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Abstract 

The contents of most databases are ever-changing, and erroneous data can be a significant problem in real-world 
databases. Therefore, the process of discovering knowledge from databases is a process based on incipient 
hypothesis generation/evaluation and refinement/management. Although many systems for knowledge discovery 
in databases have been proposed, most systems have not addressed the capabilities of refining/managing the 
discovered knowledge. This paper describes a hierarchical model learning approach for refining/managing concept 
clusters discovered from databases. This approach is the basic one for developing HML (Hierarchical Model 
Learning), which is one sub-system of our GLS (Global Learning Scheme) discovery system and can be 
cooperatively used with other sub-systems of GLS such as DBI (Decomposition Based Induction). By means of 
HML, concept clusters discovered from a database by DBI can be represented as the Multi-Layer Logic formulae 
with hierarchical models in a knowledge-base and can be easily refined/managed according to data change in a 
database and/or domain knowledge. HML is based on the model representation of Multi-Layer Logic (MLL). Its 
key feature is the quantitative evaluation for selecting the best representation of the MLL formulae by using 
cooperatively a criterion based on information theory and domain knowledge. Experience with a prototype of 
HML implemented by the knowledge-based system KAUS is discussed. 

Keywords: Knowledge discovery in databases; Multi-Layer Logic; Machine learning; Information theory; 
Hierarchical modeling; Refinement; Management 

I. Introduction 
Knowledge discovery in databases (KDD) is becoming an important topic in AI and is 

attracting the attention of leading researchers in databases [19, 7]. This topic is different from 
traditional researches of machine learning, though it uses their results [10]. In particular, the 
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contents of most databases are ever-changing (i.e. data in databases can be often deleted, 
added or updated), and erroneous data can be a significant problem in real-world databases 
(i.e. data in databases are generally uncertain and incomplete) [7, 27]. Hence, the process of 
discovering knowledge from databases is a process based on incipient hypothesis generation/ 
evaluation and refinement/management as shown in Fig. 1 [27]. In this process, it is required 
to perform multi-aspect intelligent data analysis and multi-level conceptual abstraction/ 
learning in multiple learning phases [30]. Although many systems for knowledge discovery in 
databases such as INLEN, Forty-Niner, KDW, EXPLORA and DBLEARN have been 
proposed [9, 35, 18,4, 3], most systems have not addressed the capabilities of refining/ 
managing the discovered knowledge. For example, although there are knowledge manage- 
ment operators in INLEN, it is not automatically done and the operator for knowledge 
refinement was not addressed; Forty-Niner can refine regularity by expanding their range 
and/or  strengthening their pattern, however it was not considered how to refine the 
discovered regularity when data change (e.g. add or delete some data) in databases, and it was 
also not addressed how to manage the discovered regularities; KDW, EXPLORA and 
DBLEARN did not address the capabilities of management and refinement. 

We have been developing a methodology/system for knowledge discovery in databases, 
called GLS (Global Learning Scheme) based on this process as shown in Fig. 1 [27, 30]. The 
GLS system is developed as a toolkit that is composed of several sub-systems. At present, two 
sub-systems of GLS, DBI (Decomposition Based Induction) and KOSI (Knowledge Oriented 
Statistic Inference), have been developed for discovering incipient hypotheses from databases 
[29, 32], and two further sub-systems of GLS, HML (Hierarchical Model Learning) and IIBR 
(Inheritance Inference Based Refinement), have been developed for refining and managing 
incipient hypotheses discovered from databases [28, 31]. Furthermore, a discovery process as 
shown in Fig. 1 can be organized dynamically and performed in succession. For example, DBI 
can be first used for discovering concept clusters hidden in the data [29], and then by means of 
HML, the discovered concept clusters can be represented as the Multi-Layer Logic formulae 
with hierarchical models in a knowledge-base and can be easily refined and managed 
according to data change in a database and/or domain knowledge. 

This paper describes a way of refining/managing concept clusters by using HML. In GLS, 
the refinement for concept clusters can be divided into two levels. The first one is the data 

/ " v,,  i 

INCIPIENT I 
H Y P O T H E S I S  - - - 
GENERATION 

Fig. 1. The process of disxovering knowledge from databases. 
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level. In this level, concept clusters are refined by the learning space defined in DBI for 
processing the perturbation problem of databases. This has been discussed in our paper [29]. 
This paper focuses to discuss the other one, i.e. the rule level in which concept clusters are 
refined by using hierarchical model learning (HML). Furthermore, the results of the 
refinement by HML can be further used in the next learning phase for acquiring more 
high-level knowledge [34]. How to use the results of the refinement by HML for acquiring 
more high-level knowledge is not discussed here but is left as an independent problem to be 
discussed elsewhere, because it involves another sub-system of GLS that is being developed by 
US. 

In the following sections, we will describe the details of HML. Section 2 describes main 
backgrounds on HML including a summary of the features of Multi-Layer Logic and a 
comparison to related work using information theory for machine learning. Section 3 
introduces information theory into logical expression and describes an effective algorithm for 
calculating the information of the Multi-Layer Logic formula as the theoretical preparation for 
our application. Section 4 describes the approach of hierarchical model learning (HML). It 
mainly includes the knowledge generation, the knowledge refinement and the knowledge 
management. Finally, Section 5 gives a summary of the features of our approach and future 
research subjects. 

2. Backgrounds on HML 

There are two main backgrounds on HML. The first is the model representation of 
Multi-Layer Logic (MLL) with the hierarchical structure [17, 12]. The other is information 
theory. The key feature of HML is the quantitative evaluation for selecting the best 
representation of the MLL formulae by using cooperatively a criterion based on information 
theory and domain knowledge. This section describes the two backgrounds of HML. 

2.1. Knowledge representation using MLL 

MLL (Multi-Layer Logic) is a predicate logic with a syntax that allows some domain(s) of 
variable(s) to be the variable(s), which extends for MSL (Many-Sorted Logic) in the syntax 
[17, 12]. This extension in the syntax of MSL gives a great expressive capability for predicate 
logic involving data structure (set, hierarchy, power set, etc.), especially in manipulation of 
the hierarchical structure. Since HML is based on the model representation of MLL, we here 
give a summary of the features of MLL compared with first order logic as a preparation for 
further describing HML. The details on MLL refer to [17]. 

The summary can be divided into the following four aspects: 
(1) Structure description. Structures can be described as element-of, power-set-of, com- 

ponent-of and product-set-of relations. Other complex operations can be represented as 
combinations of these primary operations. For example, let a polyhedron as shown in 
Fig. 2 be defined as a set of surfaces Sl, s2, s3, s4, and let surfaces be defined by a set of 
the edge lines using following structure description: 
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/4 

Fig. 2. A polyhedron. 

/* Descript ion of general concepts */ 

!make_p * 2vertex, * 2line, * 2surface ; 

!ins_e *2vertex line ; 

!ins_e *2line surface ; 

!ins_e *2surface polyhedron ; 

/* Descript ion of specific concepts * / 

!ins_e line 11 , 12, 13, l 4, 15, l 6 ; 

!ins_e surface S 1 , S 2 , S 3 , S  4 ; 

!ins_e polyhedron h I ; 

/* Definition of component  sets of a specific object  with hierarchical structure */ 

!ins_e h 1 : s u r f a c e  s 1 , s : ,  s 3, s 4 ; 

!ins_e s I : l ine  1~ , le, l 4 ; 

! i n s_es  2 : l i n e  l~, l 3 , l  5;  

!ins_e s 3 : l ine  12, 13, l 6 ; 

!ins_e s 4 : l i ne  14,/5,  /6 ; 

where  " ! i n s _ e  x x 1 . . .  xn;" means x 1 . . .  xn are e lements  of x (i.e. the set-elements  
relation). " *  x" denotes  a power  set node whose base set is x. The base set of  the power  
set is the one from which the extension of the power  set is defined. In other  words,  a 
power  set is composed  of  all subsets of the base set. Howeve r ,  M L L  does not 
automatically enumera te  all e lements  of the given power  set from the given base set. 
" ! i n s _ e  *x"  defines only parts of members  of  *x (i.e. a subset  of  x) by the arguments  
fol lowed by ! i n s _ e  * x. Since * x is itself a set, * (* x) can also be defined in the same 
way,  denoted  by *2x. In general,  *nx denotes  the power  set of  * ( n - 1 ) x .  " ! i n s _ e  
x : a"  describes a component  set of x (i.e. a is a discriminator of the componen t  set).  In 
addition, " ! m a k e _ p "  is used for declaring and making power  set nodes.  

In general,  the structure description can be divided into three parts as shown above.  
That  is, the description of general concepts,  the description of  specific concepts  and the 
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Fig. 3. The hierarchical structure of a polydedron. 

definition of component sets (or IS-A relations) of a specific object with hierarchical 
structure. A component set can be regarded as an IS-A relation (i.e. pseudo IS-A). 
MLL prepares a syntax to discriminate the real IS-A relation and the pseudo IS-A 
relation. But it is abbreviated here (i.e. both of them are called the IS-A hierarchy in 
this paper). Fig. 3 is an equivalent graph of the component sets of this specific object 
shown above and Fig. 4 shows the relation of general concept in a data structure in 
MLL. 

(2) Syntax. A MLL formula consists of a matrix, prefix, A N D / O R  forms, connectors and 
(&) ,  or (I) and not ( - ) .  Similar to Many-Sorted Logic, a variable in a MLL formula can 
have its own domain and can be explicitly included in the prefix. For example, by 
means of the IS-A hierarchy defined above, we can represent the knowledge "There is 
some surface in a polyhedron h 1 of which the length of all edge lines is 3." in a MLL 
formula as follows: 

[3S/h I : surface][VL/S : line]length(L 3).  

The part inside the brackets [ ] in the head of a logic formula is called the prefix in the 
MLL formula. Here,  the domain of variable L is a variable S, the domain of S is h 1 for 
representing a specific polyhedron. 

(3) Expansion function. When the domain set of a variable is finite, the MLL formula can 
be expanded according to the following equivalent expressions: 

[VX/x ]p (X)  N x = (Xl, X 2 ,  . . . , Xn) +'-) p(x  1) Np(x2) n ' ' "  A p (x . )  , 

pertex D * vertex P *2vertex 

[ U ~  b *line ~- *~ne 

. 

L . : /  ol 1.> 
• 1, ~7~ ~, ,4 I C polylu~lron 

Fig. 4. The data structure for representing a polyhedron. 
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[ 3 X / x ] p ( X )  n x =  ( x l , x 2 ,  . . . ,Xn}  ~ - ~ p ( x , ) U p ( x 2 ) U . . . U p ( X n )  . 

It is called expansion function of  MLL.  This function is used for extracting from a set 
the elements which possess specified properties. It is syntactically defined by appending 
" # "  after the variable to be expanded in the prefix of the MLL formula. For example, 
let surfaces be {(l l ,  12, 14) , ( l l ,  13, 15) , (12, 13,16) , (14, 15, 16)}, then the formula 

[ 3 S # / h  1 : surface][VL# /S : line]length(L3). 

can be expanded into 

(length(l~ 3) n length(12 3) n length(l 4 3)) U 

(length(l~ 3) n length(l 3 3) N length(l 5 3)) U 

(length(l 2 3) n length(l 3 3) n length(l 6 3)) U 

(length(l 4 3) n length(l 5 3) n length(l 6 3)). 

(4) Higher-order predicate. Predicate of MLL can include one or more closed formula(s) as 
a term. A closed formula is a formula which does not include any free variable. The 
predicate appears as a higher-order predicate but it is inhibited that the same variable is 
included both inside and outside of an inner predicate. Thus, for example, [VX/ 
d]p(Xr(X) )  is not allowed but [VX/d]p(X[VX/c]r(X))  is because the latter is 
equivalent to [VX/d]p(X [VY/c]r(Y)). With this restriction, the inner predicates can be 
any logical formula and the evaluation of the inner formula, r in the above example, 
can be performed independently from that of the outer predicate p. Thus, it is possible 
to separate the inner predicates and the outer predicates at the presentation. In general, 
the set of predicates that does not contain any predicate as a term are located in the 
object-level, while those that contain some object-level predicate(s) as the term are 
arranged in a different level immediately above to the object level. The upper level 
forms the meta-level. It is possible to replace the inner (object-level) predicate by an 
identifier (ID),  for example, by the predicate name. The same holds between the 
meta-level and meta-meta-level and much higher levels. That is, this extension enables 
us to realize multiple meta-level architecture [5]. 

A prototype of HML has been implemented by KAUS. KAUS is a knowledge-based system 
developed in our laboratory which involves knowledge-bases based on MLL (Multi-Layer 
Logic) and databases based on the NNF (Non Normal Form) model [17, 26]. KAUS also has 
the capabilities of multiple meta level reasoning and multiple knowledge worlds. With these 
characteristics, KAUS enables us to write down the repetitive process as shown in Fig. 1, and 
can be easily used for many hypothesis generation (discovery/building) as well as represent- 
ing, transforming and managing both knowledge and data [15, 16]. 

2.2. Applications of  information theory in machine learning 

In machine learning, information theory has been recognized as a useful criterion, and 
several algorithms such as ID3, Prism, CN2, ITRULE and EG2 have been developed 
[20, 1, 2, 23, 11]. In these algorithms, information theory is used as a measure criterion for 
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generating inductively knowledge that is represented in decision tree or if-then rule. For 
example, ID3 is a tree-induction algorithm although ID3-induced trees can be transformed 
into production rules [21]. Like ID3, Prism is classification based and has an information 
theoretic basis, but it can directly produces their results as a set of production rules. CN2 
combines the efficiency and ability to cope with noisy data of ID3 with the if-then rule form 
(i.e. an ordered list of if-then rules) and flexible search strategy of the AQ family [2, 8]. ID3, 
Prism and CN2 assume that the training set is a complete one, i.e. they tend to produce only 
perfect rules. While ITRULE will find these rules, it also generates probabilistic rules. 
Furthermore,  it is stressed that domain knowledge can be used in inductive learning. For 
example, EG2 can use domain knowledge in decision induction [11]. 

In these algorithms, however, information theory is only used for generating inductively 
knowledge that is represented in decision tree or if-then rule, but the issue on refinement/ 
management of knowledge is not considered. Moreover, they are not used for evaluating the 
information of the logic formula and are not designed for performing multi-aspect intelligent 
data analysis and multi-level conceptual abstraction/learning in multiple learning phases. 

HML can be considered as a typical approach in which information theory is used as a 
criterion for learning knowledge. An important different point of HML and ID3 including 
Prism, CN2, ITRULE and EG2 is that HML is designed for refining/managing concept 
clusters discovered from databases. It can evaluate quantitatively the amount of information 
of a MLL formula and select the best representation of the MLL formulae by using 
cooperatively a criterion based on information theory and domain knowledge. Another  
important different point is that HML is not an isolated algorithm. Its development is based 
on the GLS methodology [27, 30]. That is, HML is one sub-system of GLS which can be 
cooperatively used with other sub-systems of GLS such as DBI, and serves as a learning phase 
in multiple learning phases of GLS for generating, refining and managing concept clusters 
denoted by using the Multi-Layer Logic formulae with hierarchical models. Furthermore,  the 
results of the refinement by HML can be further used in the next learning phase of GLS for 
acquiring more high-level knowledge [34]. 

3. Information of logical expression 

This section introduces information theory into the Multi-Layer Logic (MLL) expression. 
We first define the information of the MLL expression, and then discuss three theorems for 
effectively calculating the MLL information. Finally, an effective algorithm for evaluating the 
MLL information is given. 

3.1. Definition and theorems 

Let us consider a predicate F and let d be a finite base set. For simplicity, we assume F 
being a single place predicate F(x). It gives a description on an object in d. Or, in other words, 
F(x) classifies all elements in the set d into two classes: those that satisfy F(x) and those that 
do not. In the following, F(x) and F(x) mean that "F(x) : True" and "F(x) : False", respective- 
ly, for x ~ d. Let us define a concept "the state of d before and after the formula". It is 
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assumed that in the prior state, whether  F(x) or F(x) is not  clear for any x in d, while, in the 
poster ior  state, ei ther F(x) or F(x) is made  clear for some or all e lements  in d. Based on the 
preparat ion,  we first define the information of MLL. 

Definition 1. Information of MLL. Let d = {a 1 , a 2, . . . ,  aN} be a finite base set. The state of d 
is defined as the conjunctions of ei ther F(ai) or P(a~) for every e lement  a~ in d. Before  the 
formula  is given, the state of d includes all possibilities of combinations of F(ai) and P(a~), 
i = 1 , 2 , . . .  , N  such that S 1 : F(al)  A/~(a2) A " '" A F(aN) through S 2 N : F ( a l )  A F(a2) A " "  A 
F(aN).  Let the set S 1 be defined as the collection of all possible prior states, and the set S~ be 
defined as the collection of all possible posterior states. Thus,  S~ = {S 1, . . . ,  S2N }. When  the 
formula  F is given, the states of some of elements  are fixed. Then,  S~ becomes a subset of  S~ 
as shown in Fig. 5. Fur thermore ,  let their cardinalities be IS11 and IS21, and their entropies be 
defined as ISF 1 = loglS~l and Isr 2 = logls~l, respectively. Thus,  the amount  of information of 
the MLL formula F can be defined in the following Eq. (1), 

K =  ISF , -- ISF 2 = loglS~[- loglS%l • (1) 

That  is, the difference of ISF ~ and ISF 2 is the amount  of information K with respect  to the 
predicate  symbol F. 

F rom Eq. (1), we can see that more  information is obtained by decreasing the posterior  
en t ropy  ISF 2 of a MLL formula.  Moreover ,  the above definition is easily ex tended to the case 
of n place predicate with n greater  than one [12]. 

Example 1. Assume that we have an IS-A hierarchy shown in Section 2.1 and a MLL formula  
is given in the formal quantifiers Qi, 

[ Q I S #  /h I : sur face][Q2L # /S  : l ine]length(L 3) , 

where  Qi (i = 1, 2) denotes  either ~' or 3. Then,  d = { l ~ , 1 2 , . . . ,  16} and the different  
quantifiers in the prefix of this MLL formula have different amounts  of information.  Before  
the formula,  the predicate length(li 3) is either true or false for all possible states. Therefore ,  
]S1F[ = 2 6 and IogIS~F[ = 6. Thus,  

(1) [ V S # / h ~ : s u r f a c e ] [ V L # / S : l i n e ] l e n g t h ( L  3 ) ,  

Kvv = 6 - log 1 = 6 ; 

1 
SF 

Fig. 5. The prior and the posterior states sets of MLL. 
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This formula  says that all lines are of the length 3. That  is, only length(113 ) ^ • " A length(163 ) 
is allowed as a particular state. Thus,  IS2FI = 1. In the following cases, the numbers  of possible 
poster ior  states become 41 and 23, respectively. 

(2) [ V S #  /h  I • surface][3L# /S : line]length(L 3) ,  

Kv3 = 6 - log 41 = 0.642 ; 

(3) [::IS#/h I : surface][VL # /S : line]length(L 3) ,  

K3v = 6 - log 23 = 1.476 ; 

The  formula in case (4) says that there is some line of which the length is 3. That  is, this 
formula  allows every e lement  in S~ except length(l I 3 ) ^ . - - ^ l e n g t h ( l  N 3). Thus,  15%1 = 63. 

(4) [ 3 S #  /h  1 :surface][3L# /S :line]length(L 3) , 

K33 = 6 - log 63 = 0.023 ; 

where  Ko,o2 denotes  the amount  of information of a MLL formula with quantifiers QIQ2. 

Example  1 shows that the MLL formulae with different quantifiers may reveal various 
different  information even if the structure is the same. This is one of two aspects of  evaluating 
the MLL information.  Ano the r  aspect is to evaluate a MLL formula with different  structures. 
This will be discussed in this section and Section 4.2. 

Based on Definition 1, we discuss also three theorems in this section for effectively 
evaluating the information of the MLL formula. 

Theorem 1. Complement of  the posterior cardinality of  MLL.  The posterior cardinalities of  the 
M L L  formulae with contrary quantifiers in their prefixes are complementary. That is 

2 1 2 
Is = Is el - IS Fl v • ( 2 )  

Proof.  When  the domain sets are finite and without loss of generality,  let an IS-A hierarchy be 
defined as 

! i n s _ e * d  d l , d  2 , . . . , d , ~ ;  

!ins_e dl a l ,  a 2 , . . .  , a  t ; 

! i n s _ e d  2 a l , a 3 , a  5 , . . . , a j ;  

!ins_e dma2, a3, a s , . . .  , a k ; 

where  e lements  a~, ae, a3, a s in a 1, a 2 , . . . ,  a,  are " tangled"  elements  (i.e. one a i can belong 
to more  than one dr). And  let a MLL formula with the prefix V3 be 

IVY~ * d] [3X/Y l f (X)  . 

Let  the probability P([Q1 Y~ * d][Q2X/Y]f(X)) be PQ~o2, and let f(ai) be simply represented  
as b i. Since the prior probability is not known in advance, it is assumed that the probabilities 
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of P ( f ( X ) )  and P ( - f ( X ) )  are equiprobable. Then based on Definition 1, the posterior 
probability of this MLL formula is 

P w  = P ( ( b l  U b 2 U " . . U bz) fq (b 1 U  b 3 U b s U " . . U b j )  n . . . fq (b 2 U b 3 U b s . . . U b k )  ) .  

And let P ( -  f o r m u l a )  be P (  f o r m u l a ) ,  then because 

Pv3 = P((b~ U b2 U . . . U b t )  n (b l  U b s U b s U . . . U b / )  

n . . .  n (b 2 u b 3 U b 5 • " U bk)  ) 

= P ( b  I U b 2 U • • • U b t U b  1 U b 3 U b 5 U • • • U bj 

U " • " U b  2 U b s U b 5 U • • • U bk)  

= P((6, u 6~ n . . .  n 6,) u (t~, n 63 n 6~ n . . -  n t~) 

U " -  U (b2 n b3 n b s  n . . .  n bk))  

= P ( ( b  I n b 2 n . . -  n b , )  U (b I n b 3 n b5 n - - .  n bj) 

U . . .  U (b 2 n b 3 n b s N - - .  n bk) ) 

= P~v,  (3) 

Pv3 + Pv~ = Pv3 + P:~v = 1.  

Fur thermore ,  since the posterior cardinalities of the MLL formulae with the prefixes V3 and 
3V are 

S 2 I Fly3 = P w  x H ,  (4 )  

Is%l~ = P3v x H , (5 )  

where H is the maximal number  of possible elements and H is also the prior cardinality (i.e. 

Is'~l = m ,  
2 

I s ~ l ~  = P ~  x H = (1 - p ~ )  x H = U - e ~  x H 

= I s ~ l -  s ~ I 71~v. [] 

Moreover,  by using the same method stated above, we can also prove 

2 1 2 I s , l ~  I s A -  • 

Furthermore ,  since 

K = loglS~l- loglS~l = log  H -  log  P x H 

H 1 
= log p x H - l ° g p '  (6) 

and based on Theorem 1, we can calculate the information of the MLL formulae with 
quantifiers :iV and V:i by using 
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and 

1 
K w = log 1 - P3v (7) 

1 
K3v = log P3v " (8) 

In order to calculate P3v, the following Eq. (9) is used if there are "tangled" elements 
among sub-sets of the base set of an IS-A hierarchy (e.g. the calculation of Eq. (3)), 

P(e 1 U e  2 U " " Ue,,_ 1Ue,,) 

= ~, P(ei)- ~ P(einej) 
i = l  l~i<j~n 

+ ~ P ( e ~ n e j n e ~ )  . . . .  + ( - 1 ) " - ~ P ( e ~ n e 2 n . . . n e . _ ~ n e . ) ,  (9) 
1 <~i<j<<-n 

else Eq. (10) is used, 

P(e i U e 2 U • ' '  U e,,_ 1 U e,,) 

= 1 - P ( e  I Ue 2 U " "  Ue ,_  1 Ue , )  

= 1 - p f f ,  n ~2 n . . .  n C - ,  n ¢ ) .  (10) 

From Eqs. (7) and (8), we can further see another aspect of evaluating the MLL 
information, i.e. a MLL formula with different structures may also reveal various different 
information. The example about this will be shown in Section 4.2. 

Theorem 2. The equivalence o f  information o f  M L L .  In the case o f  the IS-A hierarchy, it is 
possible to refine a hierarchical structure by defining new intermediate nodes. Then the prefix 
sequence becomes longer. I f  the same quantifiers appeared in succession in the prefix o f  a M L L  
formula  such as 

(1-1) [ Q X " - I / s ] [ 3 X " - 2 / X "  1]... [3X2/X3][3xl/x2]f(xl), 

(2-1) [QX"-'/s][Vx"-2/x"-l] . . .  [vx2/x3][vx~/x2]f(xl) ,  

then they can be, respectively, regarded as 

(1-2) [QY/s][3x/Y]f(x),  
(2-2) [ Q Y / s ] [ V X / Y ] f ( X ) ,  

when calculating their information. 

Proof. We would like to prove Theorem 2, only prove the information of the formulae (1-1), 
(1-2) and (2-1), (2-2), 

K ( 1 _ 1 )  = K¢~_2) and K(2_1) = K ( 2 _ 2 )  . 
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Fur the rmore ,  based on Eq. (6), only prove their probabilities 

PQ3...a = PQ3 and Pov...v = P o v  • 

Without  loss of generality,  let the prefix of a MLL formula involve n same quantifiers 
appeared  in succession, and let the base set d involve M elements.  It is clear that 

2 M -  1 
P31323,  = P31323,  i . . . . .  P33 = P3 = 2 M , 

1 
Pv~v2..-v, = Pvlv2-..v, i . . . . .  Pvv = Pv - 2 M , 

Based on this, the following equalities also hold, 

Pv3,32...3. = Pv3,~2""n. I . . . . .  Pw3 = Pv3 , 

P3v~v2...v. = P3v~v2...v. ~ . . . . .  P3vu = P3v • [] 

T h e o r e m  2 shows the equivalence of information of MLL with the same quantifiers 
appeared  in succession in the prefix of a formula. It can be used for convenience in the 
calculation. The example about this will be shown in Section 4.2.2. 

Theorem 3. Information o f  Tautology o f  M L L .  Let  K m and K~ denote, respectively, the 
amounts  o f  information o f  the M L L  formulae A and B with different quantifiers, and let A ~ B 
denote that i f  A is true then B is true, we have 

I F A f f B ,  T H E N K  A >I K B . 

Proof.  Assume this is not  true. Then  there must be some B such that A f f  B and - ( K  A >! KB) 
-- - Without  loss of generali ty,  o r A ~ B a n d K  A < K B. By Definit ion l ,  we have K A ISA 1 ISA2" 

let I S A =  ISB 1" Then,  K A < K B is equivalent with ISA > I s or S2A > S~. This means  that  there 
is some posterior state which is included in S2A but 2 2 B 2 S B, for which A is true but B is not  true. 
This is a contradiction. [] 

It is possible to evaluate the amounts  of information of the MLL formulae with the different  
sequence  of quantifiers in the prefix. For example,  let the quantifiers set of  the MLL formulae  
Q = {Q1,  Q2, 0 3 } ,  and 0 i  (i = 1, 2, 3) denote  ei ther V or 3. Based on this, we define a state 
graph of quantifiers of the MLL formulae as shown in Fig. 6, and let d be a finite base set for 
presenting an IS-A hierarchy and let f be a predicate.  Thus, Fig. 6 denotes  all different  
combinat ions of quantifiers of  the MLL formula,  

[ 0 1 Z /  * 2 d ] [ O 2 Y / Z ] [ O 3 X / Y ] f ( X )  . 

A n d  a partially ordered  set of  Q is <Power(Q) ,  c > ,  i.e. 

Power(Q) = {W'C'V, VV3, V3V, 3VV, V'=I3,=IV3, 3=IV, =133}. 

Thus,  we can see that Fig. 6 is just its Hasse diagram presented a lattice structure.  Therefore ,  
the cover  relation of Power(Q) is 



N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252 239 

Level-4 VVV 

Le~t-S VV3 V3V 3VV 

IX XI 
Lever.2 ~r~3 3~3 33V 

Level-1 333 

Fig. 6. A state space of quantifiers of MLL. 

covPower(Q)={<333,33V>, <333,3V3>, 
<~33, W3>,<33V,~VV>, 
<33v, v3v>,(3v~,3vv>, 
<~w,vw>,<v33,wv>, 
<w3,vv3>,<3vv, vvv>, 
<v~v, vvv>,<vw,vvv>}. 

Based on this, let <B, A> denote any cover relation in c o v P o w e r ( Q ) .  Thus, based on 
Theorem 3, we have Kn <<-K a in which the formulae B, A satisfy <B, A>. Furthermore,  
according to Eq. (6), then K B <~ K z is equivalent with PB >~ PA, i.e. 

P ~ 3  ~> P~v 

P~33 ~> P3v3 

P333 ~> Pv33 

P3vv ~> Pvvv 

Pv~v/> Pv~ 
p ~  t> pv~ 

Example 2. According to Theorem 3, because 

[VS# /h i : sur face][VL # / S : l ine]length(L 3) 

[ V S #  /h I : s u r f a c e ] [ 3 L #  /S  : l ine]length(L 3) ,  

I~v >! I,:~. 

In general, we can create a state graph of quantifiers of the MLL formula for learning its 
quantifiers. The state graph as shown in Fig. 6 is the one in which the number of quantifiers is 
equal to 3. This state graph is divided into four levels. The uppermost level is with the most 
information. The further example about using Theorem 3 will be shown in Section 4.1. 
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3.2. A n  algorithm 

Based on the definition and theorems stated above, we developed an effective algorithm for 
calculating the MLL information. At first, we only consider how to calculate the amounts  of 
information of the MLL formulae with the prefixes VV, V3, :IV or 33 .  That is: 

If we would like to calculate the amounts of information of the MLL formulae with the 
prefixes V'q', V3, :IV and 33 ,  only calculate 'q and :IV according to Theorem 1 and Theorem 
2. 
If the quantifiers in the MLL prefix either VV, V3, 3V or 33  can be used, select VV 
according to Theorem 3. 
Fur thermore,  Eq. (9) or (10) can be easily used for calculating the probability of the sum of 
" tangled" or dependent  elements. That is, if we calculate the amount  of information of the 
MLL formula with the prefix V3, then 
Step 1: Calculate the probability of the MLL formula with the prefix V3 in Eq. (9) or (10) 
according to whether  there are "tangled" elements among sub-sets of the base set of an 
IS-A hierarchy. 
Step 2: Calculate the amount  of information K in Eq. (7). 

Example 3. We use (2) in Example 1 as an example of using this algorithm and let length(li3 ) 
be simply represented as b i. Thus, if we would like to calculate the amount  of information of 
the MLL formula with the prefix V3, then first, calculate the probability of the MLL formula 
with the prefix ::iV in Eq. (9). That is, 

23 
P~v = P((b~ A b 2 71 b4) tO (b 1 f7 b 3 A bs) U (b 2 71 b 3 71 b6) tO (b 4 71 b~ 71 b6) ) - 26 , 

next, calculate the amount  of information 

1 
K w = log 1 - P3~ - 0.642. 

Al though most applications only need to consider the MLL formulae with 2 alternating 
quantifiers or the same quantifiers appeared in succession (see Section 4), we will now discuss 
how to extend the above algorithm for processing more than 2 alternating quantifiers like 
3Vzl. V3V, etc. This extension can be easily done because we can expand an expression of 
probability corresponding to a complex sequence of quantifiers of a MLL formula into a 
simpler form (i.e. the same form as 3'q), so that Eq. (9) can be used for calculating its 
probability. We describe it by the following example. 

Example 4. If we would like to calculate the amount  of information of the following MLL 
formula with the prefix V3V and the IS-A hierarchy shown in Fig. 7, 

[VZ/  * 2 d ] [ 3 Y / Z ] [ V X / Y ] Z ( X )  , 

then first, write out the expression of probability corresponding to the MLL formula as 
follows: 

Pv3v = P((a, 71 a: U as) N a4).  
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*2d 

a l  a2  ~ a4  

Fig. 7. A sample IS-A hierarchy to describe the more complex MLL prefix. 

Then, expand this expression into a simpler form as follows: 

Pv3u = P((a,  n a: U a3) n a4)  = P((a, n a 2 n a4) U (a 3 N a4) ) . 

That is, this is the same form as 3V. Thus, Eq. (9) can be used for calculating its probability. 
That is 

5 
Pv3v = P((al n a 2 N a4 )  U (a 3 n a4)) - 24 , 

and the amount of information is 

1 
Kv3 v = log Pv3v - 1.678. 

4. Hierarchical modeling learning 

Based on the preparation in Sections 2 and 3, this section introduces the approach of 
hierarchical mode l  learning (HML). It is mainly composed of three functions: 

• Representing the concept clusters discovered from a database by DBI as the MLL 
formulae with hierarchical models in a knowledge-base. It includes hierarchical modeling 
for concept clusters and automatic selection of quantifiers in the prefixes of the MLL 
formulae. 

• Refining the hierarchical models by using domain knowledge and/or  when new concept 
clusters are discovered along with data change in a database. This is to select auto- 
matically a best (or more refined) hierarchical model from more hierarchical models 
belonging to a family. 

• Managing the hierarchical models by using the set chains of hierarchical models and their 
inheritance graphs. 

We would like to use a breast cancer database [6], which calls breast-cancer as shown in 
Table 1, as an example for showing our approach. In this database, each tuple corresponds to 
one patient and values of 10 attributes are given for each patient. The domain of every 
attribute is given by the sets of 9 quantized values that are classified as a case of benign or 
malignant cancer, resulting from clinical examinations related to this disease. The meanings of 
the attributes used in Table 1 are as follows: 
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Table 1 
DB: breast-cancer 

id code-n aO al  a2 a3 a4 a5 a6 a7 a8 a9 

1 160296 4 5 8 8 10 5 10 8 10 3 
2 342245 2 1 1 3 1 2 1 1 1 l 
3 428598 2 1 1 3 1 1 1 2 1 1 
4 492561 2 4 3 2 1 3 1 2 1 1 
5 493452 2 1 1 3 1 2 1 1 1 1 
6 493452 2 4 1 2 1 2 1 2 1 1 
7 521441 2 5 1 1 2 2 1 2 1 1 
8 560680 2 3 1 2 1 2 1 2 1 1 
9 636437 2 1 1 1 1 2 1 1 1 1 

10 640712 2 1 1 1 1 2 1 2 1 1 

1266154 4 8 7 8 2 4 2 5 10 1 
1272039 2 1 1 1 1 2 1 2 1 1 
1276091 2 2 1 1 1 2 1 2 1 1 
1276091 2 1 3 1 1 2 1 2 2 1 
1276091 2 5 1 1 3 4 1 3 2 1 
1277629 2 5 1 1 1 2 1 2 2 1 
1293439 2 3 2 2 3 2 1 1 1 1 
1293439 2 6 9 7 5 5 8 4 2 1 
1294562 4 10 8 10 1 3 10 5 1 1 
1295186 4 10 10 10 1 6 1 2 8 1 

c o d e - n -  code-number (Sample Code Number) 

a0-b-cancer- type  (Breast Cancer Type: 2 for benign, 4 for malignant) 

al  - clump-t (Clump Thickness) 

a 2 -  u-cell-size (Uniformity of Cell Size) 

a 3 -  u-cell-shape (Uniformity of Cell Shape) 

a 4 -  marginal-adhesion (Marginal Adhesion) 

a 5 -  s-e-cell-size (Single Epithelial Cell Size) 

a 6 -  bare-nuclei (Bare Nuclei) 

a 7 -  bland-chromatin (Bland Chromatin) 

a8 - normal-nucleoli (Normal Nucleoli) 

a9 - mitoses (Mitoses). 

Furthermore, in order to describe the change of data in database, the breast cancer 
database is divided into two groups: group 1 for fundamental data and group 2 for its 
variation. The objective is to find which conditions of the 9 attributes indicate malignant and 
which no malignant cancer, and form concept clusters by decomposing this breast cancer 
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database,  so that finally to represent the results as the MLL formulae with hierarchical models 
in a knowledge-base and ref ine/manage them by HML [29]. 

4.1. Knowledge generation 

The process of knowledge generation can be divided into two main stages by using 
cooperatively DBI  and HML. The first stage is to decompose a database for forming concept 
clusters by using DBI. This has been described in our paper [29]. To make this paper 
self-content, we describe briefly the main steps of forming concept clusters in DBI as follows: 

Step 1 : Create a Probability Distribution Matrix (PDM). There are many kinds of methods  
for creating the PDM, depending on their purposes. For our application, the dependency 
relations between any two attributes are considered, their probability distributions are 
calculated and recorded in a PDM. Let a = { a  1, a 2 . . . . .  an} and b = {b 1, b 2,  • • • , b,,} be 
the sets of different values of any two attributes in a database that has been preprocessed. 
Using conditional probability, we have 

p(x, n xj) 
p(xi lxj)-  p(xj) x i , x j~a ,b .  (11) 

From this we define Pij, the probability distributions, to be p ( x  i Ixj)/N, where N is the 
number  of attributes. These pij consti tute the entities of the PDM. 
Step2: Form the diagonal matrix. It is a step as pre-processing before decomposing the 
PDM. Two methods,  diagonalization by a special attribute as a supervised method  and 
diagonalization by the optimum decomposition as an unsupervised method,  can be used for 
this according to the cases in which a criterion of forming the diagonal PDM is given by the 
user or not. Since there is obviously a special attribute (i.e., the attribute b-cancer-type, or 
e.g. cl, c 2 as shown in Fig. 8) that can be chosen by the user as a criterion of forming the 
diagonal PDM for this breast cancer database, the method,  diagonalization by a special 
attribute, is used for obtaining the diagonal PDM shown in Fig. 8. 
Step3: Decompose  the diagonal PDM by a decomposing algorithm. In decomposing,  
primary factors for describing some concepts are aggregated by selecting proper  attributes, 

cl 
a l l  

c2 
aij 

c l , a l l  .... c2 ,~ j  .... 

PI  

P2 

7. 
Fig.  8. F o r m i n g  t h e  d i a g o n a l  P D M  by  a spec ia l  a t t r i b u t e .  
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and two kinds of noises, minor elements and irrelevant elements are neglected. Where,  the 
minor elements are those whose probability values are much smaller than other related 
values. For example, in the breast cancer database, if bare-nuclei = 1 then the probabilities 
of malignant and benign are 0.02 and 0.98, respectively. Thus, bare-nuclei = 1 cannot be 
used as one of the conditions of malignant cancer. Therefore, it is neglected as a minor 
factor. The irrelevant elements are those who cannot be used to differentiate concepts. For 
example, in the breast cancer database, if mitoses -- 3 then the probabilities of malignant and 
benign are both nearly 0.5, even though some data are not appearing in Table 1. Thus, 
mitoses = 3 cannot be used to differentiate malignant from benign. That is, mitoses = 3 is 
useless for knowledge discovery and cannot be classified into a cluster. Therefore, they 
should also be omitted as an irrelevant element although its probability value may be fairly 
large. As the result of decomposing a PDM, several sub-matrices are formed. These results 
are applied back to a database that has been preprocessed and the job of decomposing the 
database is thus completed. As the result of decomposing the database, concept clusters are 
formed. 
As its consequence, the following two concept clusters can be discovered from group 1 of 

the breast cancer database, 

1. The conditions of benign cancer: 

clump-t: 1, 4, 2, 6.  

u-cell-size: 1, 3, 2, 9. 

u-cell-shape: 2, 1, 4. 

s-e-cell-size: 1. 
bare-nuclei: 0, 3, 8. 

bland-chromatin: 1, 3, 4. 

mitoses: 2. 

2. The conditions of malignant cancer: 

clump-t: 10, 7, 8, 9. 

u-cell-size: 8, 6, 10, 5, 7. 

u-cell-shape: 8, 10. 

marginal-adhesion: 10, 7. 

s-e-cell-size: 6, 8, 10. 

bare-nuclei: 10, 9. 

bland-chromatin: 8, 7, 9, 6, 10, 5. 

normal-nucleoli: 10, 8, 9, 6. 

mitoses: 4, 8. 

That is, the elements in above two clusters can be respectively used as the conditions of 
indicating malignant and which no malignant cancer. 



N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252 245 

Based on the results stated above, the second stage of knowledge generation is to represent 
the concept clusters as the MLL formulae with hierarchical models in a knowledge-base by 
using HML. For example, the hierarchical model corresponding to cluster-l, which represents 
the conditions of benign cancer, can be generated as shown in Fig. 9, and the corresponding 
MLL formula can be created as Rule 1: 

Rule 1: /* The rule for diagnosing breast cancer */ 

[VY#/benign : symptom][3X#/Y]p-breast-cancer(Y X). 

Rule I reads "if the symptoms recorded in the set-elements relations about benign are satisfied, 
then the breast cancer is benign."; The similar rule for the malignant cancer can be created to 
mean "if the symptoms recorded in the set-elements relations about malignant are satisfied, then 
the breast cancer is malignant.". 

Thus, there are two important jobs in knowledge generation in HML. The first is 
hierarchical modeling. Where, the process of representing a concept cluster by an IS-A 
hierarchy (i.e. the hierarchical model represented by the set-elements relation in MLL, and 
Fig. 9 is an example of its equivalent graph) is called hierarchical modeling. For example, two 
concept clusters discovered from group 1 of the breast cancer database are represented by two 
IS-A hierarchies. 

Another  job in knowledge generation in HML is to select quantifiers in the MLL prefix. 
Since the choice of the MLL prefix is sensitive to the relationships among the conditions of 
indicating malignant and which no malignant cancer, we have to interpret that the relation- 
ships among the conditions are either conjuctive or disjunctive. First, according to the 
principle that values in an attribute do not happen at the same time for a tuple in universal 
relation, the relationships among the conditions belonging to an attribute in a cluster are 
disjunctive. Thus, for the conditions belonging to an attribute, we use the quantifier 3. 
Furthermore,  you can ask that the relationships among the conditions belonging to different 
attributes should be either conjunctive or disjunctive. This mainly depends on the method of 
creating PDM in DBI. Since the method of creating PDM described in this paper only 
considers the dependency relations between any two attributes, and the attribute "b-cancer- 
type" is used as a special attribute for forming the diagonal PDM, the elements in every 
cluster can be interpreted as the conditions of indicating malignant and which no malignant 
cancer. However, the relationships (i.e. conjunctive or disjunctive) among the conditions 

benign 

clump-t u-cell-size u-cell-shape s-e-cell-size bare-nuclei bland-chromatin mitoses 

A A / k  [ /k /k I 
1 4 2 6 I 3 2 9 2 I 4 1 0 3 8 1 3 4 2 

Fig. 9. The  hierarchical  model  of group 1. 
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belonging to different attributes are indefinite. In other words, both of the quantifiers V and 3 
can be used for the conditions belonging to different attributes. Thus, both of the MLL 
prefixes, 

(1) [3 Y# / benign : symptom] [3X# / Y] 
and 

(2) [VY#/benign : symptom][3X#/Y] ,  
can be used for representing the acquired concept clusters. Where, we can see that if the MLL 
formula with the prefix (2) is true then the one with the prefix (1) is true, that is, 

[VY#/benign : symptom][3X#/Y]p-breast-cancer(Y X) 

[3Y#/benign  : symptom][3X#/Y]p-breast-cancer(Y X),  

from Theorem 3 stated in Section 3.1, we know that the amount of information of the MLL 
formula with the prefix (2) is larger than the one with the prefix (1). Therefore, the prefix (2) 
is selected for representing the concept clusters. 

The main reasons why the discovered concept clusters are represented as the MLL formulae 
with hierarchical models are 

• We need to use a kind of model representation in our system for both compact 
representing and flexibly revising the bulky concept clusters discovered from a database; 

• By representing the discovered concept clusters as the MLL formulae, we can further 
combine knowledge-based system techniques with statistical/decision analysis methods 
for flexibly managing, refining and using them. 

Knowledge representation in MLL is a kind of model representation. That is, the representa- 
tion of the structure and the functionality (property, function, etc.) description is separated so 
that by changing the structure, the representation with the more information is reached. For 
example, the structure entity discovered from the breast cancer database by DBI can be 
recorded by the set-elements relations that represent the IS-A hierarchies. The structural 
relation is represented by the MLL prefix, 

[VY#/benign : symptom][ZlX#/Y], 

and the functionality description is represented by 

p-breast-cancer(Y X) .  

Even when structure changed by the additional data, the MLL formula is not generally 
changed. Because of the uncertainty and incompleteness of data in databases, the knowledge 
discovered from databases is only a hypothesis, which must be refined (evaluated/modified) in 
multiple learning phases. Also, because databases are not static but dynamic, new hypotheses 
are generated when data change in databases [27, 29]. Therefore, this kind of model 
representation is very important for knowledge discovery in databases. Here, learning is to 
select an expression with more information. 

In the phase of knowledge generation, we see that the evaluation of the MLL information is 
mainly used for selecting quantifiers of a MLL formula with same structure from the state 
space of quantifiers. This is one of two aspects of evaluating the MLL information as stated in 
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Section 3.1. Another  aspect is to evaluate a MLL formula with different structures. This 
involves knowledge refinement to be stated in the following Section 4.2. 

4.2. Refinement 

There are two main methods for refining the hierarchical model. First, a proper  hierarchical 
model  is selected by evaluating the MLL information. That is, re-construct an expression of 
the hierarchical model  to a more informative one. Second, the hierarchical model  is refined by 
cooperatively using domain knowledge and informative evaluation. That  is, an expression is so 
refined as to satisfy special requirement.  We consider that these methods  are reasonable 
because the information of MLL may be either an increase or decrease along with the change 
of data in a database, and experts can easily represent their knowledge in a knowledge-base 
for refining the hierarchical models. 

4.2.1. Refinement by evaluating the information of MLL 
When new concept clusters are discovered from a database, the better hierarchical model  

can be selected by evaluating the MLL information. For example, when another  concept 
cluster as shown in Fig. 10 is discovered by adding group 2 of data to the breast cancer 
database, we can calculate the amounts of their information based on the MLL prefix, 

[VY# / benign : symptom][3X# / Y],  

for selecting the better one from two hierarchical models shown in Figs. 9 and 10 by using the 
algorithm stated in Section 3.2. Since the result of the calculation is 

Kg 2 -~ 2.864 > Kg~ = 2.764, 

the hierarchical model  shown in Fig. 10 is selected. That is, learning is to select a hierarchical 
model  with more information. 

4.2.2. Use of domain knowledge in refinement 
Since experts can bring domain knowledge to bear while refinement, the hierarchical model  

also can be refined by using cooperatively domain knowledge and informative evaluation. For 
example,  if the following domain knowledge, 

benign  

dump-t u-cell-size u-cell-shape s-e-cell-size barn-nuclei b l a n d ~  mitoses 

1 2 6 1 3 2 9 2 1 4 1 0 3 8 1 3 4 2 

Fig. 10. A hierarchical  model  in which group 2 of data  was added .  
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?ins_e uniformity u-cell-size, u-cell-shape ; 

!ins_e cell u-cell-size, u-cell-shape, s-e-cell-size ; 

?ins_e nuclei bare-nuclei, normal-nucleoli, mitoses ; 

?ins_e other clump-t, bland-chromatin;  

is used, then a more refined hierarchical model as shown in Fig. 11 can be acquired. That  is, 
domain knowledge is used for conceptual abstraction (generalization). Here,  the lowest leaves 
of the hierarchical model  are only observable values that are collected in a database: The other 
values are called abstract values, and the second lowest leaves of the hierarchical model  are 
called the lowest level o f  abstract values. However,  abstract values can be "tangled" (i.e. a 
value can belong to more than one abstract value in a higher level as shown in Fig. 11). 

The prefix of the MLL formula with the hierarchical model  as shown in Fig. 11 can be 
represented into 

[VZ# /benign:symptom][VY# / Z ] [3X #  / Y].  

Since the same quantifiers appeared in succession in the prefix of this formula, the amount  of 
information of this formula with the hierarchical model  shown in Fig. 11 is the same with the 
one shown in Fig. 10 (according to Theorem 2). Therefore,  the hierarchical model  shown in 
Fig. 11, in which group 2 of data was added and conceptual abstraction was done,  is selected 
as a more refined one. Here,  learning is to select the best hierarchical model  by using 
cooperatively domain knowledge and informative evaluation. 

4.3. Management 

Management  of hierarchical models is an important  issue when more hierarchical models 
belonging to a family are generated along with data change (i.e. to add, delete or update data) 
in a database. In HML, the set chains and the inheritance graphs of hierarchical models are 
used for this purpose. By means of them, the following jobs can be done: 

• Hierarchical models belonging to a family, which denote concept clusters discovered from 
a database, are first stored in the set chains, and then are refined (evaluated/modified);  

benign 

uni formlty cell nuclei 

o-cell-size u-oell-shape s-e-cell-size bare-nuclei mitoses 

/Ok/b, I 
1 3 2 9 2 i 4 1 0 3 8 2 

other 

/X 
clun~t Nand-ctm~ma~ 

Fig. 11. A hierarchical model used domain knowledge. 
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Fig. 12. An inheritance graph and operations. 

• The time and history of hierarchical models are represented and managed. That is, the 
set chains for storing hierarchical models are dynamically generated as time goes on for 
recording the evolution process of hierarchical models; 

• The inheritance graphs of hierarchical models are dynamically generated for describing 
the relationships among hierarchical models. 

The set chains of hierarchical models are defined by the set-elements relation of KAUS. 
The set chains and the inheritance graphs are managed by a meta knowledge level as shown in 
Fig. 12. Fig. 12 also shows the structure of the inheritance graph and some operations for it in 
HML. That is, model-g24, model-g2 and model-g4, etc. shown in Fig. 12 denote several 
hierarchical models with inheritance relationship; three knowledge-bases of HML, meta-ctl- 
hml, hml-ref-kb and hml-gen-kg, which are divided into two knowledge levels: meta-level and 
object-level, are, respectively, used for performing/controlling different operations. 

5. Conclusion 

We presented a hierarchical model learning (HML) approach for refining and managing 
concept clusters discovered from databases. It can be considered as a typical approach in 
which information theory is used as a criterion for learning knowledge. It is based on the 
model representation of Multi-Layer Logic (MLL). A prototype of HML has been im- 
plemented as one sub-system of our GLS discovery system. Main features of our approach can 
be summarized as follows: 

• Hierarchical modeling for concept clusters. That is, concept clusters discovered from 
databases are represented as the MLL formulae with hierarchical models in a knowledge- 
base; 

• Automatic selection of quantifiers in the prefix of the MLL formula. That is, quantifiers V 
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and 3 for constituting the prefix of a MLL formula are selected from the state space of 
quantifiers; 

• Automatic selection and refinement of hierarchical models. That is, the best hierarchical 
model is selected from a family of hierarchical models by evaluating the information of 
MLL; 

• Domain knowledge can be cooperatively used with informative evaluation in refinement 
for acquiring the more refined hierarchical model; 

• More hierarchical models generated along with data change in a database can be 
managed by using the set chains of hierarchical models and the inheritance graphs of 
hierarchical models. These set chains and the inheritance graphs are managed by a meta 
knowledge level. 

Furthermore,  we would like to emphasize that the hierarchical model learning (HML) 
approach is only used as a learning phase in multiple learning phases of our GLS discovery 
system [30], the results of the refinement by HML are not the final ones in the discovery 
process, and can be further used in the next learning phase for acquiring more high-level 
knowledge. How to use cooperatively hierarchical model learning with case based reasoning 
and decision analysis is a further research subject. Its objective is just to acquire more 
high-level knowledge from the discovered concept clusters which are represented as the MLL 
formulae with hierarchical models. This involves a new sub-system of GLS that is being 
developed by us [34]. 
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