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In this paper we analyze a model for brine transport in porous media, which includes a
mass balance for the fluid, a mass balance for salt, Darcy’s law and an equation of
state, which relates the fluid density to the salt mass fraction. This model incorporates
the effect of local volume changes due to variations in the salt concentration. Density
variations affect the compressibility of the fluid, which in turn cause additional fluid
flow. Two specific situations are investigated that lead to self-similarity. We study the
relative importance of the compressibility effect in terms of the relative density
difference. Semi-analytical solutions are obtained as well as asymptotic expressions in
terms of the relative density difference. It is found that the volume changes have a
small but noticeable effect on the mass transport only when the salt concentration
gradients are large. Some results on the simultaneous transport of brine and dissolved
(radioactive) tracers are present€dl998 Elsevier Science Limited. All rights reserved
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1 INTRODUCTION defined as the mass of the salt per unit mass of brine, can
reach 0.26. This corresponds to a brine density of approxi-
Recently Hassanizadeh and Leijhs&revisited the theory of  mately 1200 kg m®. For sea wates = 0.04 corresponding
brine transport in porous media, designed numerical codes ando a fluid density of 1025 kg n¥. Mass fraction and density
did experiments in the laboratory. They raised the question are related by an equation of state, which has been empiri-
whether (semi-) analytical solutions of the governing equa- cally determined. Brines are found in surface waters, such as
tions could be obtained under certain boundary and initial the Dead Sea, and groundwater near salt donfémse are
conditions. This question initiated our mathematical study geological structures in the subsurface consisting of massive
and the results are published in the mathematics litefature bodies of salt, a kilometer or more in diameter, embedded in
Because the subject of brine transport is still of current interest horizontal or inclined strata. Salt domes are potential places
in the hydrological literature and the availability of analytical for storage of nuclear wateand it is of practical impor-
work in this field is poor, we decided to make the mathema- tance to know the flow of the groundwater around them.
tical results more accessible for non-mathematicians and Any model for fluid flow and salt transport in a porous
wrote this paper. The material has been extended with newmedium must contain the mass balance equations for the
results and the emphasis is now on the construction of semi-fluid and the salt, and Darcy’s law. The specific model we

explicit self similar solutions. propose to study uses the fluid mass balance eqdation
Brine is water containing a high concentration of salt. In o
an almost saturated brine ttmeass fraction(w), which is ¢>5+d|v(pq) =0 (1)

*Corresponding author. Tel: 0031 15 278 1692; Fax: 0031 15 278 Where ¢ denotes the porosity of the medium,the fluid
7209; e-mail: r.j.schotting@twi.tudelft.nl density andj the specific discharge vector. Introducing the
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material derivative

D 9 q
— 21 2
D at+ s grad (2)
in the balance equation yields
¢ Dp L
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These problems are chosen because they admit to look for
similarity solutions. This means that the underlying partial
differential equations can be reduced to ordinary differential
equations by introducing an appropriate similarity variable
(e.g. Z+/t in Fig. 1). This makes the analysis tractable,
yielding semi-explicit results. The mathematical justifica-
tion of the results is given elsewhéreds a consequence
of the analysis we can quantify the effect of the additional

This expression shows that density variations may affect brine transport due to the fluid compressibility for Problems

the compressibility of the fluid, which in turn can affect the
fluid motion. To make this effect explicit is one of the goals
of this study.

In this paper we intend to employ mainly analytical

I and Il, where in particular the latter is relevant to under-
stand the flow near salt domes.

Among recent papers focusing on brine transport we
mention Oldenburg and Prués<arey et af, Herbert et

techniques. Therefore, we are forced to restrict ourselvesal.'®, Hassanizadeh and LeijiseNumerical codes” are

in the choice of flow problems. Inspired by earlier work of
de Josseling de Jong and van Ddijme shall analyze two

simplified cases denoted by Problem | and Problem II.
Problem | describes the mixing of fresh water and brine,

developed to simulate flow of groundwater containing
high salt concentrations. There are only few high-concen-
tration brine transport experiments available for testing the
validity of numerical codes. Our (semi) analytical results

originally separated and flowing parallel, due to transversal can be used to verify the accuracy of numerical cotigs

dispersion. Problem Il relates to the flow of groundwater

Herbert et al° stresses the importance of analytical work on

along the surface of a salt dome. A sketch of the correspond-this subject.

ing initial and boundary conditions is given in Fig. 1. In

Problem | the flow domain is unbounded above and below.

Initially, say att = 0, the region above the plane £ 0} is
filled with fresh water and the brine fills the region below it.

In the literature, the validity of Darcy’s law and Fickian
dispersion equations for high concentration differences has
been questioned. For example, Hassanizadeh and L&ijnse
reported on column tests of brine displacing fresh water in a

In this case one has to specify the specific discharge either aporous medium. They showed that the dispersivity of brine

z— + o orasz— — . Here we shall adopt the former, and
fix g — (q;,0) asz— + o, whereqgy is a given constant. In
Problem Il the flow domain consists of the upper half space {
> 0} and is bounded below by an impermeable salt rock.
Again att = 0, fresh water occupies the region 0} while

the salt from the rock ensures that= ps (mass density of
saturated brine) along the bounday=£ 0}. Here we can
only specify they-component of the specific dischargezat

+ o, because the-component is determined by a second

decreases when the relative density difference between
brine and fresh water increases and resolved this problem
by introducing a non-linear form of Fick’s law. Carey efal.
suggest a density dependent diffusivity—dispersivity.
Although these results are interesting we shall confine our-
selves to the classical formulation of Fick’s and Darcy’s law
in this paper.

In Section 2 we formulate the mathematical model in
general terms and in Section 3 we define the two specific

boundary condition, as explained in Section 3, at the surfaceproblems I and IIl. Dimensionless variables are introduced in

of the rock. In both problems thecoordinate ranges from
© to + . Moreover, only stable displacement of salt is
considered, implying— «/2 < 8 < + /2.

qr

fresh

(a) Problem I

Fig. 1.

a5

Section 4. In Section 5 we discuss properties and construc-
tion of self-similar solutions. Numerical procedures and
results are given in Section 6 while asymptotic results for

fresh -L- __salt rock

(b) Problem II

Initial and boundary conditions.
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small relative density difference, yielding approximately mathematical reasons we use in most of this paper (except
div(g) = 0, can be found in Section 7. The simultaneous in Section 9) the approximation

transport of brine and dissolved radionuclides is the subject D; = ¢Db; 9)

of Section 7. In Section 8 we discuss the results and Section " !

9 contains the conclusions. whereD is a positive constant.

2 THE MATHEMATICAL MODEL 3 THE FLOW PROBLEMS

Since this paper focuses on analytical aspects of subsurfacd he object of any study of brine transport is to determine
brine transport, we shall impose simplifying restrictions on the specific discharge and density (or mass fraction of salt)
the properties of the porous medium and flow. With respect of the fluid as a function of position and time. We will
to the porous medium we assume that it is homogeneous andnvestigate here two specific problems. In Problem I, see
isotropic, characterized by a constant porosgitgnd intrin- Fig. 1(a), we consider an unbounded flow domain above
sic permeabilityx. With respect to the flow we shall con- and below the = 0 plane. Initially, at time = 0 say, the
sider the two specific cases which are introduced in Sectionregion above this plane is filled with fresh water (density

1 and about the fluid, with densigyand salt mass fraction, p¢) and the region below it with brine (density). Sinceps
we assume that the dynamic viscositdoes not depend on > py and assuming— /2 < 8 < + =/2, this leads to a
w and is constant. stable salt distribution for ali = 0. As a boundary con-

Assuming a Fickian type of dispersion—diffusion term in dition we impose that at large distance above zhe 0
the salt mass flux and restricting ourselves to the conven-plane, the flow is known (and given) and points into yhe
tional form of the momentum balance equation, we obtain direction:
the following equations for transport of brihe q— qse, asz— +, forall t=0 (10)

Mass balance of the fluid
whereq; is a given constant ane, the unit vector in the

¢ % + div(pq) =0; 4) positive y-direction.
ot Studies of brine distributions in aquifers have shown that
the transition zone between brine and fresh water is rela-
Mass balance of the salt tively narrow, in particular when the fluids are stagnant. If

dpw .. this situation is perturbed by draining fresh water we end up
¢W+d'v(p‘*"1) — Dograds =0; ®) with a situation that can be represented schematically by
Problem I.
Darcy’s law In Problem Il the flow domain occupies the half spaze {
> 0}, see Fig. 1(b). In formulating this problem we have
Eq + gradh — pg=0; (6) assumed the initial situation where, due to regional
k effects, fresh groundwater flows along the top boundary
Equation of state of a salt dome. As a result salt will dissolve from it. The
p=psE" @) physico-chemical processes that take place at a salt rock
boundary are complex and difficult to model. For instance,
Hereq = (qy,q,) denotes the specific dischargethe fluid the dissolution of salt creates a cap (residue) rock layer

pressure and = (g,,9,) the acceleration of gravity. In the  along the top of the salt dome. Geological studies, e.g.
equation of state, where we disregard the effect of pressureBornemann et al?, estimate the growth of this layer to
variations on the fluid density, is the density of the fresh  be 0.04 mm year'. Following Hassanizadeh and Leijise
water andy is a constant = 0.6923~ In 2) obtained by  we disregard this movement and assume that the mass

curve fitting using a table from WeéétFoIIovv.ing.BeaiB, fraction remains at all times at the maximal salt mass
the hydrodynamic dispersion tensbr= (Dj) is given by fraction of the saturated brine along the fixed boundary,
the expression ie.

Dj ={ar1ql+ Dol 6 + (. — arr)igy/Iql ®) w=wsatz=0, forall t=0 (11)

wherea| andat are positive constants witly, > o1. They Further, the flux of salt entering the flow domain induces a
are called the longitudinal and transversal dispersion movement of water. This leads to the additional boundary
length, and describe the spreading of solutes due tocondition, see again Hassanizadeh and Lefinse
mechanical dispersion caused by randomness of the struc-
ture of the porous material and heterogeneities. Further (
Do denotes the effective molecular diffusivity, which
incorporates the effect of tortuosity. Finallg; denotes wheren denotes the outward normal at the boundary={
the Kroneckers and |-| the Eucidian norm inR2 For 0}. As initial concentration we have = p; of @ = 0

q+ Lgrad»)-nzo atz=0, forallt=0 (12)
(1-wy)
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everywhere in the flow region. At large distance above the to impose the initial and boundary conditions. In Problem |
{z = 0} plane we now impose only thecomponent of the  we look for a solution in the domain£f): — o <z < +
flow, since thez-component will be determined by the pro- o,t > 0} subject to the initial condition
blem. Thus we set
o for z>0

gy— g asz— +oo, forall t=0 (13) p(z,0)= { o for 2<0 (23)
In both problems thg-coordinate ranges from- « to +
. Therefore, we may look for a density and specific dis-
charge depending only on tlzecoordinate and time, i.e.

p=p(zt) andq=q(zt) (14) . .

We note that a condition on the flow such as eqgn (24) is

This assumption implies irrotational flow in both problems. natural for the problem. Combining egns (19) and (22)

We do not consider perturbations of the initial condition on gives the ordinary differential equation

p. Following de Josseling de Jong and van D{iwve use

egn (14) and Darcy’s law (egn (6)) to obtain a linear alge- 3q2+ Di 0 (25)

braic relation between the fluid density and treompo- 07

nent of the specific discharge. This relation can be found by

first taking the curl of egn (6):

and boundary condition egn (10) for the flow

Thus knowingp, a single condition onj, [e.g. Egn (24)] is
needed to determine the solution. The specific choice is
Il - %og 4 g _0 (15) arbitrary. In fact one could construct a solution
az\ v A ay 2y corresponding to any giveg/{ + o,t). We also observe

at this point that eqn (25), when writing it in the form

and by substituting eqn (14) into this expression. The result
is aqz
divg=

= — }div(Dgrado) (26)
K K . . o
Oy — —p9y = 0y + —pgsin@= constant in space (16)

H * clearly demonstrates the coupling between brine

whereg is the inclination of the = 0 plane. To determine  transport by diffusion—dispersion, creating a non-zero

the constant in eqn (16) we use the behaviagaindp atz divergence in the flow field, and hence enhanced fluid
= 4 o flow. Density gradients imply fluid movement and vice
versa.
ay(> ) =dr andp(=,t) =y for all t >0 (17) Problem Il is solved in the domain#t):z > 0,t > 0}

This yields the relation where we impose initially

4=q — f(p ~ pp)asing (18) 0(z,0)=p; for z>0 (27)
g and along the boundary, see eqgns (11) and (12)
Thus in order to determine the pajs,§) from the differ-

ential equations with initial and boundary conditions, there p(0,1) = pgm = = pr€™™ (28)
remains by virtue of egn (18), only to determipeandq..

Using eqn (18), the equations for these quantities reduce to

D dp
ap (pqz) = (19) A0, t)= — Ma_z(o’ t) (29)

and for all t > 0. Herepg, denotes the density of saturated
dow 0 9w brine. Boundary condition (3.3) relates the specific
¢—+ (pqu az) =0 (20) discharge to the spatial derivative of the fluid density
at the salt rock boundary. Although no water is being
Combining these equations yields produced along the salt rock boundary, a non-zero
discharge exists along that boundary due to volume

ow Jw 0 Jw . . . .
op—~+p0,—= —<pD—> (21) effects caused by high salt concentration gradients in
ot 9z oz 0z the fluid. In fact, at the salt rock boundary, the fluid
and with the equation of state (eqn (7)) we obtain mass flux is balanced by the diffusive—dispersive mass
2 flux. For details on the derivation of this salt rock
¢3_p+qz‘9_p=[)a_p (22) boundary condition we refer to Hassanizadeh and

97 Leijnse’. As will be shown in a later section of this

We use the couplied system eqns (19) and (22) in our paper, the particular form of eqn (29) allows a straight
analysis. To determing andq, from this system we need forward similarity transformation.



Brine transport in porous media self—similar solutions 289

4 DIMENSIONLESS VARIABLES qualitative behavior of the solutions and to obtain accurate
approximations.
Before discussing eqgns (19) and (22) we introduce the The key idea is to look for self-similar solutions, which

dimensionless variables reduce egns (32) and (33) to a set of coupled ordinary differ-
2 ential equations with boundary conditions originating from
fpfg (fpfg) egns (34)—(38). The transformed problems were studied in
pr= PP g qu R S t detail by van Duijn et af. They considered fundamental
Ps— Pf —0¢9 D oD questions related to existence and uniqueness of solutions,
® as well as their qualitative behavior. With respect to the
(30) latter, they showed certain monotonicity properties of solu-
and tions and their asymptotic behavior flat — = and fore | 0.
be—p Some of these results will be discussed here and in Section 7.
g=F1 (31) The similarity transformations for Problems | and Il are
Pt given by
whereps = ps in Problem | andog = pg, in Problem 1I. In _Zz (41)
terms of these new variables the equations become (drop- 7 \ﬂ
ping the asterisks notation) and
dp d 1oq, 1
Pt g =0 2 pzy=uo andazy ="t (42)
and This results in the set of differential equations
dp 0 _odp_ 0 (33) (uvy)' + L _Luco (43)
at " %azT 2 T e 20
The rescaled initial and boundary conditions in Problem | 1 ,
are u'v— énu’ =u (44)
0 for z>0 where the primes denote differentiation with respect.to
p(z0)= 1 for z<0 (34) The independent variablg ranges from — « to + <0 in
Problem | and from 0 to+ o¢ in Problem II.
and The following boundary conditions fau(y) andv(y) in
g(+,t)=0 forallt >0 (35) Problem I result from egns (34) and (35) and are found to be
In Problem Il the scaling eqns (30) and (31) lead to ;'(_oo): 1 andu(+)=0 (45)
an
z,0)=0forz>0 36
p(2,0) (36) W4+ =0 (46)
o(0,f)=1fort>0 (37) For Problem Il we find from eqns (36)—(38)
and u(0) =1 andu(+«)=0 47
dp and
qZ(O! t) = — SK(S) E(O, t) (38) V(O) - _ K(S)SUI(O) (48)
whereK(e) is given by: Eqgns (43) and (44) can be combined into:
pf 1 1 " } r__
K(e)= — = (39) u +< n—Vv)u =0 (49)
psmy(1—aws)  (1+&)(y —log(1+¢)) 2
Note that the relative density differences lies in the interval v u’ (50)
O<e<@®_1~2%_1~02 (40) ut d
&
for ws = 0.26 Let us first discuss Problem |. We start with the important

observation that solutionsi§) of equations eqns (49) and
(50) onR are invariant under linear shifts. By this we mean

5 SELF-SIMILAR SOLUTIONS the following. For any given & R, let

Due to the n_on-linea_r coupling _between eqns (32) apd (83 it j5=y—a, u®F)=u(y) andv(s)=V(n) — %a (51)
is not possible to find explicit, closed-form solutions of

Problems | and Il. Nevertheless, their special structure Then if [u(y),v(y)] solves eqgns (49) and (50) for- » <1y
enables us to obtain much information concerning the + <, then so doe$u(), v(7)] if we replacen by 7 in eqn
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(49). This means that if [i&),v(»)] is a solution for which

v( = «) exists, then by shifting over a suitable distance
a, we can reach any limiting value ofy), either aty =

— o or aty = + . If we choosea = 2v( 4+ ») in egn
(51) we can ensure that eqn (46) is satisfied. This
invariance property will be wused in both the
mathematical and numerical procedures for solving
Problem I.

Before discussing the construction of solutions, we recall
some a priori properties which give an idea about the
qualitative behavior of the solution. We proved in Van
Duijn et al? that

1.
2.

U(p) <Oforall —ow <y < 4 o

there existg, > 0 such thau’(y) < 0 forn < ngand
u’(ny) > 0 forn > nq

V(10) = 2 andv’(n) > 0 for n < noandv’(y) < 0 for
N > 1Mo

u'(n) — 0if Iyl —

3.

4.

The first assertion implies that the brine concentration
increases strictly with depth and is concave below the
plane z=70,/t and convex above it. Also the-
component of the specific discharge has a maximum at
z= 10/t of magnitudet,(nosqtt t) = ing/\/t. The number
7o plays a prominent role in simultaneous transport of
brine and radionuclides, which will be explained in Sec-
tion 8.

Next we turn to the solution procedure. As a first obser-
vation we note that eqns (49)—(51) can be combined into a
single equation withy missing. This equation, having the

form
()=~

needs three conditions to be solved uniquely. Two
conditions are given by eqgn (45). As a third condition we
take, for instance,

"

Ly
2

u

lwith —o<p< 4o
U+ —
&€

(52)

1
uo) =3 (53)
We outline below how to obtain a unique solution
satisfying eqns (52), (45) and (53) and how to obtain
from that solution a corresponding = v(n) so that the
pair (u,v) satisfies eqns (43) and (44). This functiomill
not satisfy eqn (46). To achieve that condition one applies
the linear shift (eqn (51)) witla = 2v().

Eqgn (52) is of third order, non-linear and defined on an
unbounded domain. To tackle it directly is, therefore, not
straightforward. As so often in mathematics, we solve
problems by combining and applying what we already

C. J. van Duijnet al.

by the monotonicity ofu, and by takingu’ as the new
independent variable. Thus setting

n=n(u) andy(u) = — u'(n(u)) (54)
we obtain
(1+euy'} = — %(1+su), 0<n<1 (55)

In view of property (4) we obtain foy the boundary con-
ditions

y(0)=0 andy(1)=0 (56)

By setting further

_log(1+ eu)

" log(1+¢) 7

;y( u)

andz(s) = og(L+ o)

we obtain the problem
— 272 = 3%+ z>0for 0<s<1

(|’){
20)=21)=0

which is well known and arises in the study of self-similar
solutions of non-linear diffusion equations, see for instance
Esteban et a®, Van Duijn and Peletiéf, Van Duijn and
Floris'” and Van Duijn et al. In the context of nonlinear
diffusion one calls egn (58) the flux equation, because it
specifies the flux in terms of the concentration. One sees
immediately (sincez > 0) that

Z(s)<0for0<s<1

(58)

(59)
Less straightforward are the proofs of the properties

|IS%] Z(s)= + and IS|Trln Z(g= — (60)
which can be found in Van Duijn and Flotis Knowing
that a solutionz = z(s) of Problem |’ exists and is
unigue, and knowing much about its qualitative behavior,
one findsy = y(u) from egn (57). Finally, the solution =
u(n) satisfying eqns (52), (45) and (53) is implicitly defined
by

1
2 1
n(u) = J S

which results from integrating eqn (54). The corresponding
v = V() is given by

(61)

Vlr) = Z1—y'(un) for —= <y < 4= (62)

know. Also in this case, we will transform eqn (52) into a which follows from eqns (49) and (54).

second order equation on a finite domain, yielding a Since Problem Il is defined on the semi-infinite inter-
boundary value problem which is well known in the val0< 5 < 4+ «, we loose invariance property egn (51).
mathematical literature. This transformation is achieved But the other properties (1)(4) remain the same, when
by takingu as the independent variable, which is allowed taking 0 < 5 < -+ <, yielding a similar qualitative
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picture of the solution. The solution procedure proceeds are two degrees of freedom in the problem. Moreover, it
along the same lines. It leads to the transformed problem would be time consuming to compute accurate valueggor
1 ogont and ry by trial and error such that the correct limiting
(i ,){ —zZ= Eez oot+e), z>0for0<s<1 behavior foru atn = + / — = is achieved.
, An alternative approach is to determiggandr , directly
20)=0, Z(1)= —L«1) from Problem (') by noting that

(63) e
whereL is a constant given by Do = —y(i) _log(1+e), |09(1+ E) (70)
|Og(1+ 8) 2 £ |Og(l+ 8)
L=K(e)(1+ e)log(l+ &) = —o= T8 (64)
v —log(1+e) and, using eqn (48),
The boundary condition at= 1 is a direct consequence of P
eqn (48). To return ta = u(y), we first use again eqn (57) , 1) 1 (log(1+ §)
to obtainy = y(u) and then fo=—Y(3)= 11 g% | loglte) (71)
1 2
nju(n) Wls)ds for0<y< 4o (65) We find approximate values of the shooting parametgrs
andrg by solving (') numerically. We omit the details of
The corresponding = v(n) is obtained from eqgn (62). the computations. Next equationS) (are solved using a

fourth order Runge—Kautta method in the regions<{ 0}
and {n > 0}, subject top,, qo andr,. This gives the solu-
6 NUMERICAL PROCEDURES AND RESULTS tion [u(y), v(n)] of eqns (49) and (50) which satisfies
u(0)=1/2. It also provides us with the value @f+%) =
The mathematical analysis has provided us with qualitative r(4+) which we need to obtain the correct shit=
information about the structure of the solutions of Problem I 2y(+) to satisfy boundary condition eqn (46).
and II. This information can be used to develop procedures |n all cases considered, i.e. for all relevant values, ofe
to obtain accurate numerical solutions. verified the boundary conditiong + «) = 0 andu( — «) =
Starting point for both problems is the third order eqn 1. Up to a small error term £ = 10~°) these values are
(52). We write this equation as a system of first order equa- reproduced by the numerical approximations. This serves as
tions by setting an independent check for the accuracy of the numerical
p=u, g=U andr=v (66) procedure for Problem ).
Figs 2 and 3 give the results of the numerical approxima-

Substitution in egn (52) yields tions of the similarity solutionsi(n) andv(y) for different

p'=q values of the relative density differenee
1 The values = 0.025 corresponds to sea water. This curve
g'=q (r — §n> is not distinguishable from the curve for= 0 on the scale of

S (67) Fig. 2. The limite — 0 is the so-called Boussinesq approxi-
1 mation of Boussinesq limit, see Section 7. The value 0.2
q(r— E") corresponds with an almost saturated brine, while 0.5
(although physically not possible) is chosen here to empha-
P+ c size the effect. Observe that the numerical solutions satisfy
the qualitative behavior discussed in Section 5.

r'=—

To solve this system we impose three conditiong at O:

P(0) = u(0) = Po, A(0)=U'(0)=0o, 1(0)=V(0)=rg L — , , l
(68) : e=0ande i [1%22 —

wherepy = 1/2 (Problem 1) orpg = 1 (Problem 1), and 0.8 - €=05 -
whereqg andrq are a priori unknown. They have to be
determined from the boundary conditions eqn (45) (Pro- 0.6 |- n
blem 1) or from eqns (47) and (48) (Problem 11). 3 Problem I

Concerning Problem |, one approach is to apply a shoot- 04 [ .
ing procedure in the regiong{< 0} and {» > 0}. Taking
for (S the initial valuespy = 1/2 andqq, ro arbitrary, one 02 | -
solves the equations fop{< 0} and {y > 0}. The idea is to
choosepy andqg such that 0 I ! !

-4 -2 0 2 4 6
p(— ) =u(—2)=1andp(+*)=u(+*)=0  (69) "

However, this procedure is not at all trivial because there Fig. 2. Numerical approximations ai(x) for Problem I.
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0.14 T T T T T 0.45 T T T T T
=0.025 — P =0.025 —
012  ProblemI R p— 041 Problem I ©° 25— ]
S \ e=0.5 0.35 \\\ e=05---- _|
0.1 |- / : \ -1
; 3 03 |- 7]
0.08 - /,” N - 0.25 ‘.‘\-.\___ —
* K P
0.06 |- ‘_ — 0.2 -
X /’ N \ 0.15 F~~~==--< - -
0.04 |- Pt /// : \\\ Y\ -1 \‘\\\\
""" ’ o NN 01 T~ -
0.02 = e \\\\\ 7 0.05 LN ________________ =
0 R T et S P 0 } } )
-4 -2 0 2 4 6 0 1 2 3 4 5 6
n n
Fig. 3. Numerical approximations of(n) for Problem I. Fig. 5. Numerical approximations of(n) for Problem II.
Concerning Problem Il we solve systerg) for > 0 of go again and obtain, respectivelyg)t?=q—
subject to the initial conditions Ago(n— (1/4)) or ob 2 =q3 — Ago(n— (3/4)). This proce-
p(0)=u(0)=1 (72) dure is repeated until & u(L) = 6. The number of steps
) depends on the quality of the initial guess gquf and the
q0)=u(0)=0go <0 initial step sizeAd,.

Fig. 4 shows the results of the iterative shooing procedure
r(0)=v(0) = — eK(e)d for the scale density yJ for different s-values. The corre-

where the last condition is a consequence of egn (48). Thissponding scaled specific discharge distributimis) are

is a one-parameter shooting problem which is more given in Fig. 5. Notice tha¥(0) # 0. This is a consequence

straightforward and is solved without using Probleni)(Il  of boundary condition eqn (48) at the salt rock—brine inter-

The object is to find an approximate valuegyfsuch that ~ face. Becausa is a decreasing function we haug0) < 0,

the boundary conditiom( + =) is satisfied. This can be hencev(0) > 0, for all ¢ > 0.

achieved by starting the shooting procedure with an initial ~ Figs 6 and 7 give the relative densitfz, t) = u(z/t) and

estimate forgo and check if the corresponding limiting the unscaled specific discharggz t) = v(z/1)/1/t at dif-

behavior is satisfied at sufficiently large distaricdrom ferent time levels in the original variables. The other para-

the origin. The problem is to determine an approximate meter values used in these examples are adopted from

value ofqg such that the boundary conditiarf + <) = 0 Herbert et af® and listed in Table 1.

is satisfied. This can be achieved by starting the shooting Remark (boundary condition): If we impose, instead of

procedure with an estimated value @f and check if the ~ eqn (48), the conditiog,(0.t) = O for allt > O to express the

corresponding limiting behavior is satisfied at a sufficiently assumption that the salt rock boundary is impervious, then

large distancé from the origin. Ifu(L) > 6 > 0, wheres is the analysis yields(y) < v(0) = 0 for all y > 0. An expla-

an a priori specified small error term, the estimated value of nation for this behavior is that, = 0 at the boundary can

Qo is decreased by a fixed amouat), and the shooting  only be maintained by a back flow coming from «. We

procedure is repeated. The step six@, remains fixed conclude that this is a physically unrealistic situation and

until, say after theith step,u”(L) < 0. Nowqj is increased that the no flow boundary is incompatible with the model

by the bisection of\q, henceg{™ ™ = g3 — Ago(n — (1/2)). discussed in this paper.

If u™™*(L) > & or if u"™(L) < 0 we bisect the last alteration
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Fig. 6. Brine density profiles at different times far = 0.2 in
Fig. 4. Numerical approximations af(y) for Problem II. Problem 1.
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0.8 . . . w u (radionuclide) mass fraction at the salt rock boundary. As
0.7 €=02— | a consequence of eqn (30) we find
Problem II
0.6 B i R¢D
0.5 | )\ == ﬁ)\ (76)
q(z,t) 04 - <M‘Df g>
0.3
- 10 yr | as the dimensionless decay constant. Combining eqns (73)
' ‘X__ and (19), and applying egns (30), (74)—(76), we obtain
01p 1038(:,? (omitting the asterisks)

0

0 0.5 1 15 2 2.5 3 3.5 4 0@ 0. 0 9

at | Y9z (ep+1) oz

((8,0 +1) %) =0  (77)

Fig. 7. Specific discharge at different times o= 0.2 in Problem II. ) ) o ) )
in which we eliminated the decay term in the usual way, i.e.

Table 1. by settingw.(z t) = @.(z,t)e~ M. The boundary and initial
conditions are

Property Value Physical unit _

- o 2 @:(0,t)=1forallt>0 (78)

s éosi Pas (2, 0)=1 for all z>0

¢ 0.3 — Since q,(z t) =V(y)/\/t and p(zt) = u(y), we note that

o 1898 'r‘r?zg‘j egqns (77) and (78) have a self similar solution

@c(z,t) = f(n), wheref is a solution of the linear boundary

. ) _ . value problem
Some results of a formal asymptotic analysis are given in

the Appendix A of this paper. This analysis yields series , n 0 N
expansions in terms of the relative density differender filv= 5)  (su+ 1)((8u+ DIy’ =0
the similarity solutionsu(y) andv(y). When these expan- (BVP) f(0)=1 (79)
sions are truncated we obtained approximation formulas, up
to a certain (known) accuracy. f(=)=0
To solve this problem we first elimniate using eqn (49)
7 TRANSPORT OF RADIONUCLIDES and next integrate the resulting equation. This leads to
1
In this section we consider the simultaneous transport of a JTI(”,(E)) ? (A+te) dt
non-adsorbing radionuclide, occurring in tracer concentra- ¢,y —1 _ 0\u'(9)/ eu(t)+1)
tions, in the vicinity of a salt dome. We assume that the flow =g i (1+¢)
geometry is given by Problem II, resulting in one-dimen- Jo (u’(O)) U(E) + 1)t
sional @-direction) transport. The equation to be solved is .
")l e
Ro a[;(:c + ;Z(chqz —De¢o %) — phow; =0 (73) ,[O %—df
- N =l- (80)
wherew, denotes the mass fraction of a radionucliNeghe ® lu'(g)le
decay constantR the retardation factor for linear equili- JO de

brium adsorption, andD. its effective diffusivity—disper- _ _ .
sivity. Note thatq, = qAzt) andp = p(zt) are solutions of ~ Whereu s the solution of Problem 11, for a given value of

Problem II. Further, note that in genei@a} # D, the dif- The corresponding, scaled radionuclide concentration is
fusivity of the salt. We introduce the parameéerdefined eu(n)+1
as o) = ) 2 (681)
e+1

0=Dc/D (74) For# = 1 we can evaluate egn (80) and obtain
and apply the scaling rules egn (30) in eqn (73). This
ensures identical time scales for brine and radionuclide (M)
transport. The radionuclide mass fraction is scaled accord- /. \_ eu(n) +1 _ e+l
: (n) = 1 (82)
ing to e+1 Iog( 1 >

wp =2 (75) etl

wo

. Fig. 8 shows the scaled concentratibfor different values
where w, denotes a reference mass fraction, e.g. the of 9 ande = 0.2. The results in this figure indicate that,fas
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o1

m 0.4 0.6 0.8 1
n

Fig. 8. The scaled radionuclide concentratic(®) for ¢ = 0.2 and
different values o#: (a)g = 1.0; (b),0 = 0.1; (c),6 = 0.01; (d),0
= 0.005; (e),# = 0.001; (f),6 = 0.0003; and (g)¢ = 0.0.

— 0, the concentratio® has a discontinuity a = 7o =
0.316 witht =0 for » > 7. This is a direct consequence of
the limiting behavior of (BVP) ag — O: i.e.

Ui
'v—2)=0 forallyp >0
f'v=2) 1 ©3)
f(0) =1, f(*)=0
which implies a piecewise constant solution
1 for 0<yp<nqg
f(n)= (84)
0 for 7> 10
and thus
M for 0<y <n9q
t={ &+1 (85)
0 for N> No

As a consequence, a radionuclide front emerges which

moves with speed/(yo/y/1), wherev(n) = max((\(n)) =

no/2, see property (3) in Section 5. The position of the

front in the ¢,1)-plane is given by
S(t) = 2v(no)/t =n0\/t, which is equivalent to the path
of a tracer particle released tt= 0 in z = 0, i.e. at the

beginning of the brine transport process. Hence in the limit
6 — 0, the movement of the tracer is caused by the com-

pressibility effect only.

8 DISCUSSION

Self-similar solutions make the analysis tractable and (semi-)
explicit results can be obtained. A crucial requirement for
the applicability of similarity arguments is that both the

governing equationandinitial and/or boundary conditions

C. J. van Duijnet al.

In analyzing Problems | and Il we show explicitly the
effect of enhanced groundwater flow due to compressibility
of fluid caued by high salt concentration gradients. Charac-
teristic for both problems is the occurrence of additional
specific discharge in a direction perpendicular to the main
groundwater direction. In both problemsgis not influenced
by gravity. The only quantity that depends on gravity is the
specific discharge in thg-direction, parallel to main flow
ar-
The flow geometry of both problems and the boundary—
initial conditions are chosen such that semi-analytical solu-
tions are obtained. These solutions allow us to study the
relative importance of volume effects in terms of the rela-
tive density difference. Although the flow of groundwater in
the vicinity of a ‘real’ salt dome is more complex, the sim-
plified problems studied in this paper gain insight in the non-
linear coupling between fluid density and fluid flow due to
volume effects.

The salt rock boudary condition, which relates the fluid
mass flux to the diffusive—dispersive mass flux at the salt
boundary, is physically more realistic than the often used
no-flow conditiong,(0,}t) = 0. The latter induces a back
flow coming fromz = + o to maintain the no-flow condi-
tion atz = 0, see the remark in Section 6.

In this paper we only consider constant (molecular) diffu-
sion. In a more realistic description a velocity dependent
dispersion matrix has to be introduced into egn (5). Mole-
cular diffusion underestimates the compressibility effects.

When transversal dispersion, due to the (regional) back
ground flowq,, dominates the dispersion—diffusion in the
direction we arrive at a different situation. Under the
assumptiorig,| < Iqg,! eqn (8) reduces to

D =~ ¢Dpmo + O5T|C|y| = (86)

#Dmoi+ arldy = - (o — p)gsing (87)
yielding D as a function ofp. The analysis of this case is
quite different from what we discussed here and will be
published Elsewhe?é

If df > —(os— pf)gsind we may replace eqn (87) by

D =~ ¢Dpmo + O‘quf| = (88)
yielding a contant dispersivity which is in general much
larger then the effective molecular diffusiviggD . The
number
aT'qf'
¢Dmol

indicates the relative importance of (transversal) dispersion
with respect to molecular diffusion. IP < 1 diffusion

P=

(89)

be reducible to the similarity form. Hence, only in special dominates dispersion. Wheg; = 100 m year® typical
cases one may expect to find similarity solutions. Due to the values of the dispersivity areD(ar = 0.1m) =

piecewise initial density distribution in Problem | and 1l we

3.10 "m?s ! and D(ar = 1.0m) = 3.10°m?s™%. The

may consider the obtained similarity solutions as upper lim- corresponding®-numbers are: ~ 10° and =~ 10* It is

its for the compressibility effect. Smooth initial data
decrease the magnitude of the enhanced flow.

obvious that such values of the dispersivity will enhance
the compressibility effects in brine transport.
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If we consider longitudinal dispersion of radionuclides in
the z-direction eqgn (8) reduces to

D(g,) =D+ O‘L|qz| (90)

remembering thaD. = ¢D._no = 0D. By virtue of the
]J\/f-decay of qfzt) one expects the longitudinal
dispersion to dominate diffusion only on the short time
scale in Problem II. A rough estimate of the order to
magnitude of the time after which diffusion becomes
dominant can be given by using the approximation

0z 1) = Vg(o)/\/f in

P 7"“"’5(2’ oy 91)
C
hence
2

For the cased = DJD = 1, typical values off are:
(. =1 m) = 0.9 year and(cy, =10 m) =~ 88 year, whereas
the typical time scale of brine transport processes is usually
in the order of thousands of years. Hence at a very
early stage of the brine transport process molecular
diffusion starts to dominate longitudinal dispersion.
Notice thatf decreases when we replace the effective
molecular diffusivity by a constant transversal diffusivity
atqy, as discussed above.

9 CONCLUSIONS

. Compressibility effects in brine transport in porous
media are small and have in most practical cases
only little effect on the density distributions. We stu-
died two specific brine problems and compared the
solutions fore > 0 with the corresponding Boussinesq
solutions fore — 0, whereos denotes the relative
density difference.

. We found that high salt concentration gradients
induce a convective flux, which is perpendicular to
the main groundwater flow direction in the problems
studied in this paper. The magnitude of this flux
depends upon the relative density difference and the
effective diffusivity—dispersivity of salt.

. Taking only molecular diffusion into account under-
estimates the convective brine transport perpendicular
to the main flow direction. For the problems studied
in this paper it is more realistic to replace the
molecular diffusivity by the transversal dispersivity
due to the (regional) background flow. This increases
the magnitude ofj, significantly andj, can no longer
be neglected as convective transport mechanism.

. The similarity solutions presented are both of practi-
cal and theoretical use. First they provide us
with detailed qualitative and quantitative information
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about the nature of compressibility effects. Secondly
the solutions can be used to verify the accuracy
of numerical codes designed to simulate brine
transport.

. The similarity solutions have the following proper-
ties: () u'(n) <Oforall — o <5 < + o (Problem
I) and 0= < + o (Problem ll); (ii) there exists a
number ofpq such thau"(n) < 0 for gy < 5o andu’(y)
> 0 fory > o, iii) v(no) = n¢/2 and V(n) < 0O forn >
no. The numbery, plays a prominent role in the
simultaneous transport of radionuclides.

. The results of the asymptotic analysis can be used to
approximate the similarity solutions up to a given
accuracy.

. When considering simultaneous transport of brine and
dissolved radionuclides we can construct an explicit
solution for the radionuclide mass fraction expressed
in terms of the solution of the underlying brine
problem.

. In the limit of vanishing radionuclide diffusion—dis-
persion a radionuclide front emerges in Problem Il
which travels with speeu(yo)/+/t. Hence, the move-
ment of the radionuclide is caused by the compressi-
bility effect only.
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APPENDIX A APPROXIMATE SELF SIMILAR
SOLUTIONS 1 (* t

A = 27J— eftZ"‘JOeSZ /4f (9)dsdt (A10)
In this Appendix we give some results of a formal asymp- g
totic analysis which can be found in detail in van Duijn et Both series expansions are truncated afterstheerms. A
al*. The asymptotic analysis yields series expansions in nice property of the approximate solutionsandv, is that
terms of the relative density differeneefor the similarity they are expressed in terms of the solution of the Boussi-
solutions [i(y),v(y)] in both problems. When these expan- nesq problenB, and the small parameteronly. Because
sions are truncated we obtain approximation formulas ug(n) is known explicitly,u. andv, can be evaluated with-

which can be of practical use to approximatéy),v(n)] out great difficulty, for instance with the computer algebra
up to a certain, known accuracy. To emphasize the package Maplfe.
dependence oa, we denote the solutions by [(n),v.(n)]. In the Boussinesq limit for Problem Il we have agaj=

In the limit & — O the solutions ,,v,) converge to the 0 while nowu is the solution of

corresponding Boussinesq limitd,vo) for both problems. .1,
For Problem g = 0, while the limit foru, is the solution g ) Yot 51to= 0forn>0 (ALD)
1l
of L u(0) =1 andu(+«)=0
Ug + =nUp =0 for — oo < 5+ oo
B, b+ 51lo N+ (A1) hence
Up( — ) =1 andug(+ ) =0 Uo(n) = erfe( g) (A12)

and is given by
1 TThe expressiorf(x) = 0@(x)) for x — + o« means thaif(x)/
Ug(n) = —erfc(ﬁ> (A2) ¥(x) tends to zero vyh(_en-)e o, |t can be read as: 'Something that
2 2 tends to zero, multiplied by’.
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The asymptotic expressions for Problem Il are

Vo) = { d=m_ us(n)}s T {Eo(n) - o} (A13)

VY
and
U.0n) = o) — { e OREO)!
+ J(n{L — Uolm)} } (Bl + 00} &
(A14)
with
2 , - _
B ="t (2wt - T2
- ) + Clweres s

and
n 2 n ) t 2
Ea(n) = Aejoe‘t Hdt — Joe—t ’4J0e /4 (9)dsdt  (A16)

The functionf.(n) and the constam, are defined as

fooh = (30002~ o)+ 2Dt
n wua(n») (ua(n)— %}) ~ Un)Es(n)
(A17)
and
o t
A, = %Joe“"‘hesz /¢ (s)dsdt (A18)



