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Abstract-Based on the analysis of a system of laminar boundary layer equations under the Boussinesq 
approximation, the results of a theoretical investigation of the buoyancy effects on flow and heat transfer 
in vertical iets and plumes are presented. Exact and approximate solutions are constructed analytically. 

The predictions are compared with numerical data reported by other authors. 

1. INTRODUCTION 

THE THEORY of viscous buoyant jets has claimed the 

close attention of scientists and practising engineers, 
as attested by a great number of original papers (see, 
for example, the bibliography in ref. [l] and also the 
review in ref. [2]) published during the past 10-15 
years. This is attributed to the abundance of buoyant 
jet flows in nature and technology. 

The most simple and traditional approach to the 
description of various jet flows has been based on the 
use of self-similar solutions. The interest in obtaining 
this kind of relation was primarily spurred by the 

possibility of overcoming mathematical difficulties 
posed by the non-linear character of basic equations 
and of gaining an insight into the nature of this 
phenomenon. Besides, with so many factors affecting 
momentum and heat transfer in viscous jets, a 
judicious planning of experimental investigations can 
hardly be possible without constructive employment 
of theoretical results. Therefore, the search for self- 
similar solutions is usually started as soon as the prob- 

lem has been mathematically formulated. 
For the most part, the efforts of researchers have 

been devoted to the development of theories of forced 
(momentum) jets and pure plumes, with almost no 
attempt at constructing analytical solutions for buoy- 
ant jets. On the whole, this is quite conceivable, at 
least for the reason that for a jet flow with initial non- 
zero momentum and buoyancy fluxes the dimensional 
analysis is unable to provide variables and establish 
the self-similarity from the problem formulation. 
There is even a general agreement in the literature that 
such problems do not have closed-form self-similar 
solutions. 

Taking into consideration the great interest in this 
problem, an attempt is made in the present study to 
set forth the results of a theoretical analysis of laminar 
buoyant jets on the basis of boundary-layer equations 
under the Boussinesq approximation. Great empha- 

sis is placed on the development of the method for 
studying these jet flows and on the possibility of its 
use for solving a wide range of problems. 

2. EXACT SOLUTIONS 

2.1. Basic equations 

For the boundary-layer theory approximation with 

regard to the quadratic dependence of density on tem- 

perature, Ap = - py(AT)‘, the basic equations of 
plane (j = 0) or axisymmetric 0’ = 1) vertical fluid 
motion in a gravitational field have the form 

(14 

Note that in the coordinate system adopted, the x- 
axis is running vertically upward (downward). Fur- 
thermore, the plus and minus signs on the right-hand 
side of the first equation of system (la) relate to the 
cases when the buoyancy force, and the flow induced 
by it, are either compounded with the initial momen- 
tum (a jet propagates vertically upward) or opposed 
to it (a jet propagates vertically downward). 

As already remarked, in studying jet flow math- 

ematically the flow parameters can be presented in the 
form of simple functional relations 

u - .x”f(y/x”), AT - x”h(y ix”). (lb) 

However, the application of expressions (1 b) in the 
analysis of system (la) (with regard to corresponding 
boundary and integral conditions) shows that the 
latter admits the solution of the form of expressions 
(lb) only in two limiting cases : forced jets and pure 
plumes. It is just here that the self-similarity indices 
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NOMENCLATURE 

a thermal diffusivity 

c, specific heat at constant pressure 

9 gravitational acceleration 
Gr, local Grashof number 
k thermal conductivity 
K momentum flux 
ti mass flow rate 
Nu, local Nusselt number 
Pr Prandtl number 
Q heat source strength 

4 heat flux 
Re, local Reynolds number 
T fluid temperature 
u, t’ vertical (axial) and radial (transverse) 

components of velocity vector, 
respectively 

x, y axial and transverse coordinates, 
respectively. 

Greek symbols 
/I, y density parameters 
[ parameter of mixed convection 
V kinematic viscosity of fluid 

P density. 

Subscripts 
m maximum 

parameters on the wall 
: initial value 
co parameters at infinity, in surrounding 

medium (specifically, in aiding flow). 

CI, E and CJ, which virtually prescribe the group of 
transformations, are defined by the problem for- 
mulation itself. In all intermediate cases the statement 
(lb) does not hold. This fact gave an impetus to the 
development of approximate analytical methods by 
many researchers. Some of the most frequently used 
of these are the integral, perturbation and several 
hybrid methods [3]. While these methods allow quali- 
tative and quantitative calculations of the devel- 
opment of viscous jets in the field of body forces, they 
are far from being adequate to describe the actual flow 
pattern comprehensively with desired reliability, and, 
therefore, do not always make it possible to predict 
quite satisfactorily the dynamics of the process of 
momentum and heat transfer. The latter is a conse- 
quence of the shift in research interests toward the 
use of numerical methods-the most traditional 
approach involving numerical solution for two sys- 
tems of differential equations. One of these describes 
the perturbation of the purely forced convection pat- 
tern (the case of a weakly buoyant plume), whereas 
the second describes that of a purely free convection 
pattern (the case of a strongly buoyant plume). The 
results of this kind of simulation are reflected in 
refs. [4,5]. 

However, this approach is not devoid of its own 
complications. Thus, in calculations of a jet with nega- 
tive buoyancy, the jet flow stagnation point is a singu- 
lar point responsible for a reduced convergence or 
even loss of stability of a numerical solution. Under 
these conditions, greater importance is attached to 
exact analytical solutions, an acute demand for which 
becomes increasingly evident. They are needed not 
only because of the attractiveness of a search for 
elegant analytical expressions in non-linear problems, 
but also for constructing effective numerical methods 
from preliminary information about the behaviour 
of solutions of the problem investigated in different 

regions of its determination. In this sense, numerical 
and analytical methods do not exclude but comp- 
lement each other. 

It should be noted that all the problems in the 
theory of buoyant jets are classified as second-kind 
problems-i.e. those the formulation of which does 
not specify the similarity group. Just this is the major 
problem encountered in analysing mathematically this 
type of problems. 

2.2. Plane buoyant jet 
The system of equations (la) should be integrated 

using the following boundary conditions 

y=o: u=v2Eo 
aY aY 

y-co: u-+O,AT+O (2) 

and integral conditions 

Iz Qo = PC, s uAT dy = const. (3) 
- % 

An attempt will be made to construct a direct self- 
similar solution of the problem. It will be sought in 
the class of solutions of the form 

tit% ?) = @(rlh’(x), AT&r/) = cash (n)&(x) 

9 = &(X)Y (4) 

where 

Substituting expressions (4) into (1 a) will yield 
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tk’q’ +f&,PxPq2 -.L,%Gqh tmh2s2 = 0 

j$,,&q2 +.fkw-f&w, = 0 

Qo 2 
w=gy c,K, * ( > (5) 

Assume that 

pq’ = 41 +n41, pxpq2 = b(l +d) 

PdP9)x = 41 +wJ~~ b, = *m&2. (6) 

Then, instead of the first equation of system (S), we 
have 

a&,?+ &IX,, -cf: = 0 
mf*,,, + bnff~ - ckf,” + h 2 = 0. (7) 

Upon compliance with boundaq conditions (2) the 
first equation (7) is easily integrated and gives a closed- 
form solution 

f=2~trtanh~~=6atanhn~. (8) 

Without limiting the generality it is impossible to 
assume that a/b = 3, since equation (8) involves 
another free constant a. Noting further that integral 
relation (3) yields PE = 1, consider the second equa- 
tion of system (5) which, after elimination of Eq2, goes 
over into the equation for seeking h(q) 

~h,,,+;(j@,=O. (9) 

The solution of this equation is 

h=c,(l-tanh2c#” 

c, = [6oI;, (1-t’)P.drl’. (10) 

Now, the form of the function k(x) in equations (6) 
will be found. For this purpose, substitute equation 
(10) into equations (7) at Pr = 1 and integrate it from 
--ootocO 

bk-bn+ & 
)S 

m h2dq=O+k=n--&, 
-cc 

As a result, equations (6) transform into equations 
for finding the unknown functions p and q 

P4(P9)x+PxP92 = lk -0J’ 
d 

36a4 p2 

9 = 3Pr 

It can be easily verified that the relations 

(11) 

p(x) = [(I +2Qx)3/2- i]“3 

(3R) “’ 
, n=*&‘p 

provide the necessary coupling in system (11). The 
solution of the problem can be completed if it is poss- 
ible to determine the constant c1 in terms of the given 
jet flow characteristic. The latter is taken to be the 
momentum in the initial cross-section of the jet 

&=iIi pu= dy. (13) 

According to equation (13), CL = (l/48)“‘. Thus, the 
velocity and temperature fields in a plane buoyant jet 
are defined by the set of equations 

This set of equations shows that, the directions of 
free and forced convection being opposite, the jet 
terminates at a finite distance from the heat source 
(u = 0) owing to the jet retardation in the cross- 
section 

and its complete mixing with the surroundings. It is 
not difficult to observe that the jet temperature has a 
finite magnitude. Furthermore, the momentum flux 
per second through the plane perpendicular to the jet 
axis 

commonly prescribed in the theory of jets, does not 
remain unchanged but increases (or decreases in the 
conditions of opposing thermogravitation) from sec- 
tion to section on moving away from the jet source. 
At Gr,/ Rej = 0 this relation transforms into the con- 
dition of the constancy of axial momentum [6] and 
relations (14) go over into the well-known solutions 
[;1. The case GrJRex + cc, corresponds to the prob- 
lem of natural convection. Relations (14) yield 
formulae for u and AT(Pr = 1) 
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2.3. Axisymmetric buoyant jet 
We analyse the system of equations (la) with 

boundary condition (2) and integral conditions 

-u Q0 =2rcpC, uATy dy = const. (15) 

For functions JI and AT there are equations (4), where 

Gr, 
Re2 = 0.5 

is equal to zero, i.e. the flow in the jet ceases 
completely. It is interesting to note that the tempera- 
ture, determined by equations (17) does not depend 
on Gr,. This indicates that the temperature dis- 
tribution in an axisymmetric vertical buoyant jet is a 
weak function of Gr,. 

Furthermore, the series expansion of equations (17) 
in the parameter 4 = Gr,/ Re’ (the parameter of mixed 
convection) may give expressions of the form 

A=v, B=K, QO 
npd ’ 

CC-- 
2n/lC,~ ? = ;Y’Y(x). 

I 
Then, instead of equations (la) it is possible to obtain 

(tiJ~~z+ ;ffnnP.m2- ;f;mhLf~h2~2 = 0 

~(rlh,),q&+~~~~~qE--~h~qs, = 0 

(16) 

The system of equations (16) is integrated conse- 
quently, and under boundary conditions (2) and inte- 
gral conditions (15) it admits the solution of the form 

K,3 1 
~&4r0X)‘/? 

u = & 8 (1 +cV#x 

2 
~=K,-Y(lf4wx)“2 

apv2 4x2 

u = 3116. (17) 

The constant c( has been found on the basis of argu- 
ments that with x + 0 the expression 

u2y dy = Ko/2ap (18) 

should transforminto the familiar hydrodynamic con- 
dition of axial momentum conservation [6]. 

Now, the changes in some integral characteristics of 
the axisymmetric vertical buoyant jet will be written : 

masspow rate 

k(x) = 87cpx ; 

axial momentum flux 

I,? 

, Gr, = 
srQ& 
rc2p2c;v4 

Re = 5 
71pv2 

which, at Gr,/ Re2 = 0, is equal to K. (momentum of 
a forced jet) and at 

where the functions fi and ho conform to the problem 
of submerged axisymmetric jet development without 
account for buoyancy forces [ 121. These formulae can 
be obtained (see, for example, ref. [8]) by applying a 
radically different approach, namely the method of 
small perturbations. The significance of the latter fact 
is twofold. First, it testifies that the perturbation 
method is applicable to the analysis of jet flows with 
allowance for buoyancy forces, i.e. those problems for 
which it is very difficult to obtain exact solutions. 
Second, the use of the method has always involved 
the assumption that the basic process is heat transfer 
by forced ‘convection, with free convection being 
regarded as a perturbation. However, asymptotic 
expansions (provided all terms of the series are 
retained) also describe the behaviour of a jet flow in 
the region where these two types of convection are 
comparable in magnitude. 

2.4. Plane wall buoyant jet 
Equations (la) can also be used for considering 

the problem of a viscous liquid plane jet propagating 
along a solid vertical impenetrable surface of tem- 
perature T, = T, . In this case, boundary conditions 
have the form 

Y=O: u=o=AT=O 

Y’--,co: u-+O,AT+O. (19) 

The solution of this problem is sought in the form of 
equation (4) 

A = (E,v)“~, +r4, +J2 

where the prescribed characteristic constant Q. is 
equal to 

Qo=~~uAT([udy)dy=const.(Pr=l). (20) 

Omitting computational details, which repeat those 
just presented in Section 2.2, the following system of 
equations can be obtained : 



fmPq3 +.&,pxm2 --.&%&8x fah2s2 = 0 

j$,q~2 +fh,pxEq-f,hpqE, = 0 
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of the boundary layer thickness and a decrease of 
friction on the wall 

‘5, (40P4 Re;5,4 (3iY’“(1+20 
pvz= 12 [(1+2~)3’2-1]5’4 

(2’) 
rZ& I&$. 

X 

Moreover, when Gr,/Re: = 0.5, t, = 0. The other 
flow characteristics which can be found are : 

Qo ’ 
o=gy - 0 J% 

the solutions of which are 

p(x) = 1('+:w3'2-'l"4, * = +108c:w 
(cl) “4 - 

cc4 

(Cl)““(l +$-Lx)“* 20 
dx)=[(~+~~x)3,2_~]3,4~ ‘1 =g’ (22) : = (4,)‘/4,e;/4’(1 +Tc;;,; ‘I 

‘/4 

; 

It remains to determine the still unknown quantity a. 
For this purpose, consider the integral relation 

E,=;zru’([udy)dy=const. (23) 

(40)3’4 (3[)““(1+2<)“* 
Nu, Re,:14 = ~ 

72 [(1+2~)3’2-1]5’4’ 

Substituting equations (22) into equation (23) we 
obtain ct = (40) ‘14. This results in 

AT+ ~ ( > : ‘I2 J(1o) (+3o)“* 
3 ‘(l -z3)](l +20x)3/2-l]‘/2 

12 dz 
q=; 1-z) s 

2.5. Validity of the results obtained 
In order to ascertain the range of validity of the 

analytical solutions obtained in the present paper, a 

3 (f3w)“2(l*2wx)“2 
comparison with the results of the numerical solution 

z(l-z ) [(1+2wx)3’2-111’2 
in ref. [ 1 l] was carried out. A buoyant jet is considered 
which rises near a wall from a line momentum and 
heat source at the front edge of a vertical plate with 
the surface temperature of the fluid away from it, i.e. 
T, = T, . This comparison is shown in Fig. 1, where 
dimensionless velocities and temperatures are plotted 
against a dimensionless coordinate for a jet with posi- 
tive buoyancy. In this case, the change in the basic 
parameters constitutes a smooth transition from one 
law u, N x- ‘I*, AT,,, w x- “’ typical of a purely forced 
convection flow to another power law u, N x-‘j4, 
AT,,,mx - 3/4 corresponding to free-convective heat 
transfer. As is seen, the theoretical curves from the 
equations 

(1 +2xl)“2 

Gr, Gr =gyQb3 
ax=@’ x v6 > Rex=%. (24) 

If GrJRe: = O-that is, only forced convection is 
considered-solutions (24) become expressions for 
velocity and temperature fields in a wall jet without 
accounting for buoyancy forces [9, lo]. The case 
GrJRe.: + co (or x + co) corresponds to the prob- 
lem of natural convection. Relations (24) give the 
formulae 

” = o’863[(l +2xl)3/z _ l]‘/2 

AT, = 0.863[(l+2x,)3’2-l]-“2 

2 

;z(l-z3)x-“‘, 

J2 +z(l -z3)x-3’4 

rt’ 

which describe this process. Under the conditions of 
opposing thermogravitation in the section 

Gr 01 I I I I 

s = 0.5 
0.5 2 4 6 e 

II x 

FIG. 1. Variation of maximum velocity and temperature 
1 along the near-wall buoyant jet (Pr = 1). there occur the seoaration of flow. an infinite growth 

flow rate 

heat transfer rate 

, AT, = AT, 
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agree satisfactorily with the data of the numerical 
simulation of ref. [l l] in the entire flow region from 
the purely forced (u, = 0.498x; I’*, AT, = 0.498x; I”) 
to purely free convection regime (u, = 0.725~; ‘j4, 
AT, = 0.513~; “3 for the fluid with a Prandtl number 
equal to 1. As for the jet with adverse buoyancy, the 
numerical simulation gives a somewhat more rapid 
decrease in velocity temperature, etc. with approach 
to the stagnation point than predicted theoretically. 
Thus, for example, the theory predicts the flow sep- 
aration to occur at x, = 0.5, whereas the numerical 
solution gives x, = 0.45517 (the difference is about 
9%). 

2.6. Results and discussion 
Thus, a method has been suggested above on the 

basis of which the construction of exact self-similar 
solutions is possible for laminar boundary layer equa- 
tions in the class of type (4) solutions, with the latter 
having been found only at constant Prandtl number 
equal to 1. The validity of the results obtained for 
other Prandtl numbers will now be considered. An 
attempt will be made to construct the solution of the 
problem from Section 2.3 by analysing integral 
expressions of the form 

u*YdY = fsr (AT)2Y dY 

2nPCp uATy dy = Q. (25) 

derived conventionally from the motion and con- 
tinuity equations and boundary conditions (1) and 
(2). In the framework of the approach suggested, it is 
necessary, before integrating the system of equations 
(25), to prescribe the form of the vertical velocity and 
temperature profiles. However, since in any case the 
shape of the profiles is not essential for the physics of 
the model, the discussion will be restricted only to the 
finding of the laws of change in the velocity, tem- 
perature and transverse dimension of a jet as a func- 
tion of the longitudinal coordinate. It can easily be 
verified that 

.(x,O)=const.e)x-‘(lfCfl(&Jxr* 

(26) 

ensures the necessary relation (25). Moreover, the 
analysis of the system of equations (1 a) indicates that 
the general solution should be determined in the form 

ti = N-(x,Y)P(x) 

AT = cash (x, y)&(x). (27) 

Here too, however, the previously derived laws of 
change in the velocity and temperature along the sym- 
metry axis, i.e. the functions p(x), q(x), E(X) are valid. 
The only difference is in the numerical coefficients 
(the constant c2 is concerned) which vary with Pr. 
When Pr = 1, relations (27) and (4) yield coinciding 
formulae. 

The analysis conducted being of a general charac- 
ter, it can be stated that the results obtained above 
represent, on the one hand, exact self-similar solutions 
at Pr = 1 and, on the other hand, the asymptotics of 
the behaviour ofthe problem solution at other Prandtl 
numbers. 

Another important remark should be made. It was 
found earlier [8] (see Section 2.3) that the solution of 
the problem obtained as a result of a radically different 
approach (series expansion in small parameter 
powers) coincides with the expansion of an exact sol- 
ution in an asymptotic series in powers of the same 
parameter. Consequently, this makes it quite clear 
that power expansions (i.e. expansions of the con- 
ventional perturbation theory) in jet problems involv- 
ing buoyancy forces have the character of asymptotic 
series. This allows the properties of an exact solution 
to be found from several first terms of the expansions 
of sought-after functions in powers of the small par- 
ameter [ and also from their asymptotic behaviour 
when c-, co. 

3. APPROXIMATE SOLUTIONS 

3.1. Basic equations 
The laminar boundary layer equations will now be 

analysed, with the linear temperature dependence of 
density being taken into account 

au au va 
“z+“ay=jT& 

(28) 

This system forms a basis for mathematical simu- 
lation. It is used (with corresponding boundary and 
integral conditions) to describe the development of 
various jet flows in the field of body forces. Moreover, 
the limiting flow regimes (purely forced and purely 
free convection) have been covered most com- 
prehensively : investigations comprise vast theoretical, 
numerical and experimental data concerning the 
hydrodynamics and heat transfer characteristics 
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[3,12]. As a rule, these relations give a satisfactorily 
quantitative and qualitative description of the ~~OCCSS 

of jet development only at small or only at large values 
of the mixed convection parameter. In the region of 
mixed conv~tion the data [3,12] can hardly aid the 
prediction of the basic characteristics. For this reason, 
it is highly desirable to work out the method for con- 
structing analytical solutions which would be valid 
for the entire flow region and appropriate for direct 
practical application. 

3.2. A planefree buoyant jet 
In order to investigate the action of body forces on 

forced flow in a jet, the system of basic equations (28) 
with boundary condition (2) and integral condition 
(3) is transformed into a new form by passing over 
from the coordinates (.x,Y) to the coordinates (x, n) 
which have the form 

x-2i3 Y 

X413 =Gr, 

Re:j3 . (29) 

Moreover, the stream function and dimensionless 
temperature are introduced 

The resulting system of transformed equations is 
written as 

i--l 1 

A, = 1 
j-1 1 

5 [4(i-j)- l]&K’-- f (4i+ l)&&_j 

&;‘+ ;&hi- f(4i-l)&h, = Bi 

Bi = i ;[4(i-j)- I].&%,- f(4j+ l)f,!~_~ (31) 
j=S > 

with the boundary conditions 

f;(O) = 0, f;“(O) = 0, hi(O) = 0 

f;‘-+O. h,-,O, at ~-+co. (32) 

Besides, the energy conservation law (3) requires that 
at any c the following integral relations be fulfilled : 

Thus, equations (31)-(33) allow the problem solution 
to be constructed in any approximation, i.e. make 
it possible to determine the functions f; and hi. For 
example, when Pr = 2 

f; = 6a2(1 - tanh2 tnl) 

ho = c,(l -tanh’aq)* 

a = (l/48)‘“‘, 
5(6) i’3 

c, = - 
16 (34) 

where f; and ho are the familiar solutions for a forced 
jet. Consequently, the present approach makes use of 
the theory of forced jet flows as a zero approximation 
and this, naturally, simplifies the investigation. How- 
ever, since in practical calculations the finite, though 
in some cases a large enough, number of series terms 
of equations (30) is usually known, the perturbation 
method is not effective in the region of strong 
coupling, because, apart from technical difficulties, its 
realization also encounters such major problems that 
the exactness of any solution deteriorates with an 
increase in the parameter I. Although the method is 
accurate enough in principle and in some cases ensures 
the appropriate accuracy of computation [12], the 
question of when and in which area the relations 
obtained provide reliable quantitative data has 
become a serious barrier to its use as a practical 
computational method. Naturally, this entailed a 
decrease of interest in this method, and even led to its 
underestimation. 

We now turn our attention again to the analysis of 
equations (34). Since these expressions represent the 
asymptotic series expansion of an exact solution (at 
Pr = 2), it is possible to reconstruct the form of the 
latter 

6a2(1 -tanh’u& 
P 

fLhi+ji,J’hi-j dq = 0. (33) li3c,(l - tanh’ ccq)2i 
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(35) 

These formulae will give the corresponding relations 
depicting the change of the maximum characteristics 

AT, = AT,,, 

Re, = * pv* . (36) 

These relations yield 

when [ + 0 : 

u, = 0.454[- “4, AT, = 0.568[- “4 

when<--+co: 

u, = 0.837[“*‘, AT, = 0.561<-9’20 

in accordance with exact analytical solutions for 
forced and natural convective jets [7,13]. Further- 
more, compare equations (36) with the results of the 
numerical simulation of a plane vertical jet develop- 
ing in the field of body forces. Investigations of this 
kind are described in ref. [5]. According to this 
study, in the case of opposing thermogravitation 
CT = 0.3576886, conditions (36) give 

1 5 “4 
r,=5 6 

0 
= 0.357685 

the quantity ATI being equal to 0.89573 and 

AT,(L) = ; ; 0 
114 

= 0.895727 

respectively. 

3.3. Axisymmetric buoyant jet 
The present problem is still the only one in the class 

of equations (28) for which an exact solution can be 
constructed at Pr = 2 [15] 

AT=QO~ ' ' ___ 
n&8(1+ 

,=$$J(li4gUx*), &* 

2 Gr, ox =Re2, Cr.<==, Re=$. (37) 
P 

It would be highly important to find a closed solution 
at arbitrary Prandtl numbers, but this involves great 
mathematical difficulties posed by the non-linear 
character of the equations, with the main difficulty 
presented by the finding of the function h(x, y) (equa- 
tions (27)). Naturally, a rigorous calculation of this 
temperature field characteristic is fraught with the 
same difficulties as the solution of the initial problem. 
However, for the latter an approximate solution can 
be constructed. In fact, taking as a basis the results of 
the investigation of equations (28), (2) and (15) by the 
method of small perturbations at different Prandtl 
numbers (Pr = 2 [15], 6.7, 10.0,20.0 [16]), it is possible 
to obtain 

& 3 u,=--x 
v 8 

-‘(1+c*wx*)“* 

3Pr+4 wx2 

AT = Q, 2Pr+l ‘+2Pr+l _, 
“-4 (38) 

1+ 
llPr+lO 

8Pr Ox 

1x 

The first noteworthy fact here is that equations (38) 
describe a continuous change of the jet maximum 
parameters over the entire flow range from the regime 
of purely forced convection to free-convective heat 
transfer. When x -+ co, equations (38) simplify and 
take the form 

“y;(O), AT, = &h,(O)x- I 
P 

9(2OPr* + 167Pr+ 18) 

h,(O) = 
2Pr(3Pr + 4) 

llPr+lO . (39) 

Since equations (39) comply with the solution of the 
problem of free convective flow above a point heat 
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source, the range of possible Prandtl numbers can be 
determined. For example, when Pr = 0.01 and 10.0 

h,(O) = 0.00797, h,(O) = 5.667 

whereas exact numerical calculations [ 131 yield 

h,(O) = 0.00795, h,(O) = 5.61. 

Asymptotic evaluation of equations (39) for 
Pr -) a, gives h,(O)/Pr = 0.545 and the familiar 
numerical calculation [17] in this case gives h,(O)/ 
Pr = 0.522. 

Finally, at Pr = 1 and 2, equations (39) transform 
into the analytical correlations [18] obtained pre- 
viously. 

3.4. Axisymmetric buoyant plume 
In Section 3 the problem of the development of a 

vertical submerged jet was considered and solved. 
Since the method used to investigate the system of 
equations (28) with the boundary conditions 

y+co: u+%o, AT-0 (40) 

and integral conditions 

I 
m Q0 = 2xpC, uATy dy = const. (41) 

0 

is close in structure to the corresponding method 
described above. the final formulae will be given 
directly as 

AT = QO Pr lfw _, 
---x 

m 2x/K, 2 1 fc,w 

urn = u,(l +c*w)“2 

sPQo Gr, 
W=s@qg-=2Re,2 

or, in dimensionless form 

u, = (l+~,[)“~, 
Pr l+c,[ 

AT, = - ~ 
2 1+c,r 

,,, = 2, AT, = 2=Pc;xATm, 
0 

(42) 

Figures 2-4 display the results of the comparison 
of the analytical and numerical solutions to the prob- 
lem of propagation of a laminar jet originating from 
a point heat source moving vertically (falling) in a 
viscous fluid. It is seen that the data from numerical 
simulation [ 19,201 and from theoretical curves (equa- 
tions (43)) agree satisfactorily in the entire flow region 
in the regime of assisting and opposing thermal gravi- 
tation. 

3.5. Plane wall buoyant jet 
In conclusion, a summary of the main results will 

be given for the near-wall jet propagating upward 
from a line heat source and for momentum on the 
frontal edge of a vertical impenetrable surface under 
different boundary conditions. 

2.5 - 

s 2.0 - 

. -rrt.Dsl 

0 2 4 6 

5 
FIG. 2. Dependence of U, on [. Comparison between the 
predicted and numerical data [19] for the case of assisting 

thermal gravitation (Pr = 0.72). 

1 

where the values of the constants c2, c) and cq at 
different Prandtl numbers are given in Table 1. 

FIG. 3. Dependence of u, and AT, on [. Comparison between 
the predicted and numerical data [19] for the case of opposing 

thermal gravitation (Pr = 0.72). 

(43) 

Pr 

0.7 
7.0 

50.0 
100.0 

Table 1 

c2 C3 c4 

0.868 0.274 0.200 
1.817 0.665 0.585 
2.847 1.825 1.705 
3.266 1.985 1.865 

0.201 . 
I I 

0 0.2 0.4 0.6 0.6 1.0 

c 

FIG. 4. Dependence of AT, on c. Comparison between the 
predicted and numerical data [20] for the case of assisting 

thermal gravitation (Pr = 7.0). 
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3.5. I. Isothermal surface. The final formulae are 

gBAT,v 

W=Eo) 
ax2 = $, sM’wx3 

x 
Gr, = yz 

In this problem, of paramount importance, together 
with the velocity and temperature distribution, is the 
local Nusselt number, which can be written as 

(45) 

Assuming in equations (44) and (45) that c = 
Grx/ Re, = 0 and co, we obtain the data for the purely 
forced and purely free convection regimes, which are 
two limiting cases of the mixed convection regime. 

3.52. Adiabatic surface. In the case of a laminar 
buoyant jet developing along an adiabatic vertical 
surface, the analytical dependence of u,, AT, on the 
free convection parameter c = Grx/ Re:14 = WX”~ can 
be represented by an approximate formula 

EO 
u, = 

“2 (10)“’ C-J 3,4 

V 
-ypie 

( > * ‘s’ c2w 5/7 (1 + c2wx7/4)7/5 

x [(l +czox7’4)‘2’~-1]5’7 

‘I7 

AT,,, = 
hO(0)[(l f c20x714) 12i5 _ 11 l/7 

mov2 
w = pCp(EO~)5’4 

1 

[S 

I 
h,(O) = (40),,4 o (I- t3’2)p’ dt 1 

--I 
. (46) 

3.53. A constant heat flux is set on the wall for the 
boundary conditions of the form 

yzo: u=v=o, q,=_k= 
aY 

y-tco: u-0, AT+O. (47) 

Analysis of the system of equations (28) yields 

“2 (1o)“2 
u, = 

7” 

7,4 

’ [(1 +c2wx”/4)‘6’5_ 1]9/” 

X 

[(I +c20x”/4)‘6/5_ l]‘O/” 

lo,” 

(lfC2WX”‘4)“‘5 

4 T(Pr+a)r(Pr+b)r(l/3) 
ho(O) - (40) 

- 1/4 r(2/3)r(l - a)T( 1 -b) 

Gr: 
mx’ ‘/4 -_ _ - 

Re5/4 - r 
x 

where it is assumed that 

sBv3c7w 2 
W=k(EoY)5/i’ a+b = J - Pr, ab = 2Pr 

Gr * _ 984wx4 
x--p-. 

On the basis of the results of equations (48) and con- 
version to the local Nusselt number Nu, it is possible 
to obtain 

IO/II 

Nux 

(1 +c*i)“‘5 

v= [h’J(o)]-’ [(l+e ~)16/5_1]‘0/11 ’ (49) 
2 

It should be noted that the solution of the problem 
of plane buoyant jet propagation along a vertical 
surface, i.e. equations (44)-(49), determines the self- 
similar asymptotics only accurate to the constant c2, 
which, generally speaking, is a function of Pr 
(c2 =f(Pr)). For this quantity to be actually found, it 
is necessary to solve the problem by the method of 
small perturbations within a wide range of Prandtl 
numbers. 

4. CONCLUSIONS 

Based on laminar boundary layer equations under 
the Boussinesq approximation, theoretical results are 
presented for the effect of buoyancy forces on hydro- 
dynamics and heat transfer in vertical buoyant jets 
and plumes. The method for analysing the interrelated 
system of equations is developed and used as a basis 
to show the possibility of the existence of exact self- 
similar solutions for some jet problems. The solutions 
obtained allowed insight to be gained into the prob- 
lems of calculation for viscous buoyant jets, and, 
moreover, turned out to be a link between the data 
obtained previously. It appeared that the power 
expansions (the ordinary expansions of the per- 
turbation theory) have the nature of asymptotic series. 
The latter enables the reconstruction of the main 
properties of exact solutions on the basis of several 
first terms of the sought-after functions expanded in 
small parameter powers. 

This procedure corresponds to the summation of a 
certain infinite succession entering into the main 
series. The integration of the chain of equations 
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obtained is not the result, but rather the starting point 
of solution. The emphasis is shifted to the second 
stage, i.e. to the study of the expansions constructed. 

The analysis of various jet problems from the above 
viewpoint has made it possible to obtain a number of 
new results and also to extend substantially the class of 
problems susceptible to analytical examination. The 
authors hope that the suggested theory of the con- 
struction of exact and approximate self-similar sol- 
utions is also of practical significance. 
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LA CLASSE DES SOLUTIONS AFFINES POUR LES JETS LAMINAIRES FLOTTANTS 

R&m&On presente les resultats dune etude theorique, bask sur l’analyse d’un systeme d’bquations de 
couche limite laminaire dans l’approximation de Boussinesq, pour les effets de flottement sur l’tcoulement 
et le transfert de chaleur dans des jets et des panaches verticaux. On construit analytiquement des solutions 
exactes et approchtes. Les calculs sont compares avec des don&es numdriques foumies par d’autres 

auteurs. 

EINE KLASSE VON LdSUNGEN FUR LAMINARE AUFTRIEBSSTROMUNGEN 

Znsammenfassmrg-Das System der laminaren Grenzschichtgleichungen wird nach Boussinesq vereinfacht 
und analytisch gel&t. Auf dieser Grundlage wird der EinfluB des Auftriebs auf Strijmung und Wlrme- 
iibergang in senkrechten Strahl- und Konvektionsstr6mungen untersucht und dargestellt. Exakte und 
Naherungsliisungen werden analytisch bestimmt. Die Ergebnisse werden mit numerisch berechneten Daten 

anderer Autoren verglichen. 

KJIACC ABTOMOj@JIbHbIX PEIIIEHHft &lDI JIAMMHAPHbIX HJIABYgHX CTPYR 

AltlloTaIrm+HpencTaimeHar pe3yJ&TaTbl TeopeTH¶ecKOrO HcCneLlOBaHHH BnaRHHH 3@f&KTOB nHaBy- 
%zcr’H Ha re-remre E remroo6Men B nep’r~~a.ab~brx crpyHx H cne&u Ha ocnone ariansisa CncreMbr ypanne- 
HHg HahlHHapHOrO nOl-paAH¶HOrO CnOH B rrpn6nareHaa ByccHHecXi. I&XTpOeHbr TOPHble H 
npn6memmre amumrn~ecnne pemeana. Pesynara~r,r pacneroe corrocrannenbI c ~IHcnemrbmm 

7 npyraX aBTOpOB. 


