcomes Darcy regime when the Forchheimer velocity scale, V F, of eq.(13) 

becomes smaller than the Darcy velocity scale, VDa, shown in eq.(ll). Written in 

terms of Darcy number, 

Da>196t~3( Pr ) 2 (15) 

It is worth noting that criterion (15) agrees very well with the criterion obtained in a 

different way by Poulikakos and Bejan [10]. 

The influence of the Brinkman term can be established by following the same 

steps used throughout the analysis of the convective inertia term. For Darcy regime, 

the Brinkman term scales as the buoyancy term if 

Da 2 # (16) 
J Ra D 

For Forchheimer regime the Brinkman term scales as the buoyancy term if 

1 
Da ~ 0.02 (17) ¢ (j p )2 

Equations (12), (14), (15), (16) and (17) 'map' the effective range of each flow model in 

a scale basis. The same procedure can be repeated for systems with Prandtl number 

of order I or smaller, by simply substituting the scale of 8 in eq.(7) by [20] 
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3 _ (_~)1/2 (18) 

The ~-scale affects only the Brinkman term so eqs.(12), (14) and (15) are valid also for 

Pr < 1. Equations (16) and (17) are replaced, respectively by 

Da ~ 2 ~ Pr (19) 
J Ra D 

1 
Da ~ 0.02 j-----T (20) 

In order to better appreciate the results presented in this section, two maps are 

built and shown in Fig.1 for porosity 0.4, and J=l. The maps locate the effective 

range of influence of each momentum equation term, namely convective inertia, 

CI, Darcy, Da, Forchheimer, F, and Brinkman, Br. 

1 
Da 

10 .2 

10 -4 

10 -6 

10-8 

,~-- Da+CI+Br 
F+CI+Br 

~ L i i I ~ l l l l  t L I l l l l l l  I I t I J t l l l  I I I I I i 

10 10 2 10 3 10 4 
Ra D 

1 
Da l F+CI+Br 

10-2 F+CI 

1 0 - 4 ~ ~ , ~  F 

I J l  ~ I J I L I I J  

1 10 102 103 104 
Ra D 

FIG. 1 
Effective range of momentum equation terms: Da - Darcy; 
F - Forchheimer; CI - convective inertia; Br - Brinkman. 

Top: Pr = 1; Bottom: Pr = 0.01 

The results of Fig.l, shows, for Darcy or Forchheimer flow regimes, that the 
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convective inertia term, CI, is negligible if Da < 10 -2. This is true even at the low 

Prandtl number of 0.01. This observation confirms the conclusions of the 

numerical study by Manole and Lage [19]. 

Another important result related to Darcy regime: the convective inertia term 

has some effect only at very low porous modified Rayleigh numbers, Ra D < 65, for 

Pr = 1. For a smaller Prandtl number, Pr = 0.01, its effect is negligible for the entire 
range of porous modified Rayleigh number, Ra D, covered in Fig.1. 

The fact that the Forchheimer term, F, becomes important before the Brinkman 

term, Br, when increasing Da as shown in Fig.l, agrees with the numerical results 

presented by Lauriat and Prasad [20]. For practical purposes, the effective range of 

the Brinkman term is very narrow, being limited to Da > O(10-2). 

Transient regime 

During initial unsteady regime, when the velocity is very small, unsteady and 

buoyancy terms of eq.(7) are comparable, so 

V ~ 2 (~ Ra Pr (21) 

Fluid motion is initiated from the quiescent state. It is reasonable then to compare 

the velocity scale of eq.(21) with the Darcy regime velocity scale, eq.(11). During this 

initial phase, the transient time decay scale is 

Da 
ZDa ~ - -  (22) 

In most practical cases the group on the right side of eq.(22) is very small so 

the transient regime decays very quickly. However, eq.(22) is valid only for Darcy 

regime. To have a complete picture of the transient regime, it is important to 

consider the fact that the transient decay time scale might be long enough for the 

velocity scale to grow beyond the velocity scale of the Darcy regime. In this case, the 

velocity scale of eq.(21) must be compared with the Forchheimer velocity scale of 

eq.(13). The transient time decay scale, for the Forchheimer regime, then becomes 

Da 3/4 (23) 
z F ~ 3.74 (~1/4 (RaD pr) 1/2 

In this case, the fluid flow develops from the quiescent state to Darcy regime and 

then into Forchheimer regime. In order for eq.(23) to apply, the Darcy regime 
transient decay time has to be bigger than the Forchheimer regime decay time, XDa > 

"UF, 
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Da> 196q~3( Pr ]2 (24) 
RaD ) 

The consistency of the scale analysis for the transient regime is verified by noting 

that eq.(24) is exactly the same as eq.(15) that defines the transition range from Darcy 

to Forchheimer regime. Equations (22), (23), and (24) predict, in an order of 

magnitude sense, the duration of the transient regime. 

Theoretical Heat Transfer Correlation 

Usually, scale analysis is performed by comparing only two terms of the 

scaled equation at a time [17]. Considering, for natural convection flow within a 

fluid saturated porous medium, that one of then has to be the buoyancy term, the 

results are then valid only for the individual regime represented by the other term 

involved. In here, a scale analysis is performed keeping all terms of the scaled 

momentum eq.(7). The result is a general scale for fluid velocity, valid for all 

regimes accounted for in the general momentum equation. It is worth noting, in 

this new approach, the importance of preserving the signs of each scaled term. 

It is wise to write eq.(7) in terms of thermal layer thickness, S0, by introducing a 

function A(Pr) that accounts for the ratio between the velocity layer thickness and 

the thermal layer thickness, 

,2 
V 2 ~ -0"143q~1/2 V 2, qb2pr V , - - R a P r  (25) v (~ -~-, ~ - q~ J Pr A(Pr) 82' Dal/2 Da 2 

Function A(Pr) is equal to 1 for Pr > 1, or equal to Pr -1 for Pr < 1 [21]. Scaling the 

energy equation (4), the thickness of the thermal layer scales as 

82 l (26) 

Combining eqs.(26) and (25), 

q~V,~ V2 ~ _ q b j p  rA(Pr) v ( ~  
0.143 (~1/2 (~2 Pr ~2 

, V , -  Ra Pr (27) +V - Da 1/2 V2' Da 2 

Solving the quadratic equation in V presented by eq.(27) and discarding the 

negative root (remind that by using 0 ~ 0.5 we are assuming that the scale analysis is 

being performed within a region close to the hot wall where V > 0), 
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V ~ 

[ C °'43'1"/]"' - H + FI 2 + 2(~2Ra Pr 1 + (~ J A(Pr) Pr 4 Dal/2 

0.143 (~1/2 ] 
2 1 + # J A(Pr) Pr + Dal/2 

The parameter FI in eq.(28) contains the time dependent terms, 

(28) 

At this point, the nondimensional wall averaged heat flux transferred into the 

rectangular cavity is introduced as 

Nu = qavg L 
km (Th - To) 

so, the Nusselt number scale at X = 0 is 

Nu (L / H) (31) 
2 80 

1 00 
(~ )  ~: (-~-)X=0 or i dY (3o) 

Nu (L / H) + L ~. Dal/2 
- -  + ( 0.143¢1/2) (33) 

2 2 l+qbJA(Pr)Pr+ D - - - ~  

The link between the general velocity scale, eq.(28), and the Nusselt scale, eq.(31), is 

obtained with eq.(26), 
Nu (L / H) ( ~ ,~1/2 

~ 2 [~-+ VJ ( 3 2 )  

It is worth noting that eq.(26) assumes 80 < 1. Also, the chosen scaling region 

requires 80 < L/2H. These two self-exclusive constraints for 80 are similar to the 

constraints for 8 analyzed in connection with eq.(6). In here, they can be used in 

conjunction with eq.(31) to estimate the validity range of the Nusselt number 

correlation in terms of the aspect ratio of the cavity. For L /H > 2, the first constraint 

80 < 1 applies implying, from eq.(31), Nu > L/2H _> 1. On the other hand, if L /H <_ 2 

then 80 < L/2H leading to Nu > 1. These requirements are automatically satisfied by 

the scale analysis performed in here due to the assumption of convective flow 

regime, V > 0, or Nu > 1. 

A general scale for the Nusselt number is found by combining eqs.(32) and (28), 

+ ~b 2 Pr + ~b J A(Pr) Pr ~, 
H (29) 

z Da 
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Each group, on the right side of eq.(33), refers to one term of the momentum 

equation (3). Equation (33) provides a general correlation for the Nusselt number 

valid for the entire range covered by the set of general eqs.(1)-(4). 

The Nusselt number scale for steady state is obtained by setting z --~ oo in eq.(33), 

resulting in the following simplified correlation: 

Nu 
(L/H) 

qb2pr [q~4 pr2 + / 
- D~- + [ D ~ - a  2 2q~2 Ra Pr,  1 + qb J A(Pr) Pr + 

( 0'143'1/2) 
2 l+q~JA(Pr) Pr+ DaW2 

0"143 q~l/2 ]]1/2 ] 1/2 Dal/2 

(34) 

Equation (34) indeed reduces to the correct Nusselt scale for Forchheimer regime 

(Nield and Bejan [6], p.24) when the groups related to Darcy, convective inertia and 

Brinkman terms are set equal to zero, 

Nu F = 0.684 ( L )  ~3/8 Dal/8 (Ra Pr) 1/~ (35) 

For the clean fluid case, when the groups relating to Darcy and Forchheimer 

terms are set equal to zero, and q~ = J = 1, the Nusselt correlation reads 

( L ) (  RaPr )1/4 
NUpF = 0.42 1 + A(Pr) Pr (36) 

Equation (36) compares well, in a scaling sense, with the result reported by Bejan [18] 

(pg.173) and with the Berkovsky-Polevikov correlations [22]. Also, the correlations 

introduced by Churchill and Chu [23], based upon experimental results for a vertical 

plate, are similar to eq.(36), regarding the Prandtl number effect. The last term on 

the right side of eq.(36) is exactly the same as the one used by Larsen and Arpaci [24] 

to develop an appropriate analogy between heat transfer and wall friction in natural 

convection from an isothermal plate within a clean fluid medium. 

Figure 2 presents, for several cases, the Nusselt number obtained from eq.(34) for 

a square porous system with Prandtl number equal to 1. The parameter J is set as 

equal to 1 for simplicity. The graph shows results for two porosities, namely 0.4 

(continuous line) and 0.8 (dashed line). 

Although, strictly speaking, eq.(34) is not valid for the Darcy model, it predicts 

well the Nusselt transition between the Darcy and the Forchheimer regimes. This 
can be seen in Fig.2, for Da = 10 -2, the smooth transition from Nu ~ Ra 1/2, known to 

be valid for Darcy regime, to Nu ~ Ra I/4, valid for Forchheimer regime (also valid 
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for clean fluid), as the Rayleigh number is increased. In other words, eq.(34) 

presents, in a continuous and smooth way, the transition between two known 

asymptotes, namely Darcy and Forchheimer regimes. 

l02 
- 0 4 -6 -8 
- " - 4  1 0  . 10 Nu _._ 0=0.8 lO~. " ~  lOj '~ 

' 0  

, f , . m l  , , , . , . , J  ~ 4 , . m l  , , , . , . ,1  ~ f . , , , d  ~ , . . . . .1  ~ f . . , d  , ~,,.+.,I , , , , , , . I  , , , . , . ~  

1102 10 4 106 108 1010 1012 
Ra 

FIG. 2 
Nusselt number predicted theoretically by eq. (34). 

The Nusselt number predictions of Fig.2 are also compared with numerical 

results reported by Manole and Lage [19] showing very good agreement. Details of 

the numerical procedure, including grid accuracy tests, can be found in [26]. 

Closure 

Comparing the effects of each individual term of the general momentum 

equation, a set of simple algebraic equations mapping the effective range of each 

flow model is obtained. The analysis, carried on considering the unsteady heat 

transfer phenomena, results into a global theoretical heat transfer correlation 

accounting for the effects of all terms of the momentum equation. These new tools, 

namely the mapping of effective range of the various flow regimes and the general 

heat transfer correlation, are expected to provide fundamental guidance in the field 

of natural convection within a fluid saturated porous medium. More important, 

the new scale analysis approach presented in here can be applied to different 

problems (e.g. isoflux boundaries, heat generation, etc.) providing a more general 

and complete result then the ones available in the literature. 

A note about the use of general equations for modeling natural convection 

within a porous medium is necessary. As recently pointed out [5], there are some 

restriction for the applicability of general momentum equations as written in eqs.(2) 

and (3). In this regard, the heat transfer correlation, eq.(33), has an extra advantage: 
identifying the effects of each term of the momentum equation, allows individual 

modifications without having to perform the theoretical analysis again. 

As a final note, it is suggested, for future research, comparing eq.(33) with 
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experimental or numerical results covering transient regime. This is specially 

important for large Darcy number media as anticipated by eqs.(22) and (23). 
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N u  
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p,P 

Pr 
q,, 

Ra 

P 

T, 0 

t, "~ 

u , v  

x,y 

U,V 

X,Y 

Nomenclature 

squared ratio of thermal and velocity layer thickness 

thermal diffusivity, m2/s 

isobaric coefficient of thermal compressibility, K -1 

specific heat, J/kg.K 

Darcy number, K/H 2 

upward flow layer thickness 

nondimensional inertia coefficient 

porosity 
gravity acceleration, m/s  2 

height of the rectangular enclosure, m 

viscosity ratio, ~teff/~tf 

thermal conductivity, W/m.K 

permeability, m 2 

width of the rectangular cavity, m 

volumetric specific heat ratio, (pC)m/(pC)f  

dynamic viscosity, kg/m.s 

Nusselt number 

kinematic viscosity, m2/s 
pressure, Pa, P=~2H2(p+p ~y) / (p fO~m 2) 

Prandtl number, vf/C~m 
heat flux, W / m  2 

Rayleigh number, g[~H3(Th-Tc)/(V~Xm) 

density, k g / m  3 

temperature, K, 0=[T-(Th +Tc)/2]/(Th-Tc) 
time, s, z=t/(H2/~m) 

horizontal and vertical Darcy seepage velocity components, m/s  

horizontal and vertical coordinates, m 

nondimensional velocity components, (u,v)/(~m/H) 

nondimensional coordinates, (x,y)/H 
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