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Abstract

A stochastic process that allows sequential parametric estimation of the hazard function is
presented. The analysis of censored survival data is based on a discrete time de�nition of the
hazard which is expressed as a logistic function of a number of time-dependent covariates. The
method adequately handles large sets of data with many tied failure times and high rates of type I
censored values. A procedure available to estimate the relative risk parameter characterizing two
groups of individuals over a speci�c period of time is also given. Likelihood methods are used
in estimating the parameters of the model and making inference about the survivor function,
especially beyond the value of censoring. The method is illustrated by an example concerning
the induction period between infection with the AIDS virus and the onset of clinical AIDS. The
e�ects of censoring on the inference analysis of the survivor function corresponding to several
groups of individuals are examined and discussed. c© 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

A major objective of biomedical investigations is to assess the e�ects of a number
of covariates on a time-related response variable such as an incubation period or a
survival time. This can be done by expressing the hazard as a function of a num-
ber of explanatory variables that may depend on time. These covariates are used for
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characterizing the individuals or the di�erent groups to which they belong. Such situ-
ations are encountered, namely when
(i) Studying the induction period of a new unknown spreading disease or similarly

the latency period between documented exposure to an environmental agent and sub-
sequent disease diagnosis.
(ii) Performing clinical trials. Considering the possible implications for public health

intervention and prevention policy in both of the previous medical problems it is de-
sirable that the outcome of the study be stated within the shortest possible period of
time. To maintain the duration of such a follow-up study within an acceptable time
limit it is often necessary to take stock of the situation at a given prespeci�ed date by
noting the state of each individual whether he=she has failed. More generally, review-
ing the situation at successive chronological terms may generate data sets containing
a high number of censored values or tied failure times. On the other hand, inferences
about the parameters of interest obviously improve as the available information which
is accumulated over time increases. Thus, the statistical problem consists in making
inferences about a stochastic process of exposure and subsequent failure for which
realizations are subject to right censoring in chronologic time.
The purpose of the present paper is to present a parametric approach that is adapted

for estimating and comparing the induction distributions of several groups of individuals
by taking into account all the information available at successive expiration dates. The
method presented here is much more e�cient in reaching a compromise between the
previous antagonistic time constraints than the current parametric or nonparametric
statistical procedures in the sense that
(i) Usual parametric methods (Kalbeisch and Prentice, 1980) may not be satisfac-

tory due to a lack of generality since most of the existing methods are characterized
by the stringency of the underlying hypotheses and=or the subsequent narrowness of
the areas in which they can be applied.
(ii) Nonparametric methods, e.g., the product-limit method developed by Kaplan and

Meier (1958), do not allow to de�ne the survivor function beyond the last observed
value if it is censored and an estimate of the mean survival time is then unavailable.
(iii) The widely used semi-parametric proportional hazards regression model (Cox,

1972) or other continuous models become rather inadequate to deal with large data
sets comprising many censored and=or tied failure times.
The di�culties arising from the use of a continuous model for analyzing such data

sets have been discussed by Lawless (1982). A number of models have therefore been
developed to perform survival analysis in discrete time (Cox, 1972; Lawless, 1982;
Kalbeisch and Prentice, 1973; Prentice and Gloeckler, 1978). However, the results
of asymptotic maximum likelihood inference on the parameters of interest may be
inuenced by the way of grouping the failure times (Prentice and Gloeckler, 1978).
The method used in this paper takes explicit account of the discrete nature of the

data since it is based on a discrete time expression of the hazard. It is a generalization
of the discrete time logistic model given by Lawless (1982) to include time-dependent
regressor variables. Clearly, the hazard function associated with each individual of the
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sample is considered a time series that is expressed as a logistic function involving
a number of time-dependent covariates. The further developed technique is shown to
have an appeal in terms of conceptual simplicity and it accommodates the possibility
of large sets of grouped survival data with high rates of censored values.
The di�erent aspects and the usefulness of the method for the assessment and the

comparison of the induction distributions characterizing several groups of individuals
are illustrated by means of a simple numerical example (Lagakos et al., 1988) which is
from the AIDS literature. The example is concerned with the latency period of several
groups of individuals each of whom contracted AIDS as a result of being infected from
a contaminated blood transfusion.

2. The model

The hazard pit corresponding to an individual i with regressor variable xit at time t
(i.e. the probability of failure at time t provided that the individual was still at risk at
time t) is modelled as follows:
Let {Z it } (i=1; : : : ; n) be a collection of independent time series. Each series has

binomially distributed random variables with probability distribution de�ned as

P(Z it =1)=pit =1=(1 + exp(xit · �));
P(Z it =0)=1− pit =1=(1 + exp(−xit · �)); (i=1; : : : ; n; t = 1; 2; : : :) (1)

where xit =(x1it ; x
2
it ; : : : ; x

p
it ) is a vector of explanatory variables, describing patient eti-

ology, clinical stage of disease etc, which is associated with the ith individual at time
t where �=(�1; : : : ; �p) is a vector of unknown parameters. The various covariables
represented by the vector xit may be discrete, continuous, time-�xed or time-dependent.
It is interesting to point out that if xit · � is great enough, the continuous proportional
hazards model given by Cox (1972) may be obtained as a special case of Model (1)
given by Maul (1994).
Let Yi (i = 1; : : : ; n) be the random variable associated with the failure time cor-

responding to the ith individual, i.e. the value of t when Z it =1 for the �rst time. It
is assumed that P(Yi=+∞)= 0; (i = 1; : : : ; n). The method used to assess the de-
pendence of the hazard function associated with an individual on the p explanatory
variables in Model (1) will be referred to as discrete time logistic Bernoulli regression
(DTLBR).

3. Statistical methods

The present paper is concerned with the DTLBR method which will be used to
(i) Estimate � and thereby determining the hazard function.
(ii) Estimate the survivor function and the expected life, i.e. E[Y ], corresponding to

a given pro�le, {xt}, of the e�ects of the explanatory variables x1; x2; : : : ; xp.
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(iii) Compare the hazard rate between two populations or pro�les. This will enable us
to extend the concept of relative risk by integrating the mean value of the hazard ratio
over an interval of time. Usually, the relative risk is instantaneous, that is examined at
a given time. Here we suggest to generalize the concept of relative risk by considering
it on an interval of time. This is useful in the case of a time-dependent hazard function
(cf. Section 3.3).
These objectives are achieved on the basis of a sequential process of censoring which

involves discrete type I right-censored observation times. Such data may be obtained
in a wide range of biomedical investigations by reviewing the situation at regularly
spaced dates during the follow-up study. Other useful aspects of the DTLBR method
are given by Maul (1994), namely estimating quantiles, testing the equality of two or
more distributions and assessing the adequacy of Model (1) to describe the data set
examined.

3.1. Estimation of the parameters and hazard function

Let y=(y1; : : : ; yn) be the observed failure times in a sample of size n. If Yi is
censored on the right, the observed survival time of the ith unit will be denoted by
yci . This means that the ith individual still was in the study without failing at time y

c
i .

We have

P(Yi=yi)=

[
yi−1∏
t=1
(1− pit)

]
piyi (2a)

and

P(Yi¿yci )=
yci∏
t=1
(1− pit) (i=1; : : : ; n; yi or yci =1; : : : ; ): (2b)

Note that all the duration variables and values in Eqs. (2a) and (2b) are integers. If we
assume that the last k ordered observations are censored on the right at ycn−k+1; : : : ; y

c
n ,

and that the censoring and failure mechanisms are independent then the maximum
likelihood (ML) estimates of the parameters in Model (1) are obtained by maximizing
the log-likelihood function of the sample which is given by

L(y|�)=
n−k∏
i=1

{[
yi−1∏
t=1
(1− pit)

]
piyi

}
n∏

i=n−k+1

{
yci∏
t=1
(1− pit)

}
: (3)

This is done by solving the set of p equations,

@ ln L
@�j

=0; i:e:
n∑
i=1

{
y∗i∑
t=1
x jitpit

}
=

n−k∑
i=1
x jiyi (j = 1; : : : ; p); (4)

where y∗i is for y
c
i or yi according as Yi has been censored on the right at y

c
i or not,

respectively.
The foregoing results are presented by using matrix notation. Let X be the matrix of

explanatory variables of order {∑n
i=1 y

∗
i ×p} with xit as the tth row associated with the
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ith individual. The successive individuals being in the same order as the observations,
that is y1; : : : ; yn−k ; ycn−k+1; : : : ; y

c
n , provided that the last k ordered observations have

been censored on the right. Let O be the column vector of length
∑n

i=1 y
∗
i with all

its elements equal to 0 with the exception of the last element corresponding to a non-
censored value yi (i = 1; : : : ; n − k) which is equal to 1. Let D(�) be a diagonal
matrix of order {∑n

i=1 y
∗
i x

∑n
i=1 y

∗
i } with its successive diagonal elements equal to

pi1; pi2; : : : ; piy∗� (i=1; : : : ; n) that is pi1; pi2; : : : ; pi(yi−1); piyi (i = 1; : : : ; n − k) and
pi1; pi2; : : : ; pi(yci−1); p

c
iyi (i = n − k + 1; : : : ; n) provided that the last k ordered obser-

vations have been censored on the right. Then it is easy to show that the system of
Equation (4) is

X ′ · D(�) · 1=X ′ ·O (5)

where X t is the transpose of the matrix X and 1 is a column vector of length
∑n

i−1 y
∗
i

with all its elements equal to 1. The maximum likelihood Eqs. (4) and (5) can be
solved by Newton–Raphson iteration (Bard, 1974) which requires the evaluation of
the Fisher information matrix I . The element in the r th (r=1; : : : ; p) row and sth
(s=1; : : : ; p) column of the observed Fisher information matrix, I(�̂), evaluated at �̂,
is given as

I(r; s) =
n∑
i=1

[
y∗i∑
t=1
xritx

s
it

exp(xit · �̂)
1 + exp(xi · �̂)2

]
: (6)

If �̂(l) is a column vector representing the solution at stage l in the iteration process,

which is performed to solve Eq. (5), then the solution �̂(l+1) at iteration (l+ 1) is

�̂(l+1) = �̂(l) − l−1(�̂l) · (X
′ · D(�̂l) · 1− X

′ ·O); (7)

where l−1
(�̂l)

is the inverse of the observed information matrix evaluated at �̂(l). This

process is iterated until convergence.
Assuming n is su�ciently large, xit · �̂ has approximately a normal distribution with

mean xit · � and standard deviation
√
Var[xit · �̂]. We abbreviate this as

xit · �̂ ∼ N
(
xit · �;

√
Var[xit · �̂]

)
(i = 1; : : : ; n; t = 1; : : : ; y∗i ): (8)

An estimate of Var[xit · �̂] is given as
p∑
r=1
(xrit)

2l−1(r; r) + 2
∑
r¡s
xritx

s
itl

−1
(r; s) (i=1; : : : ; n; t=1; : : : ; ): (9)

Thus, it is easy to show that an estimate and associated con�dence limits at level �
for the hazard function pit evaluated at xit are given as

p̂it = 1=(1 + exp(xit · �̂))
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and

1
/(

1 + exp
(
xit · �̂ ± u(1−�=2)

√
Var[xit · �̂]

))
;

respectively; (i=1; : : : ; n; t = 1; 2; : : :);
(10)

where u(1−�=2) is obtained from the table of the standard normal distribution.

3.2. Estimation of the survivor function and the expected life

The survivor function associated with the set of vectors xit = {xiu; u = 1; : : : ; t}, that
is, the probability for the ith individual to be still at risk at time t under the conditions
speci�ed by xit , is de�ned as

Si(0)= 1;

Si(t)=P(Yi¿t)=
t∏
u=1
(1− piu) (t = 1; 2; : : : ; ): (11)

Thus, the ML estimate of Si(t) given by

Ŝ i(t) =
t∏
u=1
(1− p̂iu): (12)

The expectancy of Yi (i = 1; : : : ; n) is given as

E[Yi] =
∞∑
t=1
tp(Yi = t)=

∞∑
t=0
Si(t);

provided that this series converges. Consequently, E[Yi] can be estimated by
∑∞

t=0 Ŝ i(t).
Using large sample approximations, it can be shown that log Ŝ i(t) has an asymp-

totic normal distribution with mean log Si(t). If the covariates are time-�xed, i.e.
pit =pi (t=1; 2; : : :) the asymptotic distribution for the ln(Ŝ(t)) is

ln(Ŝ i(t))'N
(
ln(Si(t)); t · p̂i ·

√
Var[xi · �̂]

)
: (13)

Another special case of interest arises when one of the covariates in Model (1) is
time, e.g. x1it = t (i=1; : : : ; n) with �1 representing a monotonic trend in the time-hazard
relationship.
If we assume that exp (−xt · �) is small in such a way that the ratio ln(1−pt+1)=

ln(1−pt) can be approximated by exp(−�1), then it becomes easy to show that
ln(Ŝ(t))' ln(1− p̂1) · [(1− exp(−�̂1t))=(1− exp(−�̂1))] (14a)

and

Var[ln(Ŝ(t)]' [(1− exp(−�̂1t))=(1− exp(−�̂1))]2 · (p̂1)2:Var[x1 · �̂]: (14b)

The approximate results in Eqs. (14a) and (14b) are valid under the condition that the
probability of failure pt is less than 0.5 and provided that exp(−�1) is close to unity.
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Note that these conditions are met in most of the practical situations. These results can
be used for determining con�dence limits for the survivor function at time t, assuming
a simple monotonic dependance on time of the hazard function. Moreover, it is of
interest to note that the standard deviation in Eq. (13) can be obtained from Eq. (14b)
as �̂1 goes to zero.

3.3. Estimation of the relative risk

The instantaneous relative risk characterizing two populations (denoted by the sub-
scripts 0 and 1) at time t is expressed as the ratio p1(t)=p0(t). However, in the case
of a time-dependent hazard function it is preferable to de�ne a mean relative risk RT
calculated for a prespeci�ed period of time T as follows:

RT =
1
T

t0+T−1∑
t=t0

p1(t)=p0(t): (15)

Note that if the hazard function is independent on time, R̂T reduces to (1+exp(x0 · �̂))=
(1 + exp(x1 · �̂)) or even (if p0 and p1 are small) to exp((x0 − x1) · �̂) which is the
result obtained for the proportional hazards regression model (3). Furthermore, if p
may be considered a continuous function of t it is convenient to compute RT as the
mean value of the hazard ratio integrated over the interval [t0; t0 + T ], that is

RT =
1
T

∫ t0+T

t0

p1(t)
p0(t)

dt:

In the case of a simple monotonic dependence on time of the hazard, i.e. x1it = t (t=
1; : : : ; n), after simpli�cation it can be shown that RT can be estimated by

R̂T = 1 +
exp((x0 − x1) · �̂)− 1

�1T

× ln[1 + exp(�̂1(t0 + T ) + �̂2x21 + · · ·+ �̂pxp))=
(1 + exp(�̂1t0 + �̂2x

2
1 + · · ·+ �̂pxp1 ))] (16)

for any two given sets of values of the explanatory variables x0 and x1.

4. Application to aids data

The data set (Lagakos et al., 1988) which is presented in Table 1 gives the in-
fection time, (I), and failure time (i.e. onset of clinical AIDS), (F), for 258 adults
and 37 children who were infected by contaminated blood transfusions and developed
AIDS by 10 June 1986. All dates have been expressed in 3-month time interval units
from 1 April 1978 onwards. Thus, an event occurring between 1 January 1985 and
30 March 1985 will be recorded at 27. These data are used to illustrate the statistical
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Table 1
Infection time, I , and failure time, F , for 258 adults and 37 children (a) with transfusion-related AIDS.
Numbers in parentheses denote multiplicities (adapted from Lagakos et al., 1988)

F

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0 (1)
1 (1)
2
3 (2) (1)
4 (1) (1) (1) (1)

(1)a

5 (1) (1) (1) (1)
6 (1) (1) (1) (1) (1)
(1)a

7 (1) (1) (2)
8 (1) (1) (1) (1) (1) (1) (2) (2) (1)
9 (1) (1)

(1)a

10 (4) (1) (1) (1) (2) (3)
11 (1) (1) (1) (2) (1) (1) (2) (2) (5)

(1)a

12 (1) (1) (1) (1) (2) (3) (3) (1)
(1)

13 (1) (1) (2) (1) (2) (2) (1) (1)
14 (1) (2) (1) (2) (1) (1) (2) (2) (1) (2)

(1)a

15 (1) (2) (1) (1) (3) (1) (2)
(1)a (1)a (1)a (1)a (1)a (1)a

16 (1) (2) (1) (1) (1) (1) (2) (1)
(1)a

17 (1) (2) (3) (1) (3) (1) (2)
(1)a

18 (1) (3) (1) (2) (4) (4) (3) (2)
(1)a

19 (1) (3) (2) (1) (1) (1) (2) (6)
(1)a (1)a

20 (1) (2) (1) (1) (3) (2) (3)
(1)a (1)a (1)a (1)a

21 (2) (3) (2) (2) (4) (2) (2) (1)
(1)a (1)a (1)a

22 (3) (2) (1) (1) (2) (1)
(1)a (1)a (1)a

23 (1) (1) (1) (3) (2) (1)
(1)a

24 (1) (3) (3) (2) (2) (3) (1)
(1)a (1)

25 (1) (1) (1) (2)
(1)a (1)a

26 (2) (1) (1) (1) (1)
(1)a

27 (3) (1) (3)
(1)a (1)a

28 (1)
(1)a

29 (1)
(1)a
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methods outlined in Sections 2 and 3. In particular, the stochastic process of infection
and disease are used to
(i) Estimate the hazard and survivor functions corresponding to each of the two

groups of individuals considered. This is done for a given censoring value, that is,
assuming the situation has been reviewed at a speci�c date.
(ii) Assess the e�ects on the estimated hazard and survivor functions of the accumu-

lated information within both groups by setting the reviewing date at regularly spaced
chronologic times.
It must be emphasized that the set of data examined undoubtedly induces biased

estimates for the induction times since all the individuals have been involved in the
study conditionally on having contracted clinical AIDS by June 30, 1986. This means
that the data examined here are truncated (i.e. only individuals with diagnosed AIDS
are in the sample). Nevertheless, this feature is ignored in the further statistical analysis.
A substantive analysis of these data should therefore be done cautiously.
However, notwithstanding its limitations (Lui et al., 1986; Medley et al., 1987) the

structure of the data presented in Table 1 is particularly convenient to illustrate the
e�ciency and aptitude of the DTLBR approach for making inferences about the hazard
rate of a process with right censoring.
The hazard function at time t, that is, the probability of contracting AIDS during

the tth interval of time, is modelled as

pt =1=(1 + exp(�0 + �1�+ �2t + �3t2)); (17)

where � is an indicator variable with values −1 and +1 according as the individual
considered is a child or an adult.
Table 2 presents the results of the asymptotic likelihood inference analysis for the

regression parameters as given in Model (17). The estimated limit of the survivor
function as t → ∞ and the estimated medians corresponding to both the adults and
the children are also given in Table 2. All these values were calculated for di�erent
successive six-month time interval spaced censoring dates ranging from 31 March 1983
until 30 June 1986 and thus covering a proportion of censored values going from 91
down to 0%, respectively.
The analysis started by testing the signi�cance of the regression coe�cients in Model

(17) which were observed at the successive censoring dates. Most of the estimated
values for �0′ , �1 and �2 were signi�cantly di�erent from zero at the 0.1% level, in
terms of individual statistical signi�cance. This indicates strong evidence that
(i) The hazard may not be considered the same among the two groups (i.e. adults vs.

children); the instantaneous failure rate to contract AIDS at a given time after infection
is higher for children than for adults. It is interesting to note that such a statement
could already have been made at time 19 (i.e. 31 March 1983).
(ii) The assumption of a time-dependent expression of the hazard is reasonable. In

this regard, testing the hypothesis H0: �360 is of special interest since a positive
value of �3 (�2 being negative) may thus represent a non-monotonic trend in the time-
hazard relationship. Moreover, a positive �3 means that the hazard pt′ goes to zero as
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Table 2
Analysis of the hazard function for successive 6-month intervals censoring dates ranging from 31 March
1983 until 30 June 1986 and characteristics of the estimated survivor functions (adults vs. children) assuming
Model (17) is used for the hazard function

Date of censoringa 19 21 23 25 27 29 31 33
Proportion of 91 85 78 69 57 41 22 0
censored values (%)
Estimated e�ects
(standard error)
�0 6.49∗∗∗ 5.51∗∗∗ 4.42∗∗∗ 3.95∗∗∗ 3.73∗∗∗ 3.35∗∗∗ 3.01∗∗∗ 3.00∗∗∗

(1.39) (0.79) (0.48) (0.37) (0.30) (0.24) (0.21) (0.20)
�1 1.24∗∗ 0.98∗∗∗ 0.76∗∗∗ 0.65∗∗∗ 0.56∗∗∗ 0.43∗∗ 0.46∗∗ 0.44∗∗∗

(0.34) (0.24) (0.19) (0.16) (0.13) (0.12) (0.10) (0.10)
�2 −0.78∗ −0.55∗∗ −0.30∗∗ −0.22∗∗ −0.23∗∗∗ −0.16∗∗∗ −0.14∗∗∗ −0.16∗∗∗

(0.42) (0.21) (0.12) (0.09) (0.07) (0.05) (0.04) (0.04)
�3 0.044 0.024∗ 0.010 0.007 0.008∗ 0.004 0.003 0.002

(0.029) (0.012) (0.006) (0.004) (0.003) (0.003) (0.002) (0.002)
limt→∞ Ŝ(t)
Adults 0.898 0.696 0.447 0.271 0.221 0.038 0.005 0.000
Children 0.297 0.091 0.030 0.011 0.013 0.001 0.000 0.000

Median
Adults = = 21.64 17.03 14.24 12.28 10.84 9.72
Children 8.89 8.23 8.38 8.04 7.40 7.25 5.95 5.68

∗Value is signi�cant at the 5% level.
∗∗Value is signi�cant at the 1% level.
∗∗∗Value is signi�cant at the 0.1% level.
aNote that the time is expressed in 3 month intervals beginning 1 April 1978.

t → ∞. Clearly, this indicates the possibility for an individual of becoming safe from
contracting the disease provided that he has not failed before a su�ciently long period
of time. Thus, assuming the complete model is used for the instantaneous failure rate,
the estimated proportion of individuals that is expected to avoid contracting the disease
is also presented in Table 2 for each group and the various censoring thresholds.
However, since none of the individual tests on �3 yielded a signi�cant value at

the 1% level of probability (p¿0:05 for six out of the eight values tested), it seems
preferable that Model (17) should be reduced to a three-parameter expression including
�0, �1, and �2 only for modelling the hazard function on the basis of the data set
examined.
Thus, the previous analysis was reconsidered by using the reduced model for the

hazard which is hence taken to be of the form

pt =1=(1 + exp(�0 + �1�+ �2t)) (18)

Table 3 presents the ML estimates and standard errors for the regression parameters
as given in Model (18) which have been obtained for the 6-month spaced censoring
dates. The di�erent estimated expectancies and medians of the induction times and the
relative risk as calculated by (16) for both groups of individuals are also given in
Table 3.
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Table 3
An analysis of the hazard function for successive censoring dates and characteristics of the estimated survivor
functions (adults vs children) assuming the reduced Model (18) is used for the hazard function

Date ofa censoring 19 21 23 25 27 29 31 33
Proportion of 91 85 78 69 57 41 22 0
censored values (%)
Estimated e�ects
(standard error)
�0 4.69 4.23 3.83 3.53 3.22 3.05 2.79 2.79

(0.59) (0.38) (0.28) (0.23) (0.19) (0.16) (0.14) (0.13)
�1 1.18 0.92 0.73 0.62 0.53 0.42 0.45 0.43

(0.33) (0.23) (0.19) (0.16) (0.13) (0.12) (0.10) (0.10)
�2 −0.122 −0.132 −0.109 −0.094 −0.079 −0.080 −0.079 −0.105

(0.076) (0.043) (0.030) (0.023) (0.018) (0.014) (0.012) (0.010)
Ê[Y ]
Adults 27.36 20.85 19.11 17.68 16.00 13.79 12.29 10.73
Children 11.57 10.15 9.99 9.60 8.98 8.65 7.26 6.73

Median
Adults 27.95 21.10 19.05 17.22 15.08 12.67 11.02 9.76
Children 10.87 9.39 8.98 8.38 7.53 7.21 5.80 5.50

Relative risk
R20 9.64 5.52 3.83 3.12 2.62 2.11 2.19 2.04

aNote that the time is expressed in 3-month intervals beginning 1 April 1978.

Fig. 1. Estimated hazard functions (solid lines) and 95% con�dence bands (dotted lines) for children and
adults, assuming the date of censoring was settled by 31 March 1985.

The di�erences in the induction dynamics of AIDS between adults and children are
illustrated in Figs. 1 and 2 which show, respectively, the estimated hazard function
and survivor function corresponding to each of the two groups by using (18) as a
model for the instantaneous failure rate. The di�erent curves are given with related
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Fig. 2. Survival function estimates (solid lines) and 95% con�dence bands (dotted lines) for children and
adults, assuming the date of censoring is 31 March 1985.

Fig. 3. Hazard function estimates for adults and children assuming di�erent values (c) of the date of
censoring.

95% con�dence bands assuming the date of censoring was �xed on 31 March 1985.
Note that all the graphs should be discontinuous since the functions considered are
de�ned for discrete values of the time only, but the hazard and survivor functions have
been interpolated between observations for convenience in plotting and reading. The
e�ects on the estimated curves as a result of accumulating information by deferring the
censoring threshold in chronologic time are shown in Fig. 3 for the hazard function and
in Fig. 4 for the survivor function. The curves in Fig. 3 represent the hazard functions
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Fig. 4. Survivor functions (adults only) estimated for di�erent 6-month intervals censoring dates (c) ranging
from 31 March 1983 until 31 March 1986.

which have been estimated both for adults and children by assuming three di�erent
one-year spaced dates of censoring. The estimated survivor curves corresponding to
several 6-month spaced censoring periods are plotted in Fig. 4 for adults only.
From Table 3 and all the previous �gures, it becomes clear that:
(i) The instantaneous failure rate is higher for children than adults. This result is

in full agreement with the conclusion stated by Lagakos et al. (1988). However, it
must be emphasized that the di�erence in the induction times between the two groups
examined is shown to be signi�cant from t=19 (i.e. 31 March 1983) onwards using
the DTLBR method.
(ii) The hazard as estimated from the present data set is shown to be an increasing

function of time.
(iii) The estimated survivor functions become more and more depreciative as the

amount of information available increases as a result of postponing the censoring thresh-
old in time. This can also be observed numerically by means of the estimated induction
times expectations and medians as shown in Table 3.
Nevertheless, a substantive interpretation of the last two statements is di�cult in the

sense that the results obtained are likely to be induced by the peculiar structure of
the data set examined. Moreover, one must be aware that extrapolation of the model
beyond the data in order to estimate lifetime parameters may be of dubious reliability
since it relies on speci�c parametric assumptions.

5. Concluding remarks

The approach proposed in this paper provides a particularly convenient and useful
way of making inferences about the hazard rate of a process with right censoring. The



204 A. Maul et al. / Journal of Statistical Planning and Inference 78 (1999) 191–204

DTLBR method is applicable to a wide range of biomedical investigations, namely:
(i) the estimation of the mean latency period of a disease in order, for example,

to reach a better understanding of the features which may inuence the mechanism of
spreading and=or the survival time after the date of diagnosis.
(ii) the comparison of the relative e�ciency of treatments with respect to longevity

when performing therapeutic trials.
Its interest lies in both the generality of the statistical model including concomitant

information and the possibility of making inferential analysis on patient survival data
with high numbers of censored values or tied failure times. Furthermore, the DTLBR
method undoubtedly will �nd its highest interest within the framework of a stepwise
assessment, that is, by following a sequential process of reviewing the situation when
carrying out a follow-up study.
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