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ABSTRACT

This paper presents a discussion on the synthesis of hydrologic science and systems
theory in the development of rainfall-runoff models. A major problem appears to be
that conceptual rainfall-runoff models contain structural peculiarities which make the
application of model-identification and parameter-estimation methods and other useful
system-theoretic concepts difficult. Recent developments which have been intended to
overcome some of these difficulties are discussed, and areas requiring further research
are suggested.

INTRODUCTION

The common definition of hydrology is “a science which deals with the
processes governing the depletion and replenishment of the water resources of
the land areas of the earth and treats the various phases of the hydrologic
cycle” [33]. The emphasis here is on acquiring knowledge and understanding.
On a more practical level, however, hydrology is considered to be an
engineering discipline, i.e., the objective is “to make inferences from hydro-
logic data about the future distribution of water resources in space and time
in order to effectively manage them” [16].

In order to achieve this objective, hydrologic engineering (in the last two
decades) has evolved, in part, as a synthesis of hydrologic science and
techniques borrowed from systems theory. This evolution has certainly not
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been entirely painless. On the one hand, we must deal with processes of
enormous complexity for which completely adequate models are yet to be
developed (Kartevelishvili suggested that “the development of an adequate
casual theory of hydrologic processes may be much more demanding than was
the development of theory of relativity or quantum theory” [16]). On the
other hand, systems theory is still a young (though powerful) science whose
ability to deal with complex nonlinear systems (e.g., hydrologic processes) is
as yet rather limited. These, however, are the realities we must deal with, and
the challenge is to make the most effective use of what we have.

One type of model that appears to have a great deal of potential for on-line
streamflow forecasting is the so-called “conceptual” rainfall-runoff (CRR)
model [e.g., Stanford Watershed Model (SWM), U.S. National Weather
Service Soil Moisture Accounting Model (SMA-NWSRFS)]. CRR models
incorporate within their structure the general physical mechanisms (i.e.,
interception, infiltration, percolation, evapotranspiration, surface and sub-
surface runoff, etc.) which govern the soil-moisture phase of the hydrologic
cycle. Important features of these models are that (a) they keep track of the
present state of moisture conditions of the watershed, and (b) they model
some of the dominant nonlinearities of the system, such as those associated
with saturation of the soil mass. In spite of the sophistication of CRR models,
their potential for providing accurate streamflow forecasts has not been
realized, leading many engineers to question their usefulness and cost effec-
tiveness. A major problem appears to be that CRR models contain structural
peculiarities which make the application of model-identification and parame-
ter-estimation methods and other useful systems-theoretic concepts extremely
difficult [27, 8]. Recent results, however, indicate that many of the systems
techniques that are potentially useful have not been exploited. In the first part
of this paper, we focus on these issues and discuss some of the recent
developments related to CRR modeling. Having provided this perspective,
some of the areas are discussed in which the author feels future research
should be directed.

GENERAL IDENTIFICATION PROBLEM

Consider a watershed system, W, for which various characteristics such as
inputs u (e.g., precipitation, thermal radiation), states x (e.g., various soil
moisture components), and outputs z (e.g., streamflow, potential evapo-
transpiration) can be observed. The general identification problem can be
broadly stated as that of finding a model M whose input-state-output behav-
ior is as close as possible to that of the watershed. The solution of this problem
involves two major stages: (1) identification of a suitable structure (the
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Fic. 1. Geometric interpretation of the identification problem.

mathematical functions relating the inputs, states, and outputs) for the model,
and (2) calibration of the model parameters. This notion is geometrically
demonstrated in Figure 1. Let % represent the universal set. If .# represents
the set of all mathematical models (.# < %), then structure selection is
equivalent to choosing a specific subset M(8) of .#, where 8 represents the
parameters of the specified model set (8 € ©, O = feasible set). Having done
this, we must then select particular values for the parameters (say 8 € ©) such
that the model M(8) is, in some sense, “closest” in its behavior to the
watershed W. Clearly, we would like to choose those parameter values for
which the model exactly reproduces the behavior of the watershed W under
all circumstances. Referring to Figure 1, we see that this is only possible if the
watershed W (W c %) is contained within the restricted model set M(8),
00 (eg, M, =W, in Figure 1). Given the extreme complexity of the
watershed process, it is clear that W will not in general be contained in the
set M(8) (e.g., W =W, in Figure 1), and our interest therefore lies in finding
that model M(0) whose behavior is closest to that of W (e.g., M, is “closest”
to W,). As the geometric interpretation of Figure 1 suggests, the more
realistic (less restricted) the model set M(8), the “closer” our identified model
will be to watershed W. Note that, in general, the “closeness” of M(8) to W
will be evaluated using some suitably chosen estimation criterion that mea-
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sures the difference between the model and watershed outputs. The success
of the identification process clearly depends on appropriate treatment of both
of the stages discussed above. For the purpose of simplicity, let us first assume
that a suitable model structure has been successfully identified. Let us go so
far as to assume that the selected model set actually contains the watershed
process W in which we are interested. We shall later relax this (unrealistic)
assumption. Therefore, our problem is to establish a methodology which,
based on available information such as historical precipitation and streamflow
observations, will enable us to find those parameters 6 for which the model
M(0) is identical in behavior to W. This entails:

(1) Specification of a measure of “closeness” (called the estimation crite-
rion) between the model and the watershed. This is usually defined in terms
of the differences between the model and watershed outputs when both are
subjected to the same inputs.

(2) Selection of a method for identifying those parameter values which
“optimize” (minimize or maximize as appropriate) the chosen estimation
criterion. Since the estimation criterion is usually nonlinear in the parameters,
this usually involves implementation of an iterative optimization algorithm.

Unfortunately, the above has proved in practice to be not entirely
straightforward.

ESTIMATION CRITERION

First of all, the selected estimation criterion must take into consideration
the stochastic nature of the errors present in the measured data. Although this
issue was first pointed out by Clarke [4] the use of subjectively chosen
estimation criteria such as the simple least squares (SLS) continues to be
widespread. Sorooshian [24] and Sorooshian and Dracup {26] first proposed
the use of maximum-likelihood (ML) theory as an appropriate framework for
parameter estimation. They developed estimation criteria for two kinds of
error structures commonly believed to exist in hydrologic data—correlated
(systematic) and heteroscedastic (nonconstant-variance) errors. More recently,
Gupta (8] has proposed a methodology which accounts for both kinds of
errors simultaneously, based on the nonlinear structure of the stage discharge
relationship. The ML methods have proved to be successful in practice. Our
work with the U.S. National Weather Service’s model (SMA-NWSRFS),
which was reported by Sorooshian, Gupta, and Fulton [30], indicated that the
ML approach is superior to the SLS method. In particular, it was observed
that the effects of heteroscedasticity in the data were more severe than those
of autocorrelation, at least for daily streamflow measurements. The ML
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estimator for the heteroscedastic error case (HMLE) provided parameter
estimates that (a) were more conceptually realistic and (b) provided con-
sistently superior forecasts to those obtained using either the SLS or the ML
autocorrelated error procedure (AMLE). The HMLE also was more efficient
in terms of its ability to extract relevant information from the data set. HMLE
parameter estimates seemed to be remarkably unaffected by the nature and
quality of data used for the calibration. Further, good parameter estimates
were obtained using just one year of data; use of longer periods such as two
and three years served only to marginally improve the estimates. Some of
these conclusions have recently been confirmed by independent researchers:
Lemmer and Rao [17], Ibbitt and Hutchinson[13], and Delleur et al. (6]. For
convenience the ML estimators are presented in the Appendix.

OPTIMIZATION ALGORITHM

The algorithms most frequently used to identify the parameters of CRR
models have been those belonging to the class of “direct-search™ procedures
such as the simplex method [21] and the pattern-search method [23] (see e.g.
[5, 20, 3, 12, 14, 29, 30]). As is well known, such techniques are not highly
efficient, since they are based on trial-and-error testing schemes in order to
determine a feasible direction of movement. Derivative-based techniques have
seldom been used. The reason seems to have been a general belief that the
values of the derivatives of the model equation with respect to its parameters
cannot explicitly be obtained, due to the presence of threshold-type parame-
ters (e.g., [14, 19]). Some researchers have compared the performance of
direct-search algorithms with those wherein the gradients are approximated
using finite-difference techniques (e.g., (3, 12, 14}, among others). In most
cases, the direct-search procedures were reported to be superior; Johnston and
Pilgrim [14] suggested that this was probably due to inaccuracies arising in
the numerical gradient approximation procedures.

The problem of explicitly computing exact values for the derivatives of
models containing threshold parameters has been recently addressed by
Gupta [8). He proposed a method based on a state-space analysis of
the behavior modalities of such models, which does not require replacing the
threshold structures by smoothing functions. As an example, consider the
simple discrete-time storage reservoir depicted in Figure 2, which is a
common element in many watershed models. Depletion (S,) of the reservoir
from below occurs at a rate K (dimensions: inverse time, T~!) proportional to
its contents. Its capacity is limited to a maximum value M (dimensions:
length, L). When the precipitation input is such that the storage capacity is
exceeded, the excess water (R,) flows over the top of the reservoir (i.e., total
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F1c. 2. A simple two-parameter linear reservoir model with threshold parameter M.

outflow consists of both depletion from below, §,, and excess-water spillover,
R,). In this simple reservoir model, the two parameters are K and M. Notice
that the model operates in two modes. Let
x,_, = state of model at beginning of time interval ¢,
u, = precipitation input during time interval t,

and

x,=%,_,+u, (1)
x, represents the intermediate model state, i.e., the state of the model
increased by the amount of input into the reservoir, and prior to the outputs

being computed and depleted from the reservoir. When x, < M, the model
operates in mode 1 and the equations are

x,=(1-K)(x,_,+4,), (2)
z,=8S,=K(x,_;+ u,). (3)

When x, > M, the model operates in mode 2 and the equations are
x,=(1- K)M, 4)
z,=S5,+R,=x,_,+u,—(1-K)M. (5)

The source of this modality of behavior is the *threshold parameter” M. The
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model is clearly linear in each mode (z,& u,), but the proportionality
constant is equal to K in mode 1, while it is equal to 1 in mode 2. Mode 2 is

interpreted as the behavior of the system under conditions of *“‘saturation.”
Using Gupta’s method, the equation of the above model can be written as

x,=T1,[(1—K)(:c,__,+u,)]+T2,[(1-K)M] (6)
2= T [K(x,oy + 0)] + Ty [ 2,01+ 4, — (1 - K)M] (7)

where the threshold functions, T, and T,,, are defined as

1 for x,_,<M-uy,

d —{0 for x,_,>M—u, (8)
0 for x,_,<M-u,

L= {1 for x,_,>M—u,. ()

Using the chain rule of calculus, it can be shown that the required differential
equations are

- T“[ (et )+ (1= K) i ‘]+Tz.[—M], (10)

%=Tlf[(1'K)a;;}l +T, [(1- K)], (11)
and

%}% u[(r. ;+u,)+KaaK ]+T2, a;,K_ M] . (12)

%=T1¢[K-a;3;l +T,, ax, ! (l—K)] (13)

where the initial conditions to start the recursions in Equations (10) through
(13) are

x, = some initial assumed or known constant value (0 <z, < M)
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and hence

9%y _

K

dx,

T 0. (14)

If necessary, the second derivatives can be computed in a similar fashion.

Gupta [8] tested the usefulness of the method by comparing the perfor-
mance of a Gauss-Newton type (derivative-based) and the simplex (direct-
search) optimization algorithms on a 6-parameter CRR model. His results
indicate that the derivative-based method is more efficient and uses less
computer time, especially when the number of parameters to be optimized is
large.

ISSUES RELATED TO MODEL IDENTIFIABILITY

Model Structure

The work reported above demonstrates how systems-theoretic concepts
such as maximum-likelihood theory, statespace form, and derivative-based
optimization methods can be effectively adapted to the problems of calibrat-
ing hydrologic models. Attempts to apply these methods to CRR models have
revealed, however, that major problems associated with determination of
unique and consistent parameter estimates still remain [30, 10]. Sorooshian
and Gupta [27, 10} examined this issue in some detail and concluded that a
major source of the problem is poor structural identifiability of CRR models.
That is, the particular subprocess equations which make up the structure of
the model hinder the application of systems-theoretic parameter-estimation
techniques.

To illustrate this, let us consider again the simple discrete-time linear
reservoir with threshold parameter depicted in Figure 2 and described in the
previous section. As before, we assume that this model is a perfect representa-
tion of the watershed process. This enables us to assume a true set of
parameters (say M*, K*) and, for a hypothetical sequence of inputs, to
generate the “true” watershed output. Under these idealized circumstances,
the calibration of this model should be rather simple. We find, however, that
the calibration results are quite dependent on the parameter values chosen to
initiate the optimization. The reason for this becomes clear if we examine the
general shape of the response-surface contours for the estimation criterion.
The shape of these contours is influenced by the structural equations con-
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Fi1c. 3. Response-surface contours of Figure 2.

stituting the model and will be similar to that shown in Figure 3. Note that for
large values of the threshold parameter M, the response surface has an
elongated valley. Clearly if the initial value of M is selected in the region of
this valley, any search algorithm, even though partially successful in the K
direction, will make little progress (if any) in the M direction. As a result, the
search will terminate at a nonoptimal point such as (K, M).

For this simple problem, the solution is rather obviously to choose a small
initial value of M so that the search remains in the region of elliptical contours
and progresses towards the optimum (K*, M *).-In a full-scale CRR model,
however, the structural equations are far more complicated and the choice of
appropriate initial parameter estimates is not as obvious. Sorooshian and
Gupta [27], for example, reported convergence to the bottom of an extremely
long extended valley while attempting to calibrate the SMA-NWSRFS model.
The existence of this valley made it impossible to select a unique “best” set of
parameters for the model. The problem was found to be related to the
particular structural form of the percolation equation. Gupta and Sorooshian
[9] demonstrated that this problem could be treated by the choice of an
appropriate nonlinear reparametrization of the equation.

The above examples served to illustrate the fact that some serious problems
associated with structural identifiability of CRR models need to be resolved
before the effectiveness of systems-theoretic techniques can be fully realized.
A major issue to be tackled here is how to detect structural nonidentifiability.
Sorooshian and Gupta [28] have recently attempted to establish a mathemati-
cal basis for such study. They define “a model M parameterized by 8 to be
globally identifiable if, and only if, different parameter values of M give rise
to different mode] output vectors.” In a similar manner, *a model structure is
[defined to be] locally identifiable at 8* if and only if there exists an open
neighborhood of 8* in which it is identifiable.” On the basis of these
definitions, a mathematical framework for studying local structural identifi-
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ability was proposed. In particular, a measure called the sensitivity ratio was
developed and shown to be effective in determining poorly identifiable
parameter combinations in multiparameter vector spaces. In brief, the region
in the parameter space around 8 for which the model output sequences are
considered to be indistinguishable is approximated using a hyperellipsoid. The
sensitivity ratio n, for the ith parameter is then computed as

Ps,(8)
"= m (15)

where
PS,(8) = parameter sensitivity index for ,;
CPS,(68) = conditional parameter sensitivity index for 8;.

A two-dimensional example is presented in Figures 4a and b. As can be
seen, PS,(8) represents the maximum that the parameter 8 can vary (allowing
other parameters to vary freely) while remaining within the hyperellipsoid.
Similarly, CPS/(8) represents the amount that &, can vary if all other
parameters are assumed fixed at their chosen values. By taking the ratio of
PS,(8) to CPS(8), we get a nondimensional measure 7; of the amount by
which the other model parameters (6, # ;) compensate for the changes in
model output caused by perturbations in the parameter §,. Note that, when
1, =1, as in Figure 4b, there is no compensation for the effects of the
parameter §; on the model output by the other parameters. As 7, gets larger,
this indicates poorer and poorer identifiability of 8, in relation to other model
parameters. The mathematical details can be found in {28].

The study of global identifiability is made difficult by the nonconvexity
and nonlinearity of the problem. Clearly, much more work needs to be done
on these issues.

Calibration Data

The second aspect of calibration related to model identifiability is the
appropriate choice of the calibration data set. It is clear that the success of the
parameter-estimation phase is ultimately dependent on the quantity and
quality of the data available. It has often been suggested or implied in the
literature that the data used should be “representative” of the various
phenomena experienced by the watershed. Many researchers have attempted
to satisfy this requirement by using as large a data set as possible, without
demonstrating superior results. Sorooshian, Gupta, and Fulton [30] have
pointed out that, rather than length, it is the quality of information contained
in the data which is important. They also stated that the data sequences
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which contain greater “hydrologic variability’ are more likely to activate the
various operational modes of the model sufficiently to result in reliable
parameter estimates. However, the issue of how to measure “hydrologic
variability” was not addressed in that paper. Work on the latter issue has
recently been presented by Gupta and Sorooshian [10, 11]. A theoretical
investigation into the relationships between the data, the model structure, and
the precision of the parameter estimates was conducted. Some interesting
results, particularly related to threshold-parameter identifiability (see the
parameter M in Figure 2) were obtained. It was shown, for example [10] that
the precision to which the threshold parameter M can be identified is (a)
directly proportional to the number of times the reservoir switches from the
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nonoverflow mode (R, = 0) to the overflow mode (R, # 0), and (b) indepen-
dent of the duration of the overflow mode. This has interesting implications to
the choice of calibration data, since it implies that a data set containing a few
large storm events may be less informative than a data set containing many
storms of moderate size. In a follow-up study, Gupta and Sorooshian [11]
investigated the informativeness of single storms of varying intensity in the
context of a 6-parameter model. Once again, it was found that a storm of
moderate intensity contained information of better quality than similar storm
of greater or lesser intensity. The important consideration was shown to be
the degrees of activation of various modes of the model. In the same paper,
we also proposed a procedure for evaluating the relative worth of different
data sets based on the principle of best a priori information. We are currently
in the process of further verifying these ideas using the SMA-NWSRFS model.

IDENTIFIABILITY IN THE PARAMETER-DATA SPACE

As is clear from the above two subsections, the structural identifiability of
the model parameters depends on two factors: (a) the location (in the feasible
parameter space) of the optimal parameter values, and (b) the quality of the

Parameter
vector
A
{b)
N
Region of
g identifiability
A0
i !
_--1 /
s /
/7 4
1 V4 Ja)
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P4
\\‘\—"/
o~
”
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Fic. 5. Region of identifiability in the parameter data space: identifiability studies in (a) the
input space conditioned on a chosen parameter set, (b) the parameter space conditioned on a
chosen input data set.
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input data set. To date, the limited studies on these issues have ignored the
interrelationship between the two (i.e., parameter space and input space). A
comprehensive evaluation of the structural identifiability of a model should
aim at determining that region of the combined parameter-input-data vector
space in which the calibration procedure can be expected to be successful.
The conceptual representation of this concept is presented in Figure 5 where
the hatched area represents the hypothetical region of identifiability (note
that in practice the boundaries of such regions will not be clearly defined, due
to the fuzziness inherent in the measurement of identifiability). It should be
pointed out that the feasibility of such an analysis depends heavily on our
ability to recognize the important characteristics of input data sequences and
to describe them using a small number of parameters (or statistics). For
example, a typical rainfall sequence may perhaps be described (crudely) by a
normalizing transformation parameter, a mean level, a variance term, and an
autocorrelation coefficient. Other methods for describing the feasible input
space based on concepts of pattern recognition may prove to be superior. As
yet, these ideas are offered only as food for thought in order to stimulate
interest for further research.

THE ISSUE OF MODEL SELECTION

So far, the discussion has centered around the problem of identifying the
parameters of a watershed model when the structure of that model is known.
Clearly, we must be confident in our ability to calibrate a model under ideal
conditions if we are to begin to address the issue of model identification in the
(nonideal) real world. Let us now examine a more important issue, that of
choosing an appropriate structure for a model of a particular watershed. By
“appropriate,” we mean here that the model should be capable of reproduc-
ing adequately the various aspects of the output hydrographs which are of
interest. Note that this is not necessarily the same as having the smallest
forecast mean squared error.

The literature of the last two decades reveals two clear trends in the area of
on-line streamflow forecasting. On the one hand, there has been the develop-
ment of “conceptual” type models which purport to be *physically based.”
The second trend has been towards developing “systems-theoretic” models
[25], i.e., linear or quasilinear input-output (rainfall-runoff) models that are
designed around the powerful theoretical base of linear systems theorem (for
examples of this type of models, see [32}). As discussed eatlier, even though
conceptual models are believed to be inherently more accurate in their
representation of watershed behavior, calibration difficulties often limit their
usefulness. In contrast, systems-theoretic models (e.g., time-series models,
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state-space form relations, etc.) are usually easier to construct and calibrate,
but have been strongly criticized as employing unrealistic assumptions about
the nature of the physical system (e.g., ignoring the nonlinear dynamics of the
watershed process). It has sometimes been argued that, from an engineering
point of view, the usefulness of a watershed model (be it conceptual or
systems-theoretic) need not depend on its conceptual realism so much as on
its capability to reproduce input-output behavior. Some researchers have
attempted to compare certain conceptual and systems-theoretic models from
this point of view. More often than not, the published results have supported
the systems-theoretic models. The reasons for this are probably quite varied
and have not been clearly discussed in the literature. Sorooshian [25] men-
tioned two important points, however. First, the state of the art of parameter
estimation in conceptual models has not been adequately refined, whereas the
solution techniques available for systems-theoretic models are comparatively
efficient. The second reason is that the comparisons are rarely carried out
under conditions which would highlight the inadequacies of either type of
model. As suggested by Linsley [18], the most important property of a model
(and the least often tested) is its inherent accuracy, i.e., it should not be a
question of prediction accuracy under average or slowly changing conditions
but one of model credibility under extreme or rapidly varying conditions.
Kitanidis and Bras [15] found, for example, that under rapidly changing
hydrologic conditions, the conceptual SMA-NWSRFS model performed sig-
nificantly better than an ARMAX (autoregressive moving average with exoge-
neous inputs) linear stochastic model with on-line adaptively estimated
parameters and states. Though the ARMAX model was found to forecast
satisfactorily in the recession limb, the conceptual model was found to be
more reliable in forecasting the most important features of the hydrograph,
such as the beginning of the rising limb, the time to and height of peak, and
the total water volume. Similar results have been noted by Todini and Wallis
[31), Andjelic and Szollosi-Nagy [1], and O’Connell and Clarke [22].

The problem of whether to employ a systems-theoretic or a conceptual
model is really just a smaller facet of a larger problem, i.e., how to decide on a
level of complexity of model structure appropriate to the modeling of a given
watershed. Of the various issues related to this problem, one that has not
received the attention it deserves is that of system scale. Consider the
conceptual diagram presented in Figure 6 which illustrates the fact that the
variability in the hydrologic output of a watershed system is influenced by
two major factors: (a) variability in the inputs, and (b) properties associated .
with the physical structure of the watershed (e.g., expansion and compression
of time scales, damping and attenuation, nonlinearities, input-dependent
systemn modality, losses, etc.). It seems entirely possible that, in certain
watersheds, most of the variability in the outputs can be related, in a fairly
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Fic. 6. Factors contributing to variability in hydrologic outputs.

simple manner, to variability in the input. That is, the influence of input
variability on output behavior predominates over that of system structure, so
much so that the latter influences are difficult to separate out. An example
might be a small watershed whose response is dominated by surface runoff
(due, for example, to minimum infiltration loss or groundwater-flow contribu-
tion, etc.). At the other extreme, we might have a watershed in which the
effects of the input variable are completely damped by the system. In such a
case, the characteristics of system structure obviously control properties of the
output hydrograph. An example might be a very large watershed with little or
no surface runoff (due to high infiltration and /or channel loss rate, etc.). The
former watershed seems to be a prime contender for the systems-theoretic
modeling approach, while with the latter we might benefit more from a
conceptual approach.

In the above examples, we have referred to the spatial aspects of scale. In a
similar manner, the time scale on which the watershed is to be modeled will
also have an important role in the selection of an appropriate model structure.
This area of research deserves a great deal of attention. If we can establish
some means of identifying the relative importance of the hydrologic inputs
versus the systemn structure (with respect to simulating system outputs), the
problem of selecting an appropriate model (conceptual or systems-theoretic or
something in between) should be much easier to deal with,

SUMMARY

Successful hydrologic modeling requires careful synthesis of hydrologic
science and systems science. Due to the enormous complexity of the hydro-
logic processes, this synthesis is proving to be an extremely challenging task.
In this paper, I have attempted to discuss some recent results related to the
development of models for online streamflow forecasting. These results
include (a) the development of maximum-likelihood theoretic techniques and
derivative-based optimization methodologies for parameter estimation, and
(b) techniques for investigation of issues related to model structural identifi-
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ability. Also discussed was the problem of model selection. It was pointed out
that the current discussion regarding the relative merits of systems-theoretic
versus conceptual models is really just a small facet of a larger problem, i.e.,
how to decide on an appropriate level of complexity of model structures. It
was suggested that an important aspect of this problem which needs to be
addressed is that of system scale. It is hoped that this discussion will serve to
motivate further research into the issues addressed in this paper. Finally, I
would like to emphasize that the issues discussed here are not unique to
hydrologic modeling, and I hope that this paper will help to stimulate a
dialogue between hydrologists and modelers in other scientific disciplines.

APPENDIX. DESCRIPTION OF MAXIMUM-LIKELIHOOD
ESTIMATORS

1. The Maximum-Likelihood Estimator for the Autocorrelated-Error
Case (AMLE)

We have
n 02"
min AMLE = Z In(27 )+ }In—— — {p%2¢}
.0,0} 2 I1-p
1 & 2
+— X (e,—pe,_y), (1a)
20, =2
where
2_1 2 2 - 2
of ==—p%i+ ) (& —pey), (1b)
n t=2
and p is estimated from the implicit equation
n n
g- 2 g0+ 2 chr-l)Pz
t=2 t=2
n n
t(or=at+ Lt fo- Beemo. (9
t=2 t=2

where &, = q, s, = G; sim = (residual at time ¢) with g, ..., g, m the measured
and the simulated flows at time ¢, @ is the set of parameters to be estimated,
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n is the number of data points, 02 is a constant variance term, and p is the
first-lag autocorrelation coefficient. The above estimator is developed based
on the assumption that the output errors are Gaussian with a constant
variance and correlated according to a first-lag autoregressive scheme (for
details, see [26)). Note that in the case p =0 the estimates obtained using
AMLE are equivalent to those of the simple least-squares (SLS) criterion

mgn SLS= ) &2 (2)

t=1

2. The Maximum-Likelihood Estimator for the Heteroscedastic-Error
Case (HMLE)
We have

min HMLE — { 5 w,ef}{n 11 w,]'/"} - (3a)

t=1 t=1
where w, is the weight at time ¢, computed by
w, = f;w\—l)’ (3b)

where f is the expectation of g, . (either q, o, Or g, n) and A is the
unknown transformation parameter which stabilizes the variance. The im-
plicit expression to estimate A is

[ > ln(f,)][ ) w,e?]—n[ 5 w,ln(ﬁ)ef]=o. (3¢)

t=1 t=] t=]

Briefly, the HMLE estimator is derived based on the assumption that the
errors are Gaussian with mean zero and covariance matrix V, where V, , = o2
and V,,,,=0for s+0.

Stabilization of the variance is attempted through the use of the Box-Cox
2] power transformation which relates the variance of each error to its
associated output value (see [26]). In this study, f, = ¢, ,,, Wwas used in the
computation of the weights (the original procedure reported in the afore-
mentioned papers used f, = g, ). Fulton [7] has shown that this results in a
more stable estimation scheme. It is interesting to note that if the variances of
the additive errors are homogeneous (independent of the time or magnitude
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of the associated flows), then the procedure will automatically select the value
of A = 1.0. This results in w, =1 for all ¢, and the estimation criterion reduces
to the SLS. If, however, the variance of the errors is proportional to a power
function of the magnitude of the flows, then the procedure will select a value
of A =1.0. Pertinent to our problem is the case where the error variance
increases as the flow values get larger (Sorooshian and Dracup [26] have
discussed the underlying reasons at great length). In this situation, the ML,
estimate of A will be less than unity, and this ensures that, in the estimation
criterion, the errors associated with lower flows (which contain more reliable
information) are weighted more heavily.
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Kumar Gupta, for his suggestions, comments, and contributions.
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