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In this paper we analyze a model for brine transport in porous media, which includes a
mass balance for the fluid, a mass balance for salt, Darcy’s law and an equation of
state, which relates the fluid density to the salt mass fraction. This model incorporates
the effect of local volume changes due to variations in the salt concentration. Density
variations affect the compressibility of the fluid, which in turn cause additional fluid
flow. Two specific situations are investigated that lead to self-similarity. We study the
relative importance of the compressibility effect in terms of the relative density
difference. Semi-analytical solutions are obtained as well as asymptotic expressions in
terms of the relative density difference. It is found that the volume changes have a
small but noticeable effect on the mass transport only when the salt concentration
gradients are large. Some results on the simultaneous transport of brine and dissolved
(radioactive) tracers are presented.q 1998 Elsevier Science Limited. All rights reserved

Keywords:brine transport, compressibility, similarity transformations, porous media,
35K55, 76S05.

1 INTRODUCTION

Recently Hassanizadeh and Leijnse1–3 revisited the theory of
brine transport in porous media, designed numerical codes and
did experiments in the laboratory. They raised the question
whether (semi-) analytical solutions of the governing equa-
tions could be obtained under certain boundary and initial
conditions. This question initiated our mathematical study
and the results are published in the mathematics literature4.
Because the subject of brine transport is still of current interest
in the hydrological literature and the availability of analytical
work in this field is poor, we decided to make the mathema-
tical results more accessible for non-mathematicians and
wrote this paper. The material has been extended with new
results and the emphasis is now on the construction of semi-
explicit self similar solutions.

Brine is water containing a high concentration of salt. In
an almost saturated brine themass fraction(q), which is

defined as the mass of the salt per unit mass of brine, can
reach 0.26. This corresponds to a brine density of approxi-
mately 1200 kg m¹3. For sea waterq ¼ 0.04 corresponding
to a fluid density of 1025 kg m¹3. Mass fraction and density
are related by an equation of state, which has been empiri-
cally determined. Brines are found in surface waters, such as
the Dead Sea, and groundwater near salt domes5. These are
geological structures in the subsurface consisting of massive
bodies of salt, a kilometer or more in diameter, embedded in
horizontal or inclined strata. Salt domes are potential places
for storage of nuclear waste6, and it is of practical impor-
tance to know the flow of the groundwater around them.

Any model for fluid flow and salt transport in a porous
medium must contain the mass balance equations for the
fluid and the salt, and Darcy’s law. The specific model we
propose to study uses the fluid mass balance equation1

f
]r

]t
þ div(rq) ¼ 0 (1)

wheref denotes the porosity of the medium,r the fluid
density andq the specific discharge vector. Introducing the
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material derivative

D
Dt

¼
]

]t
þ

q
f

·grad (2)

in the balance equation yields

f

r

Dr

Dt
þ divq¼ 0 (3)

This expression shows that density variations may affect
the compressibility of the fluid, which in turn can affect the
fluid motion. To make this effect explicit is one of the goals
of this study.

In this paper we intend to employ mainly analytical
techniques. Therefore, we are forced to restrict ourselves
in the choice of flow problems. Inspired by earlier work of
de Josseling de Jong and van Duijn7 we shall analyze two
simplified cases denoted by Problem I and Problem II.
Problem I describes the mixing of fresh water and brine,
originally separated and flowing parallel, due to transversal
dispersion. Problem II relates to the flow of groundwater
along the surface of a salt dome. A sketch of the correspond-
ing initial and boundary conditions is given in Fig. 1. In
Problem I the flow domain is unbounded above and below.
Initially, say att ¼ 0, the region above the plane {z ¼ 0} is
filled with fresh water and the brine fills the region below it.
In this case one has to specify the specific discharge either as
z→ þ ` or asz→ ¹ `. Here we shall adopt the former, and
fix q → (qƒ,0) asz → þ `, whereqƒ is a given constant. In
Problem II the flow domain consists of the upper half space {z
. 0} and is bounded below by an impermeable salt rock.
Again att ¼ 0, fresh water occupies the region {z. 0} while
the salt from the rock ensures thatr ¼ rs (mass density of
saturated brine) along the boundary {z ¼ 0}. Here we can
only specify they-component of the specific discharge atz¼

þ `, because thez-component is determined by a second
boundary condition, as explained in Section 3, at the surface
of the rock. In both problems they-coordinate ranges from¹
` to þ `. Moreover, only stable displacement of salt is
considered, implying¹ p/2 , b , þ p/2.

These problems are chosen because they admit to look for
similarity solutions. This means that the underlying partial
differential equations can be reduced to ordinary differential
equations by introducing an appropriate similarity variable
(e.g. z=

��
t

p
in Fig. 1). This makes the analysis tractable,

yielding semi-explicit results. The mathematical justifica-
tion of the results is given elsewhere4. As a consequence
of the analysis we can quantify the effect of the additional
brine transport due to the fluid compressibility for Problems
I and II, where in particular the latter is relevant to under-
stand the flow near salt domes.

Among recent papers focusing on brine transport we
mention Oldenburg and Pruess8; Carey et al.9, Herbert et
al.10, Hassanizadeh and Leijnse3. Numerical codes1,2 are
developed to simulate flow of groundwater containing
high salt concentrations. There are only few high-concen-
tration brine transport experiments available for testing the
validity of numerical codes. Our (semi) analytical results
can be used to verify the accuracy of numerical codes11,2.
Herbert et al.10 stresses the importance of analytical work on
this subject.

In the literature, the validity of Darcy’s law and Fickian
dispersion equations for high concentration differences has
been questioned. For example, Hassanizadeh and Leijnse3

reported on column tests of brine displacing fresh water in a
porous medium. They showed that the dispersivity of brine
decreases when the relative density difference between
brine and fresh water increases and resolved this problem
by introducing a non-linear form of Fick’s law. Carey et al.9

suggest a density dependent diffusivity–dispersivity.
Although these results are interesting we shall confine our-
selves to the classical formulation of Fick’s and Darcy’s law
in this paper.

In Section 2 we formulate the mathematical model in
general terms and in Section 3 we define the two specific
problems I and II. Dimensionless variables are introduced in
Section 4. In Section 5 we discuss properties and construc-
tion of self-similar solutions. Numerical procedures and
results are given in Section 6 while asymptotic results for

Fig. 1. Initial and boundary conditions.
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small relative density difference, yielding approximately
div(q) ¼ 0, can be found in Section 7. The simultaneous
transport of brine and dissolved radionuclides is the subject
of Section 7. In Section 8 we discuss the results and Section
9 contains the conclusions.

2 THE MATHEMATICAL MODEL

Since this paper focuses on analytical aspects of subsurface
brine transport, we shall impose simplifying restrictions on
the properties of the porous medium and flow. With respect
to the porous medium we assume that it is homogeneous and
isotropic, characterized by a constant porosityf and intrin-
sic permeabilityk. With respect to the flow we shall con-
sider the two specific cases which are introduced in Section
1 and about the fluid, with densityr and salt mass fractionq,
we assume that the dynamic viscositym does not depend on
q and is constant.

Assuming a Fickian type of dispersion–diffusion term in
the salt mass flux and restricting ourselves to the conven-
tional form of the momentum balance equation, we obtain
the following equations for transport of brine1:
Mass balance of the fluid

f
]r

]t
þ div(rq) ¼ 0; (4)

Mass balance of the salt

f
]rq

]t
þ div(rqq) ¹ Drgradq ¼ 0; (5)

Darcy’s law
m

k
q þ gradp¹ rg¼ 0; (6)

Equation of state

r ¼ rƒegq (7)

Hereq ¼ (qy,qz) denotes the specific discharge,p the fluid
pressure andg ¼ (gy,gz) the acceleration of gravity. In the
equation of state, where we disregard the effect of pressure
variations on the fluid density,rƒ is the density of the fresh
water andg is a constant (g ¼ 0.6923< ln 2) obtained by
curve fitting using a table from Weast12. Following Bear13,
the hydrodynamic dispersion tensorD ¼ (Dij) is given by
the expression

Dij ¼ {aTlqlþfDmol} dij þ (aL ¹ aT)qiqj =lql (8)

whereaL andaT are positive constants withaL . aT. They
are called the longitudinal and transversal dispersion
length, and describe the spreading of solutes due to
mechanical dispersion caused by randomness of the struc-
ture of the porous material and heterogeneities. Further
Dmol denotes the effective molecular diffusivity, which
incorporates the effect of tortuosity. Finally,d ij denotes
the Kroneckerd and l·l the Eucidian norm inR2. For

mathematical reasons we use in most of this paper (except
in Section 9) the approximation

Dij ¼fDdij (9)

whereD is a positive constant.

3 THE FLOW PROBLEMS

The object of any study of brine transport is to determine
the specific discharge and density (or mass fraction of salt)
of the fluid as a function of position and time. We will
investigate here two specific problems. In Problem I, see
Fig. 1(a), we consider an unbounded flow domain above
and below thez ¼ 0 plane. Initially, at timet ¼ 0 say, the
region above this plane is filled with fresh water (density
rƒ) and the region below it with brine (densityrs). Sincers

. rƒ and assuming¹ p/2 , b , þ p/2, this leads to a
stable salt distribution for allt $ 0. As a boundary con-
dition we impose that at large distance above thez ¼ 0
plane, the flow is known (and given) and points into they-
direction:

q → qƒey asz→ þ `, for all t $ 0 (10)

whereqƒ is a given constant andey the unit vector in the
positivey-direction.

Studies of brine distributions in aquifers have shown that
the transition zone between brine and fresh water is rela-
tively narrow, in particular when the fluids are stagnant. If
this situation is perturbed by draining fresh water we end up
with a situation that can be represented schematically by
Problem I.

In Problem II the flow domain occupies the half space {z
. 0}, see Fig. 1(b). In formulating this problem we have
assumed the initial situation where, due to regional
effects, fresh groundwater flows along the top boundary
of a salt dome. As a result salt will dissolve from it. The
physico-chemical processes that take place at a salt rock
boundary are complex and difficult to model. For instance,
the dissolution of salt creates a cap (residue) rock layer
along the top of the salt dome. Geological studies, e.g.
Bornemann et al.14, estimate the growth of this layer to
be 0.04 mm year¹1. Following Hassanizadeh and Leijnse1

we disregard this movement and assume that the mass
fraction remains at all times at the maximal salt mass
fraction of the saturated brine along the fixed boundary,
i.e.

q ¼ qs at z¼ 0, for all t $ 0 (11)

Further, the flux of salt entering the flow domain induces a
movement of water. This leads to the additional boundary
condition, see again Hassanizadeh and Leijnse1,

(q þ
D

(1¹ qs)
gradq)·n¼ 0 at z¼ 0, for all t $ 0 (12)

wheren denotes the outward normal at the boundary {z ¼

0}. As initial concentration we haver ¼ rƒ or q ¼ 0
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everywhere in the flow region. At large distance above the
{ z ¼ 0} plane we now impose only they-component of the
flow, since thez-component will be determined by the pro-
blem. Thus we set

qy → qƒ asz→ þ `, for all t $ 0 (13)

In both problems they-coordinate ranges from¹ ` to þ

`. Therefore, we may look for a density and specific dis-
charge depending only on thez-coordinate and time, i.e.

r ¼ r(z, t) andq ¼ q(z, t) (14)

This assumption implies irrotational flow in both problems.
We do not consider perturbations of the initial condition on
r. Following de Josseling de Jong and van Duijn7 we use
eqn (14) and Darcy’s law (eqn (6)) to obtain a linear alge-
braic relation between the fluid density and they-compo-
nent of the specific discharge. This relation can be found by
first taking the curl of eqn (6):

]

]z
qy ¹

k

m
rgy

� �
¹

]

]y
qz ¹

k

m
rgz

� �
¼ 0 (15)

and by substituting eqn (14) into this expression. The result
is

qy ¹
k

m
rgy ¼ qy þ

k

m
rgsinb¼ constant in space (16)

whereb is the inclination of thez ¼ 0 plane. To determine
the constant in eqn (16) we use the behavior ofqy andr at z
¼ þ `:

qy(`, t) ¼ qƒ andr(`, t) ¼ qƒ for all t . 0 (17)

This yields the relation

qy ¼ qƒ ¹
k

m
(r ¹ rƒ)gsinb (18)

Thus in order to determine the pair (r,q) from the differ-
ential equations with initial and boundary conditions, there
remains by virtue of eqn (18), only to determiner andqz.
Using eqn (18), the equations for these quantities reduce to

f
]r

]t
þ

]

]z
(rqz) ¼ 0 (19)

and

f
]rq

]t
þ

]

]z
rqqz ¹ Dr

]q

]z

� �
¼ 0 (20)

Combining these equations yields

fr
]q

]t
þ rqz

]q

]z
¼

]

]z
rD

]q

]z

� �
(21)

and with the equation of state (eqn (7)) we obtain

f
]r

]t
þ qz

]r

]z
¼ D

]2r

]z2 (22)

We use the couplied system eqns (19) and (22) in our
analysis. To determiner andqz from this system we need

to impose the initial and boundary conditions. In Problem I
we look for a solution in the domain {(z,t): ¹ ` , z , þ

`, t . 0} subject to the initial condition

r(z, 0) ¼
rf for z. 0

rs for z, 0

(
(23)

and boundary condition eqn (10) for the flow

qz( þ `, t) ¼ 0 for all t $ 0 (24)

We note that a condition on the flow such as eqn (24) is
natural for the problem. Combining eqns (19) and (22)
gives the ordinary differential equation

r
]qz

]z
þ D

]2r

]z2 ¼ 0 (25)

Thus knowingr, a single condition onqz [e.g. Eqn (24)] is
needed to determine the solution. The specific choice is
arbitrary. In fact one could construct a solution
corresponding to any givenqz( þ `,t). We also observe
at this point that eqn (25), when writing it in the form

div q ¼
]qz

]z
¼ ¹

1
r
div(Dgradr) (26)

clearly demonstrates the coupling between brine
transport by diffusion–dispersion, creating a non-zero
divergence in the flow field, and hence enhanced fluid
flow. Density gradients imply fluid movement and vice
versa.

Problem II is solved in the domain {(z,t): z . 0,t . 0}
where we impose initially

r(z, 0) ¼ rf for z. 0 (27)

and along the boundary, see eqns (11) and (12)

r(0, t) ¼ rsm : ¼ rf e
gqs (28)

and

qz(0, t) ¼ ¹
D

grsm(1¹ qs)
]r

]z
(0, t) (29)

for all t . 0. Herer sm denotes the density of saturated
brine. Boundary condition (3.3) relates the specific
discharge to the spatial derivative of the fluid density
at the salt rock boundary. Although no water is being
produced along the salt rock boundary, a non-zero
discharge exists along that boundary due to volume
effects caused by high salt concentration gradients in
the fluid. In fact, at the salt rock boundary, the fluid
mass flux is balanced by the diffusive–dispersive mass
flux. For details on the derivation of this salt rock
boundary condition we refer to Hassanizadeh and
Leijnse1. As will be shown in a later section of this
paper, the particular form of eqn (29) allows a straight
forward similarity transformation.
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4 DIMENSIONLESS VARIABLES

Before discussing eqns (19) and (22) we introduce the
dimensionless variables

rp ¼
r ¹ rƒ

r̃s ¹ rƒ
, qp

z ¼
qz

k

m
rƒg

, zp ¼

k

m
rƒg

D
z, tp ¼

k

m
rƒg

� �2

fD
t

(30)

and

« ¼
r̃s ¹ rƒ

rƒ
(31)

where r̃s ¼ rs in Problem I andr̃s ¼ rsm in Problem II. In
terms of these new variables the equations become (drop-
ping the asterisks notation)

]r

]t
þ

]

]z
(rqz) þ

1
«

]qz

]z
¼ 0 (32)

and

]r

]t
þ qz

]r

]z
¼

]q2r

]z2 ¼ 0 (33)

The rescaled initial and boundary conditions in Problem I
are

r(z,0) ¼
0 for z. 0

1 for z, 0

(
(34)

and

qz( þ `, t) ¼ 0 for all t . 0 (35)

In Problem II the scaling eqns (30) and (31) lead to

r(z,0) ¼ 0 for z. 0 (36)

r(0, t) ¼ 1 for t . 0 (37)

and

qz(0, t) ¼ ¹ «K(«)
]r

]z
(0, t) (38)

whereK(«) is given by:

K(«) ¼
rƒ

rsm

1
g(1¹ qs)

¼
1

(1þ «)(g ¹ log(1þ «))
(39)

Note that the relative density differences lies in the interval

0 , « , egqs ¹ 1 < 2qs ¹ 1 < 0:2 (40)

for qs ¼ 0.26

5 SELF-SIMILAR SOLUTIONS

Due to the non-linear coupling between eqns (32) and (33) it
is not possible to find explicit, closed-form solutions of
Problems I and II. Nevertheless, their special structure
enables us to obtain much information concerning the

qualitative behavior of the solutions and to obtain accurate
approximations.

The key idea is to look for self-similar solutions, which
reduce eqns (32) and (33) to a set of coupled ordinary differ-
ential equations with boundary conditions originating from
eqns (34)–(38). The transformed problems were studied in
detail by van Duijn et al.4. They considered fundamental
questions related to existence and uniqueness of solutions,
as well as their qualitative behavior. With respect to the
latter, they showed certain monotonicity properties of solu-
tions and their asymptotic behavior forlzl → ` and for« ↓ 0.
Some of these results will be discussed here and in Section 7.

The similarity transformations for Problems I and II are
given by

h¼
z��
t

p (41)

and

r(z, t) ¼ u(h) andqz(z, t) ¼
1��

t
p v(h) (42)

This results in the set of differential equations

(uv)9 þ
1
«
v9 ¹

1
2
hu9 ¼ 0 (43)

u9v¹
1
2
hu9 ¼ u0 (44)

where the primes denote differentiation with respect toh.
The independent variableh ranges from ¹ ` to þ ` in
Problem I and from 0 toþ ` in Problem II.

The following boundary conditions foru(h) andv(h) in
Problem I result from eqns (34) and (35) and are found to be

u( ¹ `) ¼ 1 andu( þ `) ¼ 0 (45)

and

v( þ `) ¼ 0 (46)

For Problem II we find from eqns (36)–(38)

u(0) ¼ 1 andu( þ `) ¼ 0 (47)

and

v(0) ¼ ¹ K(«)«u9(0) (48)

Eqns (43) and (44) can be combined into:

u0 þ
1
2
h ¹ v

� �
u9 ¼ 0 (49)

v9 ¼ ¹
u0

uþ
1
«

(50)

Let us first discuss Problem I. We start with the important
observation that solutions (u,v) of equations eqns (49) and
(50) onR are invariant under linear shifts. By this we mean
the following. For any given a[ R, let

h̄¼ h¹ a, ū(h̄) ¼ u(h) and v̄(h̄) ¼ v(h) ¹
1
2

a (51)

Then if [u(h),v(h)] solves eqns (49) and (50) for¹ ` , h

þ `, then so does[ū(h̄), v̄(h̄)] if we replaceh by h̄ in eqn
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(49). This means that if [u(h),v(h)] is a solution for which
v( 6 `) exists, then by shiftingh over a suitable distance
a, we can reach any limiting value ofv(h), either ath ¼

¹ ` or at h ¼ þ `. If we choosea ¼ 2v( þ `) in eqn
(51) we can ensure that eqn (46) is satisfied. This
invariance property will be used in both the
mathematical and numerical procedures for solving
Problem I.

Before discussing the construction of solutions, we recall
some a priori properties which give an idea about the
qualitative behavior of the solution. We proved in Van
Duijn et al.4 that

1. u9(h) , 0 for all ¹ ` , h , þ `;
2. there existsh0 . 0 such thatu0(h) , 0 for h , h0 and

u0(h) . 0 for h . h0

3. v(h0) ¼ 1
2h0 andv9(h) . 0 for h , h0 andv9(h) , 0 for

h . h0

4. u9(h) → 0 if lhl → `

The first assertion implies that the brine concentration
increases strictly with depth and is concave below the
plane z¼ h0

��
t

p
and convex above it. Also thez-

component of the specific discharge has a maximum at
z¼ h0

��
t

p
of magnitudeqz(h0sqtt, t) ¼ 1

2h0=
��
t

p
. The number

h0 plays a prominent role in simultaneous transport of
brine and radionuclides, which will be explained in Sec-
tion 8.

Next we turn to the solution procedure. As a first obser-
vation we note that eqns (49)–(51) can be combined into a
single equation withh missing. This equation, having the
form

1
2

þ
� u0

u9

�
9 ¼ ¹

u0

uþ
1
«

with ¹ ` , h , þ ` (52)

needs three conditions to be solved uniquely. Two
conditions are given by eqn (45). As a third condition we
take, for instance,

u(0) ¼
1
2

(53)

We outline below how to obtain a unique solution
satisfying eqns (52), (45) and (53) and how to obtain
from that solution a correspondingv ¼ v(h) so that the
pair (u,v) satisfies eqns (43) and (44). This functionv will
not satisfy eqn (46). To achieve that condition one applies
the linear shift (eqn (51)) witha ¼ 2v(̀ ).

Eqn (52) is of third order, non-linear and defined on an
unbounded domain. To tackle it directly is, therefore, not
straightforward. As so often in mathematics, we solve
problems by combining and applying what we already
know. Also in this case, we will transform eqn (52) into a
second order equation on a finite domain, yielding a
boundary value problem which is well known in the
mathematical literature. This transformation is achieved
by taking u as the independent variable, which is allowed

by the monotonicity ofu, and by takingu9 as the new
independent variable. Thus setting

h¼ h(u) andy(u) ¼ ¹ u9(h(u)) (54)

we obtain

y{ (1þ «u)y9} 9 ¼ ¹
1
2
(1þ «u), 0 , n , 1 (55)

In view of property (4) we obtain fory the boundary con-
ditions

y(0) ¼ 0 andy(1) ¼ 0 (56)

By setting further

s¼
log(1þ «u)
log(1þ «)

andz(s) ¼
«

log(1þ «)
y(u) (57)

we obtain the problem

(I 9)
¹ zz0 ¼ 1

2e
2slog(1þ «), z. 0 for 0, s, 1

z(0) ¼ z(1) ¼ 0

(
(58)

which is well known and arises in the study of self-similar
solutions of non-linear diffusion equations, see for instance
Esteban et al.15, Van Duijn and Peletier16, Van Duijn and
Floris17 and Van Duijn et al.18. In the context of nonlinear
diffusion one calls eqn (58) the flux equation, because it
specifies the flux in terms of the concentration. One sees
immediately (sincez . 0) that

z0(s) , 0 for 0, s, 1 (59)

Less straightforward are the proofs of the properties

lim
s↓0

z9(s) ¼ þ ` and lim
s↑1

z9(s) ¼ ¹ ` (60)

which can be found in Van Duijn and Floris17. Knowing
that a solutionz ¼ z(s) of Problem I9 exists and is
unique, and knowing much about its qualitative behavior,
one findsy ¼ y(u) from eqn (57). Finally, the solutionu ¼

u(h) satisfying eqns (52), (45) and (53) is implicitly defined
by

h(u) ¼

∫ 1
2

u

1
y(s)

ds (61)

which results from integrating eqn (54). The corresponding
v ¼ v(h) is given by

v(h) ¼
1
2
h ¹ y9(u(h)) for ¹ ` , h , þ ` (62)

which follows from eqns (49) and (54).
Since Problem II is defined on the semi-infinite inter-

val 0 , h , þ `, we loose invariance property eqn (51).
But the other properties (1)…(4) remain the same, when
taking 0 , h , þ `, yielding a similar qualitative
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picture of the solution. The solution procedure proceeds
along the same lines. It leads to the transformed problem

(II 9)
¹ zz0 ¼

1
2
e2slog(1þ «), z. 0 for 0, s, 1

z(0) ¼ 0, z9(1) ¼ ¹ Lz(1)

8<:
(63)

whereL is a constant given by

L ¼ K(«)(1þ «)log(1þ «) ¼
log(1þ «)

g ¹ log(1þ «)
(64)

The boundary condition ats ¼ 1 is a direct consequence of
eqn (48). To return tou ¼ u(h), we first use again eqn (57)
to obtainy ¼ y(u) and then

h

∫1

u(h)

1
y(s)

ds for 0 , h , þ ` (65)

The correspondingv ¼ v(h) is obtained from eqn (62).

6 NUMERICAL PROCEDURES AND RESULTS

The mathematical analysis has provided us with qualitative
information about the structure of the solutions of Problem I
and II. This information can be used to develop procedures
to obtain accurate numerical solutions.

Starting point for both problems is the third order eqn
(52). We write this equation as a system of first order equa-
tions by setting

p¼ u, q¼ u9 and r ¼ v (66)

Substitution in eqn (52) yields

(S)

p9 ¼ q

q9 ¼ q r ¹
1
2
h

� �

r9 ¼ ¹

q r ¹
1
2
h

� �
pþ

1
«

8>>>>>>>>>><>>>>>>>>>>:
(67)

To solve this system we impose three conditions ath ¼ 0:

p(0) ¼ u(0) ¼ p0, q(0) ¼ u9(0) ¼ q0, r(0) ¼ v(0) ¼ r0

(68)

wherep0 ¼ 1/2 (Problem I) orp0 ¼ 1 (Problem II), and
where q0 and r 0 are a priori unknown. They have to be
determined from the boundary conditions eqn (45) (Pro-
blem I) or from eqns (47) and (48) (Problem II).

Concerning Problem I, one approach is to apply a shoot-
ing procedure in the regions {h , 0} and {h . 0}. Taking
for (S) the initial valuesp0 ¼ 1/2 andq0, r 0 arbitrary, one
solves the equations for {h , 0} and {h . 0}. The idea is to
choosep0 andq0 such that

p( ¹ `) ¼ u( ¹ `) ¼ 1 andp( þ `) ¼ u( þ `) ¼ 0 (69)

However, this procedure is not at all trivial because there

are two degrees of freedom in the problem. Moreover, it
would be time consuming to compute accurate values forq0

and r 0 by trial and error such that the correct limiting
behavior foru at h ¼ þ / ¹ ` is achieved.

An alternative approach is to determineq0 andr 0 directly
from Problem (I9) by noting that

p0 ¼ ¹ y
1
2

� �
¼

log(1þ «)
«

z
log 1þ

«

2

� �
log(1þ «)

0@ 1A (70)

and, using eqn (48),

r0 ¼ ¹ y9(
1
2
) ¼

1

1þ
«

2

z9
log(1þ

«

2
)

log(1þ «)

0@ 1A (71)

We find approximate values of the shooting parametersq0

and r 0 by solving (I9) numerically. We omit the details of
the computations. Next equations (S) are solved using a
fourth order Runge–Kutta method in the regions {h , 0}
and {h . 0}, subject top0, q0 and r 0. This gives the solu-
tion [u(h), v(h)] of eqns (49) and (50) which satisfies
u(0) ¼ 1=2. It also provides us with the value ofv(þ`) ¼

r(þ`) which we need to obtain the correct shifta ¼

2v(þ`) to satisfy boundary condition eqn (46).
In all cases considered, i.e. for all relevant values of«, we

verified the boundary conditionsu( þ `) ¼ 0 andu( ¹ `) ¼

1. Up to a small error term (< 6 10¹6) these values are
reproduced by the numerical approximations. This serves as
an independent check for the accuracy of the numerical
procedure for Problem (I9).

Figs 2 and 3 give the results of the numerical approxima-
tions of the similarity solutionsu(h) andv(h) for different
values of the relative density difference«.

The value« ¼ 0.025 corresponds to sea water. This curve
is not distinguishable from the curve for« ¼ 0 on the scale of
Fig. 2. The limit« → 0 is the so-called Boussinesq approxi-
mation of Boussinesq limit, see Section 7. The value« ¼ 0.2
corresponds with an almost saturated brine, while« ¼ 0.5
(although physically not possible) is chosen here to empha-
size the effect. Observe that the numerical solutions satisfy
the qualitative behavior discussed in Section 5.

Fig. 2. Numerical approximations ofu(h) for Problem I.

Brine transport in porous media self–similar solutions 291



Concerning Problem II we solve system (S) for h . 0
subject to the initial conditions

p(0) ¼ u(0) ¼ 1 (72)

q(0) ¼ u0(0) ¼ q0 , 0

r(0) ¼ v(0) ¼ ¹ «K(«)q0

where the last condition is a consequence of eqn (48). This
is a one-parameter shooting problem which is more
straightforward and is solved without using Problem (II9).
The object is to find an approximate value ofq0 such that
the boundary conditionu( þ `) is satisfied. This can be
achieved by starting the shooting procedure with an initial
estimate forq0 and check if the corresponding limiting
behavior is satisfied at sufficiently large distanceL from
the origin. The problem is to determine an approximate
value ofq0 such that the boundary conditionu( þ `) ¼ 0
is satisfied. This can be achieved by starting the shooting
procedure with an estimated value ofq0 and check if the
corresponding limiting behavior is satisfied at a sufficiently
large distanceL from the origin. Ifu(L) . d . 0, whered is
an a priori specified small error term, the estimated value of
q0 is decreased by a fixed amountDq0 and the shooting
procedure is repeated. The step sizeDq0 remains fixed
until, say after thenth step,un(L) , 0. Nowqn

0 is increased
by the bisection ofDq0, henceq(nþ 1)

0 ¼ q0
0 ¹ Dq0(n¹ (1=2)).

If unþ1(L) . d or if unþ1(L) , 0 we bisect the last alteration

of q0 again and obtain, respectively:qnþ 2
0 ¼ q0

0 ¹

Dq0(n¹ (1=4)) or qnþ 2
0 ¼ q0

0 ¹Dq0(n¹ (3=4)). This proce-
dure is repeated until 0# u(L) # d. The number of steps
depends on the quality of the initial guess ofq0 and the
initial step sizeDq0.

Fig. 4 shows the results of the iterative shooing procedure
for the scale density u(h) for different «-values. The corre-
sponding scaled specific discharge distributionsv(h) are
given in Fig. 5. Notice thatv(0) Þ 0. This is a consequence
of boundary condition eqn (48) at the salt rock–brine inter-
face. Becauseu is a decreasing function we haveu9(0) , 0,
hencev(0) . 0, for all « . 0.

Figs 6 and 7 give the relative densityr(z, t) ¼ u(z=
��
t

p
) and

the unscaled specific dischargeqz(z, t) ¼ v(z=
��
t

p
)=

��
t

p
at dif-

ferent time levels in the original variables. The other para-
meter values used in these examples are adopted from
Herbert et al.10 and listed in Table 1.

Remark (boundary condition): If we impose, instead of
eqn (48), the conditionqz(0,t) ¼ 0 for all t . 0 to express the
assumption that the salt rock boundary is impervious, then
the analysis yieldsv(h) , v(0) ¼ 0 for all h . 0. An expla-
nation for this behavior is thatqz ¼ 0 at the boundary can
only be maintained by a back flow coming fromþ `. We
conclude that this is a physically unrealistic situation and
that the no flow boundary is incompatible with the model
discussed in this paper.

Fig. 3. Numerical approximations ofv(h) for Problem I.

Fig. 4. Numerical approximations ofu(h) for Problem II.

Fig. 5. Numerical approximations ofv(h) for Problem II.

Fig. 6. Brine density profiles at different times for« ¼ 0.2 in
Problem II.
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Some results of a formal asymptotic analysis are given in
the Appendix A of this paper. This analysis yields series
expansions in terms of the relative density difference« for
the similarity solutionsu(h) and v(h). When these expan-
sions are truncated we obtained approximation formulas, up
to a certain (known) accuracy.

7 TRANSPORT OF RADIONUCLIDES

In this section we consider the simultaneous transport of a
non-adsorbing radionuclide, occurring in tracer concentra-
tions, in the vicinity of a salt dome. We assume that the flow
geometry is given by Problem II, resulting in one-dimen-
sional (z-direction) transport. The equation to be solved is

Rf
]rqc

]t
þ

]

]z
rqcqz ¹ Dcr

]qc

]z

� �
¹ flrqc ¼ 0 (73)

whereqc denotes the mass fraction of a radionuclide,l the
decay constant,R the retardation factor for linear equili-
brium adsorption, andDc its effective diffusivity–disper-
sivity. Note thatqz ¼ qz(z,t) andr ¼ r(z,t) are solutions of
Problem II. Further, note that in generalDc Þ D, the dif-
fusivity of the salt. We introduce the parameterv, defined
as

v ¼ Dc=D (74)

and apply the scaling rules eqn (30) in eqn (73). This
ensures identical time scales for brine and radionuclide
transport. The radionuclide mass fraction is scaled accord-
ing to

qp
c ¼

qc

q0
(75)

where q0 denotes a reference mass fraction, e.g. the

(radionuclide) mass fraction at the salt rock boundary. As
a consequence of eqn (30) we find

lp ¼
RfD

k

m
rf g

� �2l (76)

as the dimensionless decay constant. Combining eqns (73)
and (19), and applying eqns (30), (74)–(76), we obtain
(omitting the asterisks)

]q̄c

]t
þ qz

]q̄c

]z
¹

v

(«rþ 1)
]

]z
(«r þ 1)

]q̄c

]z

� �
¼ 0 (77)

in which we eliminated the decay term in the usual way, i.e.
by settingqc(z, t) ¼ q̄c(z, t)e¹ lt. The boundary and initial
conditions are

q̄c(0, t) ¼ 1 for all t . 0 (78)

q̄c(z, 0) ¼ 1 for all z. 0

Since qz(z, t) ¼ v(h)=
��
t

p
and r(z,t) ¼ u(h), we note that

eqns (77) and (78) have a self similar solution
q̄c(z, t) ¼ ƒ(h), whereƒ is a solution of the linear boundary
value problem

(BVP)

ƒ9(v¹
h

2
) ¹

v

(«uþ 1)
((«uþ 1)ƒ9)9 ¼ 0

ƒ(0) ¼ 1

ƒ(`) ¼ 0

8>>><>>>: (79)

To solve this problem we first elimniatev using eqn (49)
and next integrate the resulting equation. This leads to

f (h) ¼ 1¹

∫h

0

u9(y)
u9(0)

� � 1
v (1þ «)

«u(y) þ 1)
dy

∫`

0

u9(y)
u9(0)

� � 1
v (1þ «)

«u(y) þ 1)dy

¼ 1¹

∫h

0

lu9(y)l
1
v

«u(y) þ 1
dy

∫`

0

lu9(y)l
1
v

«u(y) þ 1
dy

ð80Þ

whereu is the solution of Problem II, for a given value of«.
The corresponding, scaled radionuclide concentration is

c̄(h) ¼ ƒ(h)
«u(h) þ 1

« þ 1
(81)

For v ¼ 1 we can evaluate eqn (80) and obtain

c̄(h) ¼
«u(h) þ 1

« þ 1
1¹

log
«u(h) þ 1)

« þ 1

� �
log

1
« þ 1

� �
0BB@

1CCA (82)

Fig. 8 shows the scaled concentrationc̄ for different values
of v and« ¼ 0.2. The results in this figure indicate that, asv

Fig. 7.Specific discharge at different times for« ¼ 0.2 in Problem II.

Table 1.

Property Value Physical unit

k 10¹12 m2

m 10¹3 Pas
g 9.81 m s¹2

f 0.3 —
r f 1000 kg m¹3

D 10¹9 m2 s¹1
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→ 0, the concentration̄c has a discontinuity ath ¼ h0 <
0.316 withc̄¼ 0 for h . h0. This is a direct consequence of
the limiting behavior of (BVP) asv → 0: i.e.

ƒ9(v¹
h

2
) ¼ 0 for all h . 0

ƒ(0) ¼ 1, ƒ(`) ¼ 0

8<: (83)

which implies a piecewise constant solution

f (h) ¼
1 for 0, h , h0

0 for h . h0

(
(84)

and thus

c̄(h) ¼

«u(h) þ 1
« þ 1

for 0 , h , h0

0 for h . h0

8<: (85)

As a consequence, a radionuclide front emerges which
moves with speedv(h0=

��
t

p
), wherev(h) ¼ max((v(h)) ¼

h0/2, see property (3) in Section 5. The position of the
front in the (z,t)-plane is given by
s(t) ¼ 2v(h0)

��
t

p
¼ h0

��
t

p
, which is equivalent to the path

of a tracer particle released att ¼ 0 in z ¼ 0, i.e. at the
beginning of the brine transport process. Hence in the limit
v → 0, the movement of the tracer is caused by the com-
pressibility effect only.

8 DISCUSSION

Self-similar solutions make the analysis tractable and (semi-)
explicit results can be obtained. A crucial requirement for
the applicability of similarity arguments is that both the
governing equationsand initial and/or boundary conditions
be reducible to the similarity form. Hence, only in special
cases one may expect to find similarity solutions. Due to the
piecewise initial density distribution in Problem I and II we
may consider the obtained similarity solutions as upper lim-
its for the compressibility effect. Smooth initial data
decrease the magnitude of the enhanced flow.

In analyzing Problems I and II we show explicitly the
effect of enhanced groundwater flow due to compressibility
of fluid caued by high salt concentration gradients. Charac-
teristic for both problems is the occurrence of additional
specific discharge in a direction perpendicular to the main
groundwater direction. In both problemsqz is not influenced
by gravity. The only quantity that depends on gravity is the
specific discharge in they-direction, parallel to main flow
qƒ.

The flow geometry of both problems and the boundary–
initial conditions are chosen such that semi-analytical solu-
tions are obtained. These solutions allow us to study the
relative importance of volume effects in terms of the rela-
tive density difference. Although the flow of groundwater in
the vicinity of a ‘real’ salt dome is more complex, the sim-
plified problems studied in this paper gain insight in the non-
linear coupling between fluid density and fluid flow due to
volume effects.

The salt rock boudary condition, which relates the fluid
mass flux to the diffusive–dispersive mass flux at the salt
boundary, is physically more realistic than the often used
no-flow conditionqz(0,t) ¼ 0. The latter induces a back
flow coming fromz ¼ þ ` to maintain the no-flow condi-
tion at z ¼ 0, see the remark in Section 6.

In this paper we only consider constant (molecular) diffu-
sion. In a more realistic description a velocity dependent
dispersion matrix has to be introduced into eqn (5). Mole-
cular diffusion underestimates the compressibility effects.

When transversal dispersion, due to the (regional) back
ground flowqy, dominates the dispersion–diffusion in thez-
direction we arrive at a different situation. Under the
assumptionlqzl , lqyl eqn (8) reduces to

D < fDmol þ aTlqyl¼ (86)

fDmol þ aTlqƒ ¹
k

m
(r ¹ rƒ)gsinbl (87)

yielding D as a function ofr. The analysis of this case is
quite different from what we discussed here and will be
published elsewhere18.

If qƒ q
k

m
(rs ¹ rƒ)gsinb we may replace eqn (87) by

D < fDmol þ aTlqƒl¼ (88)

yielding a contant dispersivity which is in general much
larger then the effective molecular diffusivityfDmol. The
number

P¼
aTlqƒl
fDmol

(89)

indicates the relative importance of (transversal) dispersion
with respect to molecular diffusion. IfP , 1 diffusion
dominates dispersion. Whenqf ¼ 100 m year¹1 typical
values of the dispersivity are:D(aT ¼ 0.1 m) <
3.10¹7 m2 s¹1 and D(aT ¼ 1.0 m) < 3.10¹6 m2 s¹1. The
correspondingP-numbers are: < 103 and < 104. It is
obvious that such values of the dispersivity will enhance
the compressibility effects in brine transport.

Fig. 8. The scaled radionuclide concentrationc̄(h) for « ¼ 0.2 and
different values ofv: (a),v ¼ 1.0; (b),v ¼ 0.1; (c),v ¼ 0.01; (d),v

¼ 0.005; (e),v ¼ 0.001; (f),v ¼ 0.0003; and (g),v ¼ 0.0.
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If we consider longitudinal dispersion of radionuclides in
the z-direction eqn (8) reduces to

D(qz) ¼ Dc þaLlqzl (90)

remembering thatDc ¼ fDc¹mol ¼ vD. By virtue of the
1=

��
t

p
-decay of qz(z,t) one expects the longitudinal

dispersion to dominate diffusion only on the short time
scale in Problem II. A rough estimate of the order to
magnitude of the timêt after which diffusion becomes
dominant can be given by using the approximation
qz(z, t) < v«(0)=

��
t

p
in

P¼
aLlqz(z, t)l

Dc
, 1 (91)

hence

t̂ <
aL«

g

� �2 f

pvD
(92)

For the casev ¼ Dc/D ¼ 1, typical values of t̂ are:
t̂(aL ¼ 1 m) < 0:9 year and̂t(aL ¼ 10 m) < 88 year, whereas
the typical time scale of brine transport processes is usually
in the order of thousands of years. Hence at a very
early stage of the brine transport process molecular
diffusion starts to dominate longitudinal dispersion.
Notice that t̂ decreases when we replace the effective
molecular diffusivity by a constant transversal diffusivity
aTqƒ, as discussed above.

9 CONCLUSIONS

1. Compressibility effects in brine transport in porous
media are small and have in most practical cases
only little effect on the density distributions. We stu-
died two specific brine problems and compared the
solutions for« . 0 with the corresponding Boussinesq
solutions for « → 0, wherej denotes the relative
density difference.

2. We found that high salt concentration gradients
induce a convective flux, which is perpendicular to
the main groundwater flow direction in the problems
studied in this paper. The magnitude of this flux
depends upon the relative density difference and the
effective diffusivity–dispersivity of salt.

3. Taking only molecular diffusion into account under-
estimates the convective brine transport perpendicular
to the main flow direction. For the problems studied
in this paper it is more realistic to replace the
molecular diffusivity by the transversal dispersivity
due to the (regional) background flow. This increases
the magnitude ofqz significantly andqz can no longer
be neglected as convective transport mechanism.

4. The similarity solutions presented are both of practi-
cal and theoretical use. First they provide us
with detailed qualitative and quantitative information

about the nature of compressibility effects. Secondly
the solutions can be used to verify the accuracy
of numerical codes designed to simulate brine
transport.

5. The similarity solutions have the following proper-
ties: (i) u9(h) , 0 for all ¹ ` , h , þ ` (Problem
I) and o# h , þ ` (Problem II); (ii) there exists a
number ofh0 such thatu0(h) , 0 for h , h0 andu0(h)
. 0 for h . 0, iii) v(h0) ¼ h0/2 and v9(h) , 0 for h .
h0. The numberh0 plays a prominent role in the
simultaneous transport of radionuclides.

6. The results of the asymptotic analysis can be used to
approximate the similarity solutions up to a given
accuracy.

7. When considering simultaneous transport of brine and
dissolved radionuclides we can construct an explicit
solution for the radionuclide mass fraction expressed
in terms of the solution of the underlying brine
problem.

8. In the limit of vanishing radionuclide diffusion–dis-
persion a radionuclide front emerges in Problem II
which travels with speedv(h0)=

��
t

p
. Hence, the move-

ment of the radionuclide is caused by the compressi-
bility effect only.
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APPENDIX A APPROXIMATE SELF SIMILAR
SOLUTIONS

In this Appendix we give some results of a formal asymp-
totic analysis which can be found in detail in van Duijn et
al.4. The asymptotic analysis yields series expansions in
terms of the relative density difference« for the similarity
solutions [u(h),v(h)] in both problems. When these expan-
sions are truncated we obtain approximation formulas
which can be of practical use to approximate [u(h),v(h)]
up to a certain, known accuracy. To emphasize the
dependence on«, we denote the solutions by [u«(h),v«(h)].
In the limit « → 0 the solutions (u«,v«) converge to the
corresponding Boussinesq limit (u0,v0) for both problems.
For Problem Iv0 ¼ 0, while the limit foru0 is the solution
of

BI
u0

0 þ
1
2
hu9

0 ¼ 0 for ¹ ` , h þ `

u0( ¹ `) ¼ 1 andu0( þ `) ¼ 0

8<: (A1)

and is given by

u0(h) ¼
1
2
erfc

h

2

� �
(A2)

If we integrate eqn (50) over (h, þ `) and apply the bound-
ary conditionv( þ `) ¼ 0 we obtain

v(h) ¼ ¹ «
u9(h)

(1þ «u(h))
þ «2

∫þ `

h

(u9(s))2

(1þ «u(s))2ds (A3)

By eqn (A3) we have

lim
«→0

v(h)
«

¼ ¹ u9
0(h) (A4)

The expression can be used as a first order approximation
of v«(h). We can improve the quality of the approximation
by adding more terms in the expansion

v«(h) ¼ ¹ u0(h)« þ { E1(h) þ o(1)} «2 (A5)

where

E1(h) ¼ 2u0(h)u9
0(h) ¹

1
2
u9

0(h) þ

∫`

h
{ u9

0(s)} 2ds (A6)

The symbol o(1)† denotes the order symbol. A similar
series expansion foru«(h) can be derived

u«(h) ¼ u0(h) þ
1
2
u0(h){1 ¹ u0(h)} « þ { E2(h) þ o(1)} «2

(A7)

whereE2(h) is given by

E2(h) ¼

∫`

h
e¹ t2=4

∫t

0
es2=4ƒ«(s)dsdt ¹ A«

∫`

h
e¹ t2=4dt (A8)

In the latter expressionsf«(h) andA« are

f«(h) ¼ (1¹ 3u0(h))(u9
0(h))2 ¹ u9

0(h)
∫`

h
{ u9

0(s)} 2ds (A9)

A« ¼
1

2
���
p

p ∫`

¹ `
e¹ t2=4

∫t

0
es2=4ƒ«(s)dsdt (A10)

Both series expansions are truncated after the«2 terms. A
nice property of the approximate solutionsu« andv« is that
they are expressed in terms of the solution of the Boussi-
nesq problemBI and the small parameter« only. Because
u0(h) is known explicitly,u« andv« can be evaluated with-
out great difficulty, for instance with the computer algebra
package Maple19.

In the Boussinesq limit for Problem II we have againv0 ¼

0 while nowu0 is the solution of

BII
u0

0 þ
1
2
hu9

0 ¼ 0 for h . 0

u(0) ¼ 1 andu( þ `) ¼ 0

8<: (A11)

hence

u0(h) ¼ erfc(
h

2
) (A12)

†The expressionƒ(x) ¼ 0(w(x)) for x → þ ` means thatƒ(x)/
w(x) tends to zero when x→ `. It can be read as: ’Something that
tends to zero, multiplied by’.
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The asymptotic expressions for Problem II are

v«(h) ¼
(1¹ g)���

p
p

g
¹ u9

0(h)

( )
« þ { E3(h) þ o(1)} «2 (A13)

and

u«(h) ¼ u0(h) ¹

(
2(1¹ g)

pg
{ u0(h) þ

���
p

p
u9

0(h)}

þ
1
2
u0(h){1 ¹ u0(h))}

)
« þ { E4(h) þ o(1)} «2

ðA14Þ

with

E3(h) ¼
g2 ¹ gþ 1���

p
p

g
þ u9

0(h) 2u0(h) ¹
g(p þ 4) ¹ 4

2gp

� �
¹

2(g¹ 1)
g
���
p

p u0
0(h) þ

∫þ `

h
{ u9

0(s)} 2ds ðA15Þ

and

E4(h) ¼ A«

∫h

0
e¹ t2=4dt ¹

∫h

0
e¹ t2=4

∫t

0
es2=4f«(s)dsdt (A16)

The functionƒ«(h) and the constantA« are defined as

ƒ«(h) ¼
1
2
u0(h)(1¹ u0(h)) þ

2(g¹ 1)
gp

(u0(h)
�

þ
���
p

p
u9

0(h))
�

u9
0(h) ¹

1¹ g

g
���
p

p !
¹ u9

0(h)E3(h)

ðA17Þ

and

A« ¼
1���
p

p ∫`

0
e¹ t2=4

∫t

0
es2=4f«(s)dsdt (A18)
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