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ABSTRACT 
The importance of thermal dispersion on non-Darcian convective flow 
in a saturated porous medium is discussed in this paper. A new 
theoretical model taking into consideration thermal dispersion effects 
in non-Darcian convective flows is proposed. A method for the deter- 
mination of the longitudinal and transverse dispersion coefficients 
from experimental data is discussed. 

Introduction 

The problem of non-Darcian convective flow about a heated vertical surface 

in a porous medium has been studied theoretically by Plu~ and Huenefeld [ l ]  

and experimentally by Cheng et al. [2]. A comparison of experimental data with 

Plumb and Huenefeld's theory shows that the theoretical model over-estimates 

the heat transfer rate while underestimates the temperature distribution in 

non-Darcian flows [2]. This discrepancy is probably due to the fact that the 

Plun/o-Huenefeld theory does not take into account of the thermal dispersion 

effect which is important in non-Darcian flows. In the following a new model 

taking into consideration this effect is proposed. The values of the longi- 

tudinal and transverse thermal dispersion coefficients are obtained by 

matching the theory with experimental data. 

The New Model 

I t  is known that the effective thermal conductivity of a saturated porous 

medium can be considered as the sum of the stagnant thermal conductivity (due 

to molecular diffusion) and the thermal dispersion coefficient (due to mechanical 
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dissipation) [3]. Thus, for a two-dimensional flow with x denoting the longi- 

tudinal direction and y the transverse direction, the effective thermal 

conductivities are 

kxx = k d + kpx x ,  and kyy = k d + kpyy (1) 

where k d is the stagnant thermal conductivity which is isotropic for a 

homogenous porous medium, and kpx x and kpyy are the longitudinal and trans- 

verse dispersion coefficients which are unknown functions of velocit ies. As 

a f i r s t  approximation, we shall assume that the dispersion coefficients take 

on the following simple form 

kpxx/k d = ALIU 1 , and kpyy/k d = ATIV ] (2) 

where u and v are the Darcian velocit ies in the x- and y-directions. Experi- 

mental results by Cheng et al. [2] suggest that the thermal dispersion effect 

becomes important only in non-Darcian flows. For this reason, we may assume 

that 

A L = aL~/U , and A T = aTXI~ (3) 

where X is the Forchheimer's non-Darcy coeff icient, ~ is the kinematic vis- 

cosity, and a L and a T are dimensionless constants to be determined by matching 

with experimental data. Substituting Eq. (3) into Eq. (2) leads to 

kpxxlk d = aLXlUIIv , and kpyylk d = aTIVIlv (4) 

We now consider the problem of non-Darcian steady two-dimensional con- 

vective flow about a heated isothermal vertical plate with x and y being the 

coordinates along and perpendicular to the plate. The governing equations 

with the Boussinesq approximation are 

Bu + Bv (5) ~-~ ~--0 

u+ 'Tpu2 = K [~_p_~_~ _ pgS(T_T~)] (6) 
p l-[ 
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v + xpv2 - K @p' (7) 
u ~ @Y 

( @T. w@T, @T (pc)f o pxx [(kd+kpyy) ] (8) 

where p, ~, 8, (pc)f and T are the density, viscosity, thermal expansion 

coefficient, the heat capacity, and temperature of the fluid; p' the pressure 

difference between the actual static pressure and the local hydrostatic 

pressure; g the gravitational acceleration and K the intrinsic permeability 

of the porous medium. The boundary conditions for this problem are 

y = O: v = O, T = T w = T + A (9a) 

y ÷~: u = O, T = T (gb) 

where A is a positive constant; T w and T are the temperatures of the wall 

and at infinity. I t  is convenient to introduce a stream function such that 

U=~y and v=-@@-~x (lO) 

Substituting Eq. (I0) into Eqs. (6-8) and Eq. (4) into Eq. (8) and invoking 

B 2 T ~ 2 T B _ ~ _ B _ ~  
the bounda~ layer approxi~tions such that @x--~-<< ~y--~-and @x2 << @Y , 

i t  can be shown that the resulting equations admit a local similari~ solution 
^ 

with aL, a T , Gr and C x as dimensionless parameters of the problem, where 

Gr = XKBg(Tw-~)/~2 and C x = (~/x)(~/~) with ~ =̂  kd/(PC)f. For the experi- 

mental data presented in Ref. 2, the values of Gr and C x can be evaluated. 

The values of a L and a T can then be obtained by matching experimental data 

for 8 versus n [where 0 = (T-TJ/(Tw-T) and n = ~ / x  with Ra x denoting 

the local Rayleigh nu~er defined as Rax= pBgxK(~-TJ/~] as well as for 
(Rax)I/2 ^ NUx/ versus Gr at constant Cxwhere NuxiS the local Nusselt nu~er 

defined as Nu x = x @~vT x,O)/(Tw-T ). Computations were carried out for dif- 
J 

ferent assumed values of a L and a T . I t  is found that the values of a L = 3000 



270 P. Cheng Vol. 8, No. 4 

and a T = 700 match with experimental data well ,  as is shown in Figs. 1 & 2. 

The extension of the analysis for non-Darcian mixed convection about a f l a t  

plate is currently under investigation. 
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Fig. I 
Dimensionless Temperature Profiles 

07 

O6 

O5 

c~a" 0.4 

~0 .3  

0.2 

0.1 

% ' 

, i , I 

a x: 0.270 m 

-- [] N u ~ / ( R a x )  : 0 . 4 4 4  

' ~ , ~ _ _ ~ m t  Theory ( A  L = 3000 and A T : 700 ) 
a a [] 

a 

, , , , , 

0.04 0,0 8 012 0.16 

Fig. 2 
Heat Transfer Results 
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