
I DATA & KNOWLEDGE
ENGINEERING

ELSEVIER Data & Knowledge Engineering 20 (1996) 227-252

A hierarchical model learning approach for refining and
managing concept clusters discovered from databases

Ning Zhong a'*, Setsuo Ohsuga b

aDepartment of Computer Science and Systems Engineering, Faculty of Engineering, Yamaguchi University,
2557 Tokiwadai, Ube-Shi 755, Japan

bDepartment of Information and Computer Science, School of Science and Engineering, Waseda University, 3-4-1
Okubo Shinjuku-Ku, Tokyo 169, Japan

Received 26 April 1995; revised 17 August 1995; accepted 26 December 1995

Abstract

The contents of most databases are ever-changing, and erroneous data can be a significant problem in real-world
databases. Therefore, the process of discovering knowledge from databases is a process based on incipient
hypothesis generation/evaluation and refinement/management. Although many systems for knowledge discovery
in databases have been proposed, most systems have not addressed the capabilities of refining/managing the
discovered knowledge. This paper describes a hierarchical model learning approach for refining/managing concept
clusters discovered from databases. This approach is the basic one for developing HML (Hierarchical Model
Learning), which is one sub-system of our GLS (Global Learning Scheme) discovery system and can be
cooperatively used with other sub-systems of GLS such as DBI (Decomposition Based Induction). By means of
HML, concept clusters discovered from a database by DBI can be represented as the Multi-Layer Logic formulae
with hierarchical models in a knowledge-base and can be easily refined/managed according to data change in a
database and/or domain knowledge. HML is based on the model representation of Multi-Layer Logic (MLL). Its
key feature is the quantitative evaluation for selecting the best representation of the MLL formulae by using
cooperatively a criterion based on information theory and domain knowledge. Experience with a prototype of
HML implemented by the knowledge-based system KAUS is discussed.

Keywords: Knowledge discovery in databases; Multi-Layer Logic; Machine learning; Information theory;
Hierarchical modeling; Refinement; Management

I. Introduction
Knowledge discovery in databases (KDD) is becoming an important topic in AI and is

attracting the attention of leading researchers in databases [19, 7]. This topic is different from
traditional researches of machine learning, though it uses their results [10]. In particular, the

* Corresponding author. Email: zhong@ai.csse.yamaguchi-u.ac.jp

0169-023X/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved
SSDI: 0169-023X(96)00003-1

228 N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252

contents of most databases are ever-changing (i.e. data in databases can be often deleted,
added or updated), and erroneous data can be a significant problem in real-world databases
(i.e. data in databases are generally uncertain and incomplete) [7, 27]. Hence, the process of
discovering knowledge from databases is a process based on incipient hypothesis generation/
evaluation and refinement/management as shown in Fig. 1 [27]. In this process, it is required
to perform multi-aspect intelligent data analysis and multi-level conceptual abstraction/
learning in multiple learning phases [30]. Although many systems for knowledge discovery in
databases such as INLEN, Forty-Niner, KDW, EXPLORA and DBLEARN have been
proposed [9, 35, 18,4, 3], most systems have not addressed the capabilities of refining/
managing the discovered knowledge. For example, although there are knowledge manage-
ment operators in INLEN, it is not automatically done and the operator for knowledge
refinement was not addressed; Forty-Niner can refine regularity by expanding their range
and/or strengthening their pattern, however it was not considered how to refine the
discovered regularity when data change (e.g. add or delete some data) in databases, and it was
also not addressed how to manage the discovered regularities; KDW, EXPLORA and
DBLEARN did not address the capabilities of management and refinement.

We have been developing a methodology/system for knowledge discovery in databases,
called GLS (Global Learning Scheme) based on this process as shown in Fig. 1 [27, 30]. The
GLS system is developed as a toolkit that is composed of several sub-systems. At present, two
sub-systems of GLS, DBI (Decomposition Based Induction) and KOSI (Knowledge Oriented
Statistic Inference), have been developed for discovering incipient hypotheses from databases
[29, 32], and two further sub-systems of GLS, HML (Hierarchical Model Learning) and IIBR
(Inheritance Inference Based Refinement), have been developed for refining and managing
incipient hypotheses discovered from databases [28, 31]. Furthermore, a discovery process as
shown in Fig. 1 can be organized dynamically and performed in succession. For example, DBI
can be first used for discovering concept clusters hidden in the data [29], and then by means of
HML, the discovered concept clusters can be represented as the Multi-Layer Logic formulae
with hierarchical models in a knowledge-base and can be easily refined and managed
according to data change in a database and/or domain knowledge.

This paper describes a way of refining/managing concept clusters by using HML. In GLS,
the refinement for concept clusters can be divided into two levels. The first one is the data

/ " v,, i

INCIPIENT I
H Y P O T H E S I S - - -
GENERATION

Fig. 1. The process of disxovering knowledge from databases.

N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252 229

level. In this level, concept clusters are refined by the learning space defined in DBI for
processing the perturbation problem of databases. This has been discussed in our paper [29].
This paper focuses to discuss the other one, i.e. the rule level in which concept clusters are
refined by using hierarchical model learning (HML). Furthermore, the results of the
refinement by HML can be further used in the next learning phase for acquiring more
high-level knowledge [34]. How to use the results of the refinement by HML for acquiring
more high-level knowledge is not discussed here but is left as an independent problem to be
discussed elsewhere, because it involves another sub-system of GLS that is being developed by
US.

In the following sections, we will describe the details of HML. Section 2 describes main
backgrounds on HML including a summary of the features of Multi-Layer Logic and a
comparison to related work using information theory for machine learning. Section 3
introduces information theory into logical expression and describes an effective algorithm for
calculating the information of the Multi-Layer Logic formula as the theoretical preparation for
our application. Section 4 describes the approach of hierarchical model learning (HML). It
mainly includes the knowledge generation, the knowledge refinement and the knowledge
management. Finally, Section 5 gives a summary of the features of our approach and future
research subjects.

2. Backgrounds on HML

There are two main backgrounds on HML. The first is the model representation of
Multi-Layer Logic (MLL) with the hierarchical structure [17, 12]. The other is information
theory. The key feature of HML is the quantitative evaluation for selecting the best
representation of the MLL formulae by using cooperatively a criterion based on information
theory and domain knowledge. This section describes the two backgrounds of HML.

2.1. Knowledge representation using MLL

MLL (Multi-Layer Logic) is a predicate logic with a syntax that allows some domain(s) of
variable(s) to be the variable(s), which extends for MSL (Many-Sorted Logic) in the syntax
[17, 12]. This extension in the syntax of MSL gives a great expressive capability for predicate
logic involving data structure (set, hierarchy, power set, etc.), especially in manipulation of
the hierarchical structure. Since HML is based on the model representation of MLL, we here
give a summary of the features of MLL compared with first order logic as a preparation for
further describing HML. The details on MLL refer to [17].

The summary can be divided into the following four aspects:
(1) Structure description. Structures can be described as element-of, power-set-of, com-

ponent-of and product-set-of relations. Other complex operations can be represented as
combinations of these primary operations. For example, let a polyhedron as shown in
Fig. 2 be defined as a set of surfaces Sl, s2, s3, s4, and let surfaces be defined by a set of
the edge lines using following structure description:

230 N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252

/4

Fig. 2. A polyhedron.

/* Descript ion of general concepts */

!make_p * 2vertex, * 2line, * 2surface ;

!ins_e *2vertex line ;

!ins_e *2line surface ;

!ins_e *2surface polyhedron ;

/* Descript ion of specific concepts * /

!ins_e line 11 , 12, 13, l 4, 15, l 6 ;

!ins_e surface S 1 , S 2 , S 3 , S 4 ;

!ins_e polyhedron h I ;

/* Definition of component sets of a specific object with hierarchical structure */

!ins_e h 1 : s u r f a c e s 1 , s : , s 3, s 4 ;

!ins_e s I : l ine 1~ , le, l 4 ;

! i n s_es 2 : l i n e l~, l 3 , l 5;

!ins_e s 3 : l ine 12, 13, l 6 ;

!ins_e s 4 : l i ne 14,/5, /6 ;

where " ! i n s _ e x x 1 . . . xn;" means x 1 . . . xn are e lements of x (i.e. the set-elements
relation). " * x" denotes a power set node whose base set is x. The base set of the power
set is the one from which the extension of the power set is defined. In other words, a
power set is composed of all subsets of the base set. Howeve r , M L L does not
automatically enumera te all e lements of the given power set from the given base set.
" ! i n s _ e *x" defines only parts of members of *x (i.e. a subset of x) by the arguments
fol lowed by ! i n s _ e * x. Since * x is itself a set, * (* x) can also be defined in the same
way, denoted by *2x. In general, *nx denotes the power set of * (n - 1) x . " ! i n s _ e
x : a" describes a component set of x (i.e. a is a discriminator of the componen t set). In
addition, " ! m a k e _ p " is used for declaring and making power set nodes.

In general, the structure description can be divided into three parts as shown above.
That is, the description of general concepts, the description of specific concepts and the

N. Zhong , S. Ohsuga / Data & Knowledge Engineering 20 (1996) 2 2 7 - 2 5 2 231

hl

I I 12 14 13 B 16

Fig. 3. The hierarchical structure of a polydedron.

definition of component sets (or IS-A relations) of a specific object with hierarchical
structure. A component set can be regarded as an IS-A relation (i.e. pseudo IS-A).
MLL prepares a syntax to discriminate the real IS-A relation and the pseudo IS-A
relation. But it is abbreviated here (i.e. both of them are called the IS-A hierarchy in
this paper). Fig. 3 is an equivalent graph of the component sets of this specific object
shown above and Fig. 4 shows the relation of general concept in a data structure in
MLL.

(2) Syntax. A MLL formula consists of a matrix, prefix, A N D / O R forms, connectors and
(&) , or (I) and not (-) . Similar to Many-Sorted Logic, a variable in a MLL formula can
have its own domain and can be explicitly included in the prefix. For example, by
means of the IS-A hierarchy defined above, we can represent the knowledge "There is
some surface in a polyhedron h 1 of which the length of all edge lines is 3." in a MLL
formula as follows:

[3S/h I : surface][VL/S : line]length(L 3).

The part inside the brackets [] in the head of a logic formula is called the prefix in the
MLL formula. Here, the domain of variable L is a variable S, the domain of S is h 1 for
representing a specific polyhedron.

(3) Expansion function. When the domain set of a variable is finite, the MLL formula can
be expanded according to the following equivalent expressions:

[VX/x]p (X) N x = (Xl, X 2 , . . . , Xn) +'-) p(x 1) Np(x2) n ' ' " A p (x .) ,

pertex D * vertex P *2vertex

[U ~ b *line ~- *~ne

.

L . : / ol 1.>
• 1, ~7~ ~, ,4 I C polylu~lron

Fig. 4. The data structure for representing a polyhedron.

232 N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252

[3 X / x] p (X) n x = (x l , x 2 , . . . ,Xn} ~ - ~ p (x ,) U p (x 2) U . . . U p (X n) .

It is called expansion function of MLL. This function is used for extracting from a set
the elements which possess specified properties. It is syntactically defined by appending
" # " after the variable to be expanded in the prefix of the MLL formula. For example,
let surfaces be {(l l , 12, 14) , (l l , 13, 15) , (12, 13,16) , (14, 15, 16)}, then the formula

[3 S # / h 1 : surface][VL# /S : line]length(L3).

can be expanded into

(length(l~ 3) n length(12 3) n length(l 4 3)) U

(length(l~ 3) n length(l 3 3) N length(l 5 3)) U

(length(l 2 3) n length(l 3 3) n length(l 6 3)) U

(length(l 4 3) n length(l 5 3) n length(l 6 3)).

(4) Higher-order predicate. Predicate of MLL can include one or more closed formula(s) as
a term. A closed formula is a formula which does not include any free variable. The
predicate appears as a higher-order predicate but it is inhibited that the same variable is
included both inside and outside of an inner predicate. Thus, for example, [VX/
d]p(Xr(X)) is not allowed but [VX/d]p(X[VX/c]r(X)) is because the latter is
equivalent to [VX/d]p(X [VY/c]r(Y)). With this restriction, the inner predicates can be
any logical formula and the evaluation of the inner formula, r in the above example,
can be performed independently from that of the outer predicate p. Thus, it is possible
to separate the inner predicates and the outer predicates at the presentation. In general,
the set of predicates that does not contain any predicate as a term are located in the
object-level, while those that contain some object-level predicate(s) as the term are
arranged in a different level immediately above to the object level. The upper level
forms the meta-level. It is possible to replace the inner (object-level) predicate by an
identifier (ID), for example, by the predicate name. The same holds between the
meta-level and meta-meta-level and much higher levels. That is, this extension enables
us to realize multiple meta-level architecture [5].

A prototype of HML has been implemented by KAUS. KAUS is a knowledge-based system
developed in our laboratory which involves knowledge-bases based on MLL (Multi-Layer
Logic) and databases based on the NNF (Non Normal Form) model [17, 26]. KAUS also has
the capabilities of multiple meta level reasoning and multiple knowledge worlds. With these
characteristics, KAUS enables us to write down the repetitive process as shown in Fig. 1, and
can be easily used for many hypothesis generation (discovery/building) as well as represent-
ing, transforming and managing both knowledge and data [15, 16].

2.2. Applications of information theory in machine learning

In machine learning, information theory has been recognized as a useful criterion, and
several algorithms such as ID3, Prism, CN2, ITRULE and EG2 have been developed
[20, 1, 2, 23, 11]. In these algorithms, information theory is used as a measure criterion for

N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252 233

generating inductively knowledge that is represented in decision tree or if-then rule. For
example, ID3 is a tree-induction algorithm although ID3-induced trees can be transformed
into production rules [21]. Like ID3, Prism is classification based and has an information
theoretic basis, but it can directly produces their results as a set of production rules. CN2
combines the efficiency and ability to cope with noisy data of ID3 with the if-then rule form
(i.e. an ordered list of if-then rules) and flexible search strategy of the AQ family [2, 8]. ID3,
Prism and CN2 assume that the training set is a complete one, i.e. they tend to produce only
perfect rules. While ITRULE will find these rules, it also generates probabilistic rules.
Furthermore, it is stressed that domain knowledge can be used in inductive learning. For
example, EG2 can use domain knowledge in decision induction [11].

In these algorithms, however, information theory is only used for generating inductively
knowledge that is represented in decision tree or if-then rule, but the issue on refinement/
management of knowledge is not considered. Moreover, they are not used for evaluating the
information of the logic formula and are not designed for performing multi-aspect intelligent
data analysis and multi-level conceptual abstraction/learning in multiple learning phases.

HML can be considered as a typical approach in which information theory is used as a
criterion for learning knowledge. An important different point of HML and ID3 including
Prism, CN2, ITRULE and EG2 is that HML is designed for refining/managing concept
clusters discovered from databases. It can evaluate quantitatively the amount of information
of a MLL formula and select the best representation of the MLL formulae by using
cooperatively a criterion based on information theory and domain knowledge. Another
important different point is that HML is not an isolated algorithm. Its development is based
on the GLS methodology [27, 30]. That is, HML is one sub-system of GLS which can be
cooperatively used with other sub-systems of GLS such as DBI, and serves as a learning phase
in multiple learning phases of GLS for generating, refining and managing concept clusters
denoted by using the Multi-Layer Logic formulae with hierarchical models. Furthermore, the
results of the refinement by HML can be further used in the next learning phase of GLS for
acquiring more high-level knowledge [34].

3. Information of logical expression

This section introduces information theory into the Multi-Layer Logic (MLL) expression.
We first define the information of the MLL expression, and then discuss three theorems for
effectively calculating the MLL information. Finally, an effective algorithm for evaluating the
MLL information is given.

3.1. Definition and theorems

Let us consider a predicate F and let d be a finite base set. For simplicity, we assume F
being a single place predicate F(x). It gives a description on an object in d. Or, in other words,
F(x) classifies all elements in the set d into two classes: those that satisfy F(x) and those that
do not. In the following, F(x) and F(x) mean that "F(x) : True" and "F(x) : False", respective-
ly, for x ~ d. Let us define a concept "the state of d before and after the formula". It is

234 N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252

assumed that in the prior state, whether F(x) or F(x) is not clear for any x in d, while, in the
poster ior state, ei ther F(x) or F(x) is made clear for some or all e lements in d. Based on the
preparat ion, we first define the information of MLL.

Definition 1. Information of MLL. Let d = {a 1 , a 2, . . . , aN} be a finite base set. The state of d
is defined as the conjunctions of ei ther F(ai) or P(a~) for every e lement a~ in d. Before the
formula is given, the state of d includes all possibilities of combinations of F(ai) and P(a~),
i = 1 , 2 , . . . , N such that S 1 : F(al) A/~(a2) A " '" A F(aN) through S 2 N : F (a l) A F(a2) A " " A
F(aN). Let the set S 1 be defined as the collection of all possible prior states, and the set S~ be
defined as the collection of all possible posterior states. Thus, S~ = {S 1, . . . , S2N }. When the
formula F is given, the states of some of elements are fixed. Then, S~ becomes a subset of S~
as shown in Fig. 5. Fur thermore , let their cardinalities be IS11 and IS21, and their entropies be
defined as ISF 1 = loglS~l and Isr 2 = logls~l, respectively. Thus, the amount of information of
the MLL formula F can be defined in the following Eq. (1),

K = ISF , -- ISF 2 = loglS~[- loglS%l • (1)

That is, the difference of ISF ~ and ISF 2 is the amount of information K with respect to the
predicate symbol F.

F rom Eq. (1), we can see that more information is obtained by decreasing the posterior
en t ropy ISF 2 of a MLL formula. Moreover , the above definition is easily ex tended to the case
of n place predicate with n greater than one [12].

Example 1. Assume that we have an IS-A hierarchy shown in Section 2.1 and a MLL formula
is given in the formal quantifiers Qi,

[Q I S # /h I : sur face][Q2L # /S : l ine]length(L 3) ,

where Qi (i = 1, 2) denotes either ~' or 3. Then, d = { l ~ , 1 2 , . . . , 16} and the different
quantifiers in the prefix of this MLL formula have different amounts of information. Before
the formula, the predicate length(li 3) is either true or false for all possible states. Therefore ,
]S1F[= 2 6 and IogIS~F[= 6. Thus,

(1) [V S # / h ~ : s u r f a c e] [V L # / S : l i n e] l e n g t h (L 3) ,

Kvv = 6 - log 1 = 6 ;

1
SF

Fig. 5. The prior and the posterior states sets of MLL.

N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252 235

This formula says that all lines are of the length 3. That is, only length(113) ^ • " A length(163)
is allowed as a particular state. Thus, IS2FI = 1. In the following cases, the numbers of possible
poster ior states become 41 and 23, respectively.

(2) [V S # /h I • surface][3L# /S : line]length(L 3) ,

Kv3 = 6 - log 41 = 0.642 ;

(3) [::IS#/h I : surface][VL # /S : line]length(L 3) ,

K3v = 6 - log 23 = 1.476 ;

The formula in case (4) says that there is some line of which the length is 3. That is, this
formula allows every e lement in S~ except length(l I 3) ^ . - - ^ l e n g t h (l N 3). Thus, 15%1 = 63.

(4) [3 S # /h 1 :surface][3L# /S :line]length(L 3) ,

K33 = 6 - log 63 = 0.023 ;

where Ko,o2 denotes the amount of information of a MLL formula with quantifiers QIQ2.

Example 1 shows that the MLL formulae with different quantifiers may reveal various
different information even if the structure is the same. This is one of two aspects of evaluating
the MLL information. Ano the r aspect is to evaluate a MLL formula with different structures.
This will be discussed in this section and Section 4.2.

Based on Definition 1, we discuss also three theorems in this section for effectively
evaluating the information of the MLL formula.

Theorem 1. Complement of the posterior cardinality of MLL. The posterior cardinalities of the
M L L formulae with contrary quantifiers in their prefixes are complementary. That is

2 1 2
Is = Is el - IS Fl v • (2)

Proof. When the domain sets are finite and without loss of generality, let an IS-A hierarchy be
defined as

! i n s _ e * d d l , d 2 , . . . , d , ~ ;

!ins_e dl a l , a 2 , . . . , a t ;

! i n s _ e d 2 a l , a 3 , a 5 , . . . , a j ;

!ins_e dma2, a3, a s , . . . , a k ;

where e lements a~, ae, a3, a s in a 1, a 2 , . . . , a, are " tangled" elements (i.e. one a i can belong
to more than one dr). And let a MLL formula with the prefix V3 be

IVY~ * d] [3X/Y l f (X) .

Let the probability P([Q1 Y~ * d][Q2X/Y]f(X)) be PQ~o2, and let f(ai) be simply represented
as b i. Since the prior probability is not known in advance, it is assumed that the probabilities

236 N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252

of P (f (X)) and P (- f (X)) are equiprobable. Then based on Definition 1, the posterior
probability of this MLL formula is

P w = P ((b l U b 2 U " . . U bz) fq (b 1 U b 3 U b s U " . . U b j) n . . . fq (b 2 U b 3 U b s . . . U b k)) .

And let P (- f o r m u l a) be P (f o r m u l a) , then because

Pv3 = P((b~ U b2 U . . . U b t) n (b l U b s U b s U . . . U b /)

n . . . n (b 2 u b 3 U b 5 • " U bk))

= P (b I U b 2 U • • • U b t U b 1 U b 3 U b 5 U • • • U bj

U " • " U b 2 U b s U b 5 U • • • U bk)

= P((6, u 6~ n . . . n 6,) u (t~, n 63 n 6~ n . . - n t~)

U " - U (b2 n b3 n b s n . . . n bk))

= P ((b I n b 2 n . . - n b ,) U (b I n b 3 n b5 n - - . n bj)

U . . . U (b 2 n b 3 n b s N - - . n bk))

= P~v, (3)

Pv3 + Pv~ = Pv3 + P:~v = 1.

Fur thermore , since the posterior cardinalities of the MLL formulae with the prefixes V3 and
3V are

S 2 I Fly3 = P w x H , (4)

Is%l~ = P3v x H , (5)

where H is the maximal number of possible elements and H is also the prior cardinality (i.e.

Is'~l = m ,
2

I s ~ l ~ = P ~ x H = (1 - p ~) x H = U - e ~ x H

= I s ~ l - s ~ I 71~v. []

Moreover, by using the same method stated above, we can also prove

2 1 2 I s , l ~ I s A - •

Furthermore , since

K = loglS~l- loglS~l = log H - log P x H

H 1
= log p x H - l ° g p ' (6)

and based on Theorem 1, we can calculate the information of the MLL formulae with
quantifiers :iV and V:i by using

N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252 237

and

1
K w = log 1 - P3v (7)

1
K3v = log P3v " (8)

In order to calculate P3v, the following Eq. (9) is used if there are "tangled" elements
among sub-sets of the base set of an IS-A hierarchy (e.g. the calculation of Eq. (3)),

P(e 1 U e 2 U " " Ue,,_ 1Ue,,)

= ~, P(ei)- ~ P(einej)
i = l l~i<j~n

+ ~ P (e ~ n e j n e ~) + (- 1) " - ~ P (e ~ n e 2 n . . . n e . _ ~ n e .) , (9)
1 <~i<j<<-n

else Eq. (10) is used,

P(e i U e 2 U • ' ' U e,,_ 1 U e,,)

= 1 - P (e I Ue 2 U " " Ue ,_ 1 Ue ,)

= 1 - p f f , n ~2 n . . . n C - , n ¢) . (10)

From Eqs. (7) and (8), we can further see another aspect of evaluating the MLL
information, i.e. a MLL formula with different structures may also reveal various different
information. The example about this will be shown in Section 4.2.

Theorem 2. The equivalence o f information o f M L L . In the case o f the IS-A hierarchy, it is
possible to refine a hierarchical structure by defining new intermediate nodes. Then the prefix
sequence becomes longer. I f the same quantifiers appeared in succession in the prefix o f a M L L
formula such as

(1-1) [Q X " - I / s] [3 X " - 2 / X " 1]... [3X2/X3][3xl/x2]f(xl),

(2-1) [QX"-'/s][Vx"-2/x"-l] . . . [vx2/x3][vx~/x2]f(xl) ,

then they can be, respectively, regarded as

(1-2) [QY/s][3x/Y]f(x),
(2-2) [Q Y / s] [V X / Y] f (X) ,

when calculating their information.

Proof. We would like to prove Theorem 2, only prove the information of the formulae (1-1),
(1-2) and (2-1), (2-2),

K (1 _ 1) = K¢~_2) and K(2_1) = K (2 _ 2) .

238 N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252

Fur the rmore , based on Eq. (6), only prove their probabilities

PQ3...a = PQ3 and Pov...v = P o v •

Without loss of generality, let the prefix of a MLL formula involve n same quantifiers
appeared in succession, and let the base set d involve M elements. It is clear that

2 M - 1
P31323, = P31323, i P33 = P3 = 2 M ,

1
Pv~v2..-v, = Pvlv2-..v, i Pvv = Pv - 2 M ,

Based on this, the following equalities also hold,

Pv3,32...3. = Pv3,~2""n. I Pw3 = Pv3 ,

P3v~v2...v. = P3v~v2...v. ~ P3vu = P3v • []

T h e o r e m 2 shows the equivalence of information of MLL with the same quantifiers
appeared in succession in the prefix of a formula. It can be used for convenience in the
calculation. The example about this will be shown in Section 4.2.2.

Theorem 3. Information o f Tautology o f M L L . Let K m and K~ denote, respectively, the
amounts o f information o f the M L L formulae A and B with different quantifiers, and let A ~ B
denote that i f A is true then B is true, we have

I F A f f B , T H E N K A >I K B .

Proof. Assume this is not true. Then there must be some B such that A f f B and - (K A >! KB)
-- - Without loss of generali ty, o r A ~ B a n d K A < K B. By Definit ion l , we have K A ISA 1 ISA2"

let I S A = ISB 1" Then, K A < K B is equivalent with ISA > I s or S2A > S~. This means that there
is some posterior state which is included in S2A but 2 2 B 2 S B, for which A is true but B is not true.
This is a contradiction. []

It is possible to evaluate the amounts of information of the MLL formulae with the different
sequence of quantifiers in the prefix. For example, let the quantifiers set of the MLL formulae
Q = {Q1, Q2, 0 3 } , and 0 i (i = 1, 2, 3) denote ei ther V or 3. Based on this, we define a state
graph of quantifiers of the MLL formulae as shown in Fig. 6, and let d be a finite base set for
presenting an IS-A hierarchy and let f be a predicate. Thus, Fig. 6 denotes all different
combinat ions of quantifiers of the MLL formula,

[0 1 Z / * 2 d] [O 2 Y / Z] [O 3 X / Y] f (X) .

A n d a partially ordered set of Q is <Power(Q) , c > , i.e.

Power(Q) = {W'C'V, VV3, V3V, 3VV, V'=I3,=IV3, 3=IV, =133}.

Thus, we can see that Fig. 6 is just its Hasse diagram presented a lattice structure. Therefore ,
the cover relation of Power(Q) is

N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252 239

Level-4 VVV

Le~t-S VV3 V3V 3VV

IX XI
Lever.2 ~r~3 3~3 33V

Level-1 333

Fig. 6. A state space of quantifiers of MLL.

covPower(Q)={<333,33V>, <333,3V3>,
<~33, W3>,<33V,~VV>,
<33v, v3v>,(3v~,3vv>,
<~w,vw>,<v33,wv>,
<w3,vv3>,<3vv, vvv>,
<v~v, vvv>,<vw,vvv>}.

Based on this, let <B, A> denote any cover relation in c o v P o w e r (Q) . Thus, based on
Theorem 3, we have Kn <<-K a in which the formulae B, A satisfy <B, A>. Furthermore,
according to Eq. (6), then K B <~ K z is equivalent with PB >~ PA, i.e.

P ~ 3 ~> P~v

P~33 ~> P3v3

P333 ~> Pv33

P3vv ~> Pvvv

Pv~v/> Pv~
p ~ t> pv~

Example 2. According to Theorem 3, because

[VS# /h i : sur face][VL # / S : l ine]length(L 3)

[V S # /h I : s u r f a c e] [3 L # /S : l ine]length(L 3) ,

I~v >! I,:~.

In general, we can create a state graph of quantifiers of the MLL formula for learning its
quantifiers. The state graph as shown in Fig. 6 is the one in which the number of quantifiers is
equal to 3. This state graph is divided into four levels. The uppermost level is with the most
information. The further example about using Theorem 3 will be shown in Section 4.1.

240 N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252

3.2. A n algorithm

Based on the definition and theorems stated above, we developed an effective algorithm for
calculating the MLL information. At first, we only consider how to calculate the amounts of
information of the MLL formulae with the prefixes VV, V3, :IV or 33 . That is:

If we would like to calculate the amounts of information of the MLL formulae with the
prefixes V'q', V3, :IV and 33 , only calculate 'q and :IV according to Theorem 1 and Theorem
2.
If the quantifiers in the MLL prefix either VV, V3, 3V or 33 can be used, select VV
according to Theorem 3.
Fur thermore, Eq. (9) or (10) can be easily used for calculating the probability of the sum of
" tangled" or dependent elements. That is, if we calculate the amount of information of the
MLL formula with the prefix V3, then
Step 1: Calculate the probability of the MLL formula with the prefix V3 in Eq. (9) or (10)
according to whether there are "tangled" elements among sub-sets of the base set of an
IS-A hierarchy.
Step 2: Calculate the amount of information K in Eq. (7).

Example 3. We use (2) in Example 1 as an example of using this algorithm and let length(li3)
be simply represented as b i. Thus, if we would like to calculate the amount of information of
the MLL formula with the prefix V3, then first, calculate the probability of the MLL formula
with the prefix ::iV in Eq. (9). That is,

23
P~v = P((b~ A b 2 71 b4) tO (b 1 f7 b 3 A bs) U (b 2 71 b 3 71 b6) tO (b 4 71 b~ 71 b6)) - 26 ,

next, calculate the amount of information

1
K w = log 1 - P3~ - 0.642.

Al though most applications only need to consider the MLL formulae with 2 alternating
quantifiers or the same quantifiers appeared in succession (see Section 4), we will now discuss
how to extend the above algorithm for processing more than 2 alternating quantifiers like
3Vzl. V3V, etc. This extension can be easily done because we can expand an expression of
probability corresponding to a complex sequence of quantifiers of a MLL formula into a
simpler form (i.e. the same form as 3'q), so that Eq. (9) can be used for calculating its
probability. We describe it by the following example.

Example 4. If we would like to calculate the amount of information of the following MLL
formula with the prefix V3V and the IS-A hierarchy shown in Fig. 7,

[VZ/ * 2 d] [3 Y / Z] [V X / Y] Z (X) ,

then first, write out the expression of probability corresponding to the MLL formula as
follows:

Pv3v = P((a, 71 a: U as) N a4).

N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252 241

*2d

a l a2 ~ a4

Fig. 7. A sample IS-A hierarchy to describe the more complex MLL prefix.

Then, expand this expression into a simpler form as follows:

Pv3u = P((a, n a: U a3) n a4) = P((a, n a 2 n a4) U (a 3 N a4)) .

That is, this is the same form as 3V. Thus, Eq. (9) can be used for calculating its probability.
That is

5
Pv3v = P((al n a 2 N a4) U (a 3 n a4)) - 24 ,

and the amount of information is

1
Kv3 v = log Pv3v - 1.678.

4. Hierarchical modeling learning

Based on the preparation in Sections 2 and 3, this section introduces the approach of
hierarchical mode l learning (HML). It is mainly composed of three functions:

• Representing the concept clusters discovered from a database by DBI as the MLL
formulae with hierarchical models in a knowledge-base. It includes hierarchical modeling
for concept clusters and automatic selection of quantifiers in the prefixes of the MLL
formulae.

• Refining the hierarchical models by using domain knowledge and/or when new concept
clusters are discovered along with data change in a database. This is to select auto-
matically a best (or more refined) hierarchical model from more hierarchical models
belonging to a family.

• Managing the hierarchical models by using the set chains of hierarchical models and their
inheritance graphs.

We would like to use a breast cancer database [6], which calls breast-cancer as shown in
Table 1, as an example for showing our approach. In this database, each tuple corresponds to
one patient and values of 10 attributes are given for each patient. The domain of every
attribute is given by the sets of 9 quantized values that are classified as a case of benign or
malignant cancer, resulting from clinical examinations related to this disease. The meanings of
the attributes used in Table 1 are as follows:

242 N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252

Table 1
DB: breast-cancer

id code-n aO al a2 a3 a4 a5 a6 a7 a8 a9

1 160296 4 5 8 8 10 5 10 8 10 3
2 342245 2 1 1 3 1 2 1 1 1 l
3 428598 2 1 1 3 1 1 1 2 1 1
4 492561 2 4 3 2 1 3 1 2 1 1
5 493452 2 1 1 3 1 2 1 1 1 1
6 493452 2 4 1 2 1 2 1 2 1 1
7 521441 2 5 1 1 2 2 1 2 1 1
8 560680 2 3 1 2 1 2 1 2 1 1
9 636437 2 1 1 1 1 2 1 1 1 1

10 640712 2 1 1 1 1 2 1 2 1 1

1266154 4 8 7 8 2 4 2 5 10 1
1272039 2 1 1 1 1 2 1 2 1 1
1276091 2 2 1 1 1 2 1 2 1 1
1276091 2 1 3 1 1 2 1 2 2 1
1276091 2 5 1 1 3 4 1 3 2 1
1277629 2 5 1 1 1 2 1 2 2 1
1293439 2 3 2 2 3 2 1 1 1 1
1293439 2 6 9 7 5 5 8 4 2 1
1294562 4 10 8 10 1 3 10 5 1 1
1295186 4 10 10 10 1 6 1 2 8 1

c o d e - n - code-number (Sample Code Number)

a0-b-cancer- type (Breast Cancer Type: 2 for benign, 4 for malignant)

al - clump-t (Clump Thickness)

a 2 - u-cell-size (Uniformity of Cell Size)

a 3 - u-cell-shape (Uniformity of Cell Shape)

a 4 - marginal-adhesion (Marginal Adhesion)

a 5 - s-e-cell-size (Single Epithelial Cell Size)

a 6 - bare-nuclei (Bare Nuclei)

a 7 - bland-chromatin (Bland Chromatin)

a8 - normal-nucleoli (Normal Nucleoli)

a9 - mitoses (Mitoses).

Furthermore, in order to describe the change of data in database, the breast cancer
database is divided into two groups: group 1 for fundamental data and group 2 for its
variation. The objective is to find which conditions of the 9 attributes indicate malignant and
which no malignant cancer, and form concept clusters by decomposing this breast cancer

N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252 243

database, so that finally to represent the results as the MLL formulae with hierarchical models
in a knowledge-base and ref ine/manage them by HML [29].

4.1. Knowledge generation

The process of knowledge generation can be divided into two main stages by using
cooperatively DBI and HML. The first stage is to decompose a database for forming concept
clusters by using DBI. This has been described in our paper [29]. To make this paper
self-content, we describe briefly the main steps of forming concept clusters in DBI as follows:

Step 1 : Create a Probability Distribution Matrix (PDM). There are many kinds of methods
for creating the PDM, depending on their purposes. For our application, the dependency
relations between any two attributes are considered, their probability distributions are
calculated and recorded in a PDM. Let a = { a 1, a 2 an} and b = {b 1, b 2, • • • , b,,} be
the sets of different values of any two attributes in a database that has been preprocessed.
Using conditional probability, we have

p(x, n xj)
p(xi lxj)- p(xj) x i , x j~a ,b . (11)

From this we define Pij, the probability distributions, to be p (x i Ixj)/N, where N is the
number of attributes. These pij consti tute the entities of the PDM.
Step2: Form the diagonal matrix. It is a step as pre-processing before decomposing the
PDM. Two methods, diagonalization by a special attribute as a supervised method and
diagonalization by the optimum decomposition as an unsupervised method, can be used for
this according to the cases in which a criterion of forming the diagonal PDM is given by the
user or not. Since there is obviously a special attribute (i.e., the attribute b-cancer-type, or
e.g. cl, c 2 as shown in Fig. 8) that can be chosen by the user as a criterion of forming the
diagonal PDM for this breast cancer database, the method, diagonalization by a special
attribute, is used for obtaining the diagonal PDM shown in Fig. 8.
Step3: Decompose the diagonal PDM by a decomposing algorithm. In decomposing,
primary factors for describing some concepts are aggregated by selecting proper attributes,

cl
a l l

c2
aij

c l , a l l c2 ,~ j

PI

P2

7.
Fig. 8. F o r m i n g t h e d i a g o n a l P D M by a spec ia l a t t r i b u t e .

244 N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252

and two kinds of noises, minor elements and irrelevant elements are neglected. Where, the
minor elements are those whose probability values are much smaller than other related
values. For example, in the breast cancer database, if bare-nuclei = 1 then the probabilities
of malignant and benign are 0.02 and 0.98, respectively. Thus, bare-nuclei = 1 cannot be
used as one of the conditions of malignant cancer. Therefore, it is neglected as a minor
factor. The irrelevant elements are those who cannot be used to differentiate concepts. For
example, in the breast cancer database, if mitoses -- 3 then the probabilities of malignant and
benign are both nearly 0.5, even though some data are not appearing in Table 1. Thus,
mitoses = 3 cannot be used to differentiate malignant from benign. That is, mitoses = 3 is
useless for knowledge discovery and cannot be classified into a cluster. Therefore, they
should also be omitted as an irrelevant element although its probability value may be fairly
large. As the result of decomposing a PDM, several sub-matrices are formed. These results
are applied back to a database that has been preprocessed and the job of decomposing the
database is thus completed. As the result of decomposing the database, concept clusters are
formed.
As its consequence, the following two concept clusters can be discovered from group 1 of

the breast cancer database,

1. The conditions of benign cancer:

clump-t: 1, 4, 2, 6.

u-cell-size: 1, 3, 2, 9.

u-cell-shape: 2, 1, 4.

s-e-cell-size: 1.
bare-nuclei: 0, 3, 8.

bland-chromatin: 1, 3, 4.

mitoses: 2.

2. The conditions of malignant cancer:

clump-t: 10, 7, 8, 9.

u-cell-size: 8, 6, 10, 5, 7.

u-cell-shape: 8, 10.

marginal-adhesion: 10, 7.

s-e-cell-size: 6, 8, 10.

bare-nuclei: 10, 9.

bland-chromatin: 8, 7, 9, 6, 10, 5.

normal-nucleoli: 10, 8, 9, 6.

mitoses: 4, 8.

That is, the elements in above two clusters can be respectively used as the conditions of
indicating malignant and which no malignant cancer.

N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252 245

Based on the results stated above, the second stage of knowledge generation is to represent
the concept clusters as the MLL formulae with hierarchical models in a knowledge-base by
using HML. For example, the hierarchical model corresponding to cluster-l, which represents
the conditions of benign cancer, can be generated as shown in Fig. 9, and the corresponding
MLL formula can be created as Rule 1:

Rule 1: /* The rule for diagnosing breast cancer */

[VY#/benign : symptom][3X#/Y]p-breast-cancer(Y X).

Rule I reads "if the symptoms recorded in the set-elements relations about benign are satisfied,
then the breast cancer is benign."; The similar rule for the malignant cancer can be created to
mean "if the symptoms recorded in the set-elements relations about malignant are satisfied, then
the breast cancer is malignant.".

Thus, there are two important jobs in knowledge generation in HML. The first is
hierarchical modeling. Where, the process of representing a concept cluster by an IS-A
hierarchy (i.e. the hierarchical model represented by the set-elements relation in MLL, and
Fig. 9 is an example of its equivalent graph) is called hierarchical modeling. For example, two
concept clusters discovered from group 1 of the breast cancer database are represented by two
IS-A hierarchies.

Another job in knowledge generation in HML is to select quantifiers in the MLL prefix.
Since the choice of the MLL prefix is sensitive to the relationships among the conditions of
indicating malignant and which no malignant cancer, we have to interpret that the relation-
ships among the conditions are either conjuctive or disjunctive. First, according to the
principle that values in an attribute do not happen at the same time for a tuple in universal
relation, the relationships among the conditions belonging to an attribute in a cluster are
disjunctive. Thus, for the conditions belonging to an attribute, we use the quantifier 3.
Furthermore, you can ask that the relationships among the conditions belonging to different
attributes should be either conjunctive or disjunctive. This mainly depends on the method of
creating PDM in DBI. Since the method of creating PDM described in this paper only
considers the dependency relations between any two attributes, and the attribute "b-cancer-
type" is used as a special attribute for forming the diagonal PDM, the elements in every
cluster can be interpreted as the conditions of indicating malignant and which no malignant
cancer. However, the relationships (i.e. conjunctive or disjunctive) among the conditions

benign

clump-t u-cell-size u-cell-shape s-e-cell-size bare-nuclei bland-chromatin mitoses

A A / k [/k /k I
1 4 2 6 I 3 2 9 2 I 4 1 0 3 8 1 3 4 2

Fig. 9. The hierarchical model of group 1.

246 N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252

belonging to different attributes are indefinite. In other words, both of the quantifiers V and 3
can be used for the conditions belonging to different attributes. Thus, both of the MLL
prefixes,

(1) [3 Y# / benign : symptom] [3X# / Y]
and

(2) [VY#/benign : symptom][3X#/Y] ,
can be used for representing the acquired concept clusters. Where, we can see that if the MLL
formula with the prefix (2) is true then the one with the prefix (1) is true, that is,

[VY#/benign : symptom][3X#/Y]p-breast-cancer(Y X)

[3Y#/benign : symptom][3X#/Y]p-breast-cancer(Y X),

from Theorem 3 stated in Section 3.1, we know that the amount of information of the MLL
formula with the prefix (2) is larger than the one with the prefix (1). Therefore, the prefix (2)
is selected for representing the concept clusters.

The main reasons why the discovered concept clusters are represented as the MLL formulae
with hierarchical models are

• We need to use a kind of model representation in our system for both compact
representing and flexibly revising the bulky concept clusters discovered from a database;

• By representing the discovered concept clusters as the MLL formulae, we can further
combine knowledge-based system techniques with statistical/decision analysis methods
for flexibly managing, refining and using them.

Knowledge representation in MLL is a kind of model representation. That is, the representa-
tion of the structure and the functionality (property, function, etc.) description is separated so
that by changing the structure, the representation with the more information is reached. For
example, the structure entity discovered from the breast cancer database by DBI can be
recorded by the set-elements relations that represent the IS-A hierarchies. The structural
relation is represented by the MLL prefix,

[VY#/benign : symptom][ZlX#/Y],

and the functionality description is represented by

p-breast-cancer(Y X) .

Even when structure changed by the additional data, the MLL formula is not generally
changed. Because of the uncertainty and incompleteness of data in databases, the knowledge
discovered from databases is only a hypothesis, which must be refined (evaluated/modified) in
multiple learning phases. Also, because databases are not static but dynamic, new hypotheses
are generated when data change in databases [27, 29]. Therefore, this kind of model
representation is very important for knowledge discovery in databases. Here, learning is to
select an expression with more information.

In the phase of knowledge generation, we see that the evaluation of the MLL information is
mainly used for selecting quantifiers of a MLL formula with same structure from the state
space of quantifiers. This is one of two aspects of evaluating the MLL information as stated in

N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252 247

Section 3.1. Another aspect is to evaluate a MLL formula with different structures. This
involves knowledge refinement to be stated in the following Section 4.2.

4.2. Refinement

There are two main methods for refining the hierarchical model. First, a proper hierarchical
model is selected by evaluating the MLL information. That is, re-construct an expression of
the hierarchical model to a more informative one. Second, the hierarchical model is refined by
cooperatively using domain knowledge and informative evaluation. That is, an expression is so
refined as to satisfy special requirement. We consider that these methods are reasonable
because the information of MLL may be either an increase or decrease along with the change
of data in a database, and experts can easily represent their knowledge in a knowledge-base
for refining the hierarchical models.

4.2.1. Refinement by evaluating the information of MLL
When new concept clusters are discovered from a database, the better hierarchical model

can be selected by evaluating the MLL information. For example, when another concept
cluster as shown in Fig. 10 is discovered by adding group 2 of data to the breast cancer
database, we can calculate the amounts of their information based on the MLL prefix,

[VY# / benign : symptom][3X# / Y],

for selecting the better one from two hierarchical models shown in Figs. 9 and 10 by using the
algorithm stated in Section 3.2. Since the result of the calculation is

Kg 2 -~ 2.864 > Kg~ = 2.764,

the hierarchical model shown in Fig. 10 is selected. That is, learning is to select a hierarchical
model with more information.

4.2.2. Use of domain knowledge in refinement
Since experts can bring domain knowledge to bear while refinement, the hierarchical model

also can be refined by using cooperatively domain knowledge and informative evaluation. For
example, if the following domain knowledge,

benign

dump-t u-cell-size u-cell-shape s-e-cell-size barn-nuclei b l a n d ~ mitoses

1 2 6 1 3 2 9 2 1 4 1 0 3 8 1 3 4 2

Fig. 10. A hierarchical model in which group 2 of data was added .

248 N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252

?ins_e uniformity u-cell-size, u-cell-shape ;

!ins_e cell u-cell-size, u-cell-shape, s-e-cell-size ;

?ins_e nuclei bare-nuclei, normal-nucleoli, mitoses ;

?ins_e other clump-t, bland-chromatin;

is used, then a more refined hierarchical model as shown in Fig. 11 can be acquired. That is,
domain knowledge is used for conceptual abstraction (generalization). Here, the lowest leaves
of the hierarchical model are only observable values that are collected in a database: The other
values are called abstract values, and the second lowest leaves of the hierarchical model are
called the lowest level o f abstract values. However, abstract values can be "tangled" (i.e. a
value can belong to more than one abstract value in a higher level as shown in Fig. 11).

The prefix of the MLL formula with the hierarchical model as shown in Fig. 11 can be
represented into

[VZ# /benign:symptom][VY# / Z] [3X # / Y].

Since the same quantifiers appeared in succession in the prefix of this formula, the amount of
information of this formula with the hierarchical model shown in Fig. 11 is the same with the
one shown in Fig. 10 (according to Theorem 2). Therefore, the hierarchical model shown in
Fig. 11, in which group 2 of data was added and conceptual abstraction was done, is selected
as a more refined one. Here, learning is to select the best hierarchical model by using
cooperatively domain knowledge and informative evaluation.

4.3. Management

Management of hierarchical models is an important issue when more hierarchical models
belonging to a family are generated along with data change (i.e. to add, delete or update data)
in a database. In HML, the set chains and the inheritance graphs of hierarchical models are
used for this purpose. By means of them, the following jobs can be done:

• Hierarchical models belonging to a family, which denote concept clusters discovered from
a database, are first stored in the set chains, and then are refined (evaluated/modified);

benign

uni formlty cell nuclei

o-cell-size u-oell-shape s-e-cell-size bare-nuclei mitoses

/Ok/b, I
1 3 2 9 2 i 4 1 0 3 8 2

other

/X
clun~t Nand-ctm~ma~

Fig. 11. A hierarchical model used domain knowledge.

N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252 249

Mi;gl.-~leel ~ ~ t r o /
O~/eet'4mee/ I'

I"
: - "

Fig. 12. An inheritance graph and operations.

• The time and history of hierarchical models are represented and managed. That is, the
set chains for storing hierarchical models are dynamically generated as time goes on for
recording the evolution process of hierarchical models;

• The inheritance graphs of hierarchical models are dynamically generated for describing
the relationships among hierarchical models.

The set chains of hierarchical models are defined by the set-elements relation of KAUS.
The set chains and the inheritance graphs are managed by a meta knowledge level as shown in
Fig. 12. Fig. 12 also shows the structure of the inheritance graph and some operations for it in
HML. That is, model-g24, model-g2 and model-g4, etc. shown in Fig. 12 denote several
hierarchical models with inheritance relationship; three knowledge-bases of HML, meta-ctl-
hml, hml-ref-kb and hml-gen-kg, which are divided into two knowledge levels: meta-level and
object-level, are, respectively, used for performing/controlling different operations.

5. Conclusion

We presented a hierarchical model learning (HML) approach for refining and managing
concept clusters discovered from databases. It can be considered as a typical approach in
which information theory is used as a criterion for learning knowledge. It is based on the
model representation of Multi-Layer Logic (MLL). A prototype of HML has been im-
plemented as one sub-system of our GLS discovery system. Main features of our approach can
be summarized as follows:

• Hierarchical modeling for concept clusters. That is, concept clusters discovered from
databases are represented as the MLL formulae with hierarchical models in a knowledge-
base;

• Automatic selection of quantifiers in the prefix of the MLL formula. That is, quantifiers V

250 N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252

and 3 for constituting the prefix of a MLL formula are selected from the state space of
quantifiers;

• Automatic selection and refinement of hierarchical models. That is, the best hierarchical
model is selected from a family of hierarchical models by evaluating the information of
MLL;

• Domain knowledge can be cooperatively used with informative evaluation in refinement
for acquiring the more refined hierarchical model;

• More hierarchical models generated along with data change in a database can be
managed by using the set chains of hierarchical models and the inheritance graphs of
hierarchical models. These set chains and the inheritance graphs are managed by a meta
knowledge level.

Furthermore, we would like to emphasize that the hierarchical model learning (HML)
approach is only used as a learning phase in multiple learning phases of our GLS discovery
system [30], the results of the refinement by HML are not the final ones in the discovery
process, and can be further used in the next learning phase for acquiring more high-level
knowledge. How to use cooperatively hierarchical model learning with case based reasoning
and decision analysis is a further research subject. Its objective is just to acquire more
high-level knowledge from the discovered concept clusters which are represented as the MLL
formulae with hierarchical models. This involves a new sub-system of GLS that is being
developed by us [34].

Acknowledgements

The authors would like to thank Professor Hori and Professor Takasu for useful discussions
in OHlab seminar and SIG-KDD meeting. Special thanks is due to Mr. Yamauchi for his
enormous efforts in implementing KAUS and his help in use of KAUS. Further, we would
like to thank the referees of the DKE journal for their valuable comments on the first
submitted version of this paper.

This paper is a revised version of a paper presented at the 5th IEEE International
Conference on Tools with Artificial Intelligence (TAI '93), Boston, USA (November 1993).
We received financial support for the successful international conference from International
Information Science Foundation of Japan.

References

[1] J. Cendrowska, PRISM: An algorithm for inducing modular rules, Int. J. Man-Machine Studies 27 (1987)
349-370.

[2] P. Clark and T. Niblett, The CN2 induction algorithm, Machine Learning (1989) 261-283.
[3] J. Han, Y. Cai and N. Cercone, Data-driven discovery of quantitative rules in relational databases, IEEE

Trans. Knowl. Data Engrg. 5(1) (1993) 29-40.
[4] W. Klosgen, Problems for knowledge discovery in databases and their treatment in the statistics interpreter

explora, Int. J. Intell. Systems 7(7) (1992) 649-673.
[5] C.L. Liu, Elements of Discrete Mathematics (McGraw-Hill, New York, 1977).

N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252 251

[6] O.L. Mangasarian and W.H. Wolberg, Cancer diagnosis via linear programming, SlAM News 23(5) (1990)
1-18.

[7] C.J. Matheus, P.K. Chan and G. Piatetsky-Shapiro, Systems for knowledge discovery in databases, IEEE
Trans. Knowl. Data Engrg. 5(6) (1993) 904-913.

]8] R.S. Michalski, I. Mozetic, J. Hong and N. Lavrac, The multipurpose incremental learning system AQ15 and
its testing application to three medical domains, Proc. 5th National Conference on Artificial Intelligence (1986)
1041-1045.

[9] R.S. Michalski, Mining for knowledge in databases: The INLEN architecture, initial implementation and first
results, J. Intelligent Information Systems 1(1) (1992) 85-113.

[10] R.S. Michalski, J.G. Carbonell and T.M. Mitchell, Machine Learning - An Artificial Intelligence Approach,
Vols. 1-3 (Morgan Kaufmann Publishers, 1983, 1986, 1990).

[11] M. Nunez, The use of background knowledge in decision tree induction, Machine Learning 6 (1991) 231-250.
[12] S. Ohsuga, A consideration to knowledge representation- an information theoretic view, Bulletin of

Informatics and Cybernetics 21 (Nos. 1-2) (1984) 121-135.
[13] S. Ohsuga, Toward intelligent CAD systems, Computer Aided Design 21(5) (1989) 315-337.
[14] S. Ohsuga, Data Bases and Knowledge Bases (Ohm Ltd., Japan, 1989).
[15] S. Ohsuga, Framework of knowledge based systems- multiple meta-level architecture for representing

problems and problem solving processes, Knowledge Based Systems 3(4) (1990) 204-214.
[16] S. Ohsuga, How can knowledge based systems solve large scale problems?: Model based decomposition and

problem solving, Knowledge Based Systems 6(1) (1993) 38-62.
[17] S. Ohsuga and H. Yamauchi, Multi-layer logic- A predicate logic including data structure as knowledge

representation language, New Generation Computing 3(4) (1985) 403-439.
[18] G. Piatetsky-Shapiro and C.J. Matheus, Knowledge discovery workbench for exploring business databases,

Inter. J. Intell. Systems 7(7) (1992) 675-686.
[19] G. Piatetsky-Shapiro and W.J. Frawley, eds., Knowledge Discovery in Databases (AAAI Press and The MIT

Press, 1991).
[20] J.R. Quinlan, Induction of decision trees, Machine Learning 1(1986) 81-106.
[21] J.R. Quinlan, Generating production rules from examples, Proc. 10th Int. Joint Conf. on Artificial Intelligence

(1986) 304-307.
[22] J.W. Shavlik and T.G. Dietterich, eds., Readings in Machine Learning (Morgan Kaufmann Publishers, 1990).
[23] P. Smyth and R.M. Goodman, An information theoretic approach to rule induction from databases, IEEE

Trans. Knowl. Data Engrg. 4(4) (1992) 301-316.
[24] S. Watanabe, Knowing and Guessing - A Quantitative Study of Inference and Information (John Wiley and

Sons Inc., 1969).
[25] H. Yamauchi and S. Ohsuga, KAUS as a tool for model building and evaluation, Proc. 5th Int. Workshop on

Expert Systems and Their Applications (1985).
[26] H. Yamauchi and S. Ohsuga, Loose coupling of KAUS with existing RDBMs, Data & Knowledge Engrg. 5(4)

(1990) 227-251.
[27] N. Zhong and S. Ohsuga, GLS- A methodology for discovering knowledge from databases, Proc. 13th Int.

CODATA Conference entitled "New Data Challenges in Our Information Age" (1992) A20-A30.
[28] N. Zhong and S. Ohsuga, HML - An approach for refining/managing knowledge discovered from databases,

Proc. 5th IEEE International Conference on Tools with Artificial Intelligence (TAI '93) (IEEE Computer
Society Press, 1993) 418-426.

[29] N. Zhong and S. Ohsuga, Discovering concept clusters by decomposing databases, Data & Knowledge Engrg.
12(2) (1994) 223-244.

[30] N. Zhong and S. Ohsuga, The GLS discovery system: Its goal, architecture and current results, in: Z.W. Ras
and M. Zemankova, eds., Methodologies for Intelligent Systems, Proc. 8th Int. Symp., ISMIS '94, Lecture
Notes in Artificial Intelligence 869 (Springer-Verlag, 1994) 233-244.

[31] N. Zhong and S. Ohsuga, Managing/refining structural characteristics discovered from databases, Proc. 28th
Hawaii Int. Conf. on Sys. Sciences (HICSS-28), edited in the minitrack on information sharing and knowledge
discovery in large scientific databases 3, (IEEE Computer Society Press, 1995).

252 N. Zhong, S. Ohsuga / Data & Knowledge Engineering 20 (1996) 227-252

[32] N. Zhong and S. Ohsuga, K O S I - A n integrated discovery system for discovering functional relations from
databases, J. Intelligent Information Systems 5(1) (1995) 25-50.

[33] N. Zhong and S. Ohsuga, Toward a multi-strategy and cooperative discovery system, Proc. First Int. Conf. on
Knowledge Discovery and Data Mining (KDD-95) (AAAI Press, 1995) 337-342.

[34] N. Zhong and S. Ohsuga, From Conceptual Hierarchical Models to More High-Level Knowledge (draft).
[35] J.M. Zytkow and R. Zembowicz, Database exploration in search of regularities, J. of Intell. Infor. Systems,

2(1) (1993) 39-81.

. Ning Zhong is currently an assistant
professor of the Department of Com-
puter Science and Systems Engineer-
ing at ¥amaguchi University, Japan.
He is also a cooperative research
fellow in Research Center for Ad-
vanced S c i e n c e Technology
(RCAST) at the University of
Tokyo. He graduated at the Beijing
Polytechnic University in 1982 and
has been a lecturer in the Dept. of
Computer Science, Beijing Polytech-
nic University. He received the

Ph.D. degree in the Interdisciplinary Course on Advanced
Science and Technology from the University of Tokyo.
His research interests include knowledge discovery in data-
bases, machine learning and intelligent information systems.
Dr. Zhong is a member of Japanese Society for Artificial
Intelligence, the Association for Foundations of Science,
Language and Cognition (AFOS), IEEE Computer Society.

Setsuo Ohsuga is currently a profes-
sor of the Department of Information
and Computer Science at Waseda
University, Japan. He has been
professor and director of Research
Center for Advanced Science and
Technology (RCAST) at the Uni-
versity of Tokyo. He has also been
president of the Japanese Society for
Artificial Intelligence. He graduated
at the University of Tokyo in 1957.
From 1957 to 1961 he worked in Fuji
Precision Machinery (the present

Nissan Motors). In 1961 he moved to the University of
Tokyo and received Ph,D. in 1966. He became associate
professor in 1967 and professor in 1981. His research inter-
ests are artificial intelligence, knowledge information process-
rag, databases and CAD. He has received awards for his
researches twice from the Academic Society in Japan. He is a
member of the editorial boards of 9 scientific journals.

