
Int. J. Man-Machine Studies (1987) 26, 231-243

Generic tasks for knowledge-based reasoning: the
"right" level of abstraction for knowledge acquisition

ToM BYLANDER AND B. CHANDRASEKARAN

Laboratory for Artificial Intelligence Research, Department of Computer and
Information Science, The Ohio State University, Columbus, Ohio 43210, U.S.A.

Our research strategy has been to identify generic tasks--basic combinations of
knowledge structures and inference strategies that are powerful for solving certain
kinds of problems. Our strategy is best understood by considering the "interaction
problem", that representing knowledge for the purpose of solving some problem is
strongly affected by the nature of the problem and by the inference strategy to be
applied to the knowledge. The interaction problem implies that different knowledge-
acquisition methodologies will be required for different kinds of reasoning, e.g. a
different knowledge-acquisition methodology for each generic task. We illustrate this
using the generic task of hierarchical classification. Our proposal and the interaction
problem call into question many generally held beliefs about expert systems such as
the belief that the knowledge base should be separated from the inference engine.

Introduction

Knowledge acquisition is the process that extracts knowledge from a source (e.g. a
domain expert or textbook) and incorporates it into a knowledge-based system that
solves some problem. Whether the knowledge is acquired by a knowledge engineer
or by a program, ultimately the knowledge must be encoded in some knowledge-
base representation. Consequently, knowledge acquisition cannot be separated from
a broader theory of knowledge-based reasoning; a solution to knowledge acquisition
must be compatible with a solution to the general problem of knowledge-based
reasoning.

For some time now, we have been developing a theory of generic tasks that
identifies several types of reasoning that knowledge-based systems perform and
provides a overall framework for the design and implementation of such systems
(Chandrasekaran 1983, 1984, 1986). In this paper, we present our theory as a way to
exploit the "interaction problem". Because each generic task exploits it differently,
each one should be associated with a different knowledge-acquisition methodology.

First, we pose and discuss the interaction problem. Next, we review our theory of
generic task~: ,the characteristics of a generic task and the generic tasks that have
been identified so far. In view of the interaction problem, we propose our theory of
generic tasks as a framework for identifying different knowledge-acquisition
methodologies. We illustrate this using the generic task of hierarchical classification.
Finally, we reflect on a number of beliefs that have driven much of the past research
on knowledge acquisition and knowledge-based reasoning.

231
0020-7373/87/020231 + 13503.00/0 �9 1987 Academic Press Inc. (London) Limited

232 T. B Y L A N D E R AND B. C H A N D R A S E K A R A N

The interaction problem

The interaction problem is this:

Representing knowledge for the purpose of solving some problem is strongly affected by
the nature of the problem and by the inference strategy to be applied to the knowledge.

In other words, how knowledge is represented has a close relationship to how
knowledge is used to solve problems; knowledge is dependent on its use. The
interaction problem is not a new notion. Minsky, in his famous frame proposal,
argues that "factual and procedural contents must be more intimately connected to
explain the apparent power and speed of mental activities" (Minsky, 1975, p. 211).
Marr has noted that "how information is represented can greatly affect how easy it is
to do different things with it" (Marr 1982, p. 21). Our argument takes a different
perspective, that the problem and the inference strategy influence what knowledge is
represented and how knowledge is encoded, i.e. knowledge will be represented to
take advantage of what it will be used for.

The interaction problem, if true, has serious implications for how knowledge
acquisition should be done. Because some knowledge representation must be the
target of knowledge acquisition, knowledge-acquisition methodologies must take the
interaction problem into account. Also, if different kinds of reasoning have different
kinds of interactions, there is a need for a different knowledge-acquisition
methodology for each kind of reasoning.

REASONS FOR THE INTERACT/ON PROBLEM

Figure 1 illustrates the situation that gives rise to the interaction problem. Starting
with a problem and a domain expert (or some other source of knowledge), the goal
of knowledge acquisition is to construct a knowledge-based system that solves the
problem by the combination of a knowledge base and an inference strategy (a

]n,tial:

Goal:

Domain I Problem & expert

I Knowledge-
acquistion
process

Inference
strategy

Uses~/

I Knowledge
base

Solves ~ Problem J

FIG. 1. Initial and goat states of the knowledge-acquisition process.

KNOWLEDGE-BASED REASONING 233

process to use or interpret the knowledge). There are two primary reasons why this
leads to the interaction problem.

(1) Choice of knowledge. The knowledge acquisition process must choose what
knowledge to ask for and what knowledge to encode. The choice is driven by
the need to gain leverage on the problem by obtaining knowledge with high
utility and to reduce complexity by avoiding or discarding knowledge with low
utility. Not everything the domain expert knows has the same level of
usefulness, and in any case, it is not feasible to acquire everything that the
domain expert knows.

(2) Constraints of inference strategy. A knowledge representation requires some
process that, given a description of a situation, can use (or interpret) the
knowledge to make conclusions. It is this process which we call the "inference
strategy" ("inference engine" is an equivalent phrase). The knowledge must
be represented so that the inference strategy reaches appropriate conclusions
(appropriate to the problem being solved) in a timely fashion. Consequently,
the knowledge must be adapted to the inference strategy to ensure that
certain inferences are made from the knowledge and not others. Also, give a
choice of inference strategies, there will be an interaction between the
strategy chosen and the form of knowledge.

E X A M P L E S OF T H E I N T E R A C T I O N P R O B L E M IN R U L E - B A S E D R E P R E S E N T A T I O N S

The idea of rules is to explicitly map situations to actions. Naturally then, the focus
is on determining what conditions characterize the situations and what conclusions
characterizes the actions. The result is that two different problems in the same
domain can have different rules representing the "same" knowledge. For example in
diagnosis, rules of the form "symptom--~ malfunction" will be implemented, while
in prediction of symptoms, the rules will be in the form "malfunction~ symptom".
In each case, the knowledge will be adapted to the problem. One might argue that
there is no difficulty with keeping both problems in mind, and so both kinds of rules
can be in the same knowledge base. Of course, given that one has already taken the
interaction problem into account, the knowledge base then will have rules appropri-
ate for the problems to be solved.t

Another source of interaction is that special programming techniques are needed
to encode problem-specific inference strategies. For example, R1 (McDermott,
1982), which is implemented in OPS5 (Forgy, 1981), performs a sequence of "design
subtasks", each of which is implemented as a set of production rules. However,
OPS5 has no construct equivalent to a subtask, so the grouping of rules and the
sequencing from one set of rules to another are achieved by programming
techniques. Clearly, the constraints of OPSS's production rule representation has
had a significant effect on how Rl 's knowledge was encoded.

Different,inference strategies for rules are also a source of interaction. If

t It is actually dangerous to have both kinds of rules in a knowledge base. Given some confidence in a
malfunction, then some confidence in the symptoms it causes should be inferred. However, one shouldn ' t
infer confidence in other malfunctions that cause the same symptoms.

234 T. BYLANDER AND B. CHANDRASEKARAN

EMYCIN's backward-chaining strategy is used, rules can combine with other rules
to increase or decrease confidence in a given conclusion (van Melle, 1979). On the
other hand, if OPS5's recognize-and-act strategy is used, only one rule at a time can
be fired, so that situations must be matched to actions much more exactly. Also, the
"context" must be carefully controlled to ensure that appropriate rules are
considered. Note that the difference is not whether EMYCIN does forward- or
backward-chaining, but that EMYCIN allows rules to act in parallel, while OPS5
applies rules in serial.

THE INTERACTION PROBLEM IN OTHER REPRESENTATIONS

Rule-based and logic-based representations are fairly similar with respect to the
interaction problem. Like rules, logic provides for a direct way for drawing
conclusions from situations. In the context of a specific problem, it is useful to
encode only those propositions that can make problem-relevant conclusions.
Logic-based representations are also like rules with respect to implementing special
structures and dealing with different inference strategies. To implement R1 in
predicate logic, for example, a subtask construct would also have to be implicitly
programmed. Two different inference strategies for logic, such as PROLOG and
resolution theorem proving, are quite different to use.

The emphasis in frame representations is on describing the conceptual structure of
the domain. However, different problems might need quite different conceptual
structures. For example, classificatory problem solving (Gomez & Chandrasekaran,
1981; Clancey, 1985) in general needs a generalization hierarchy (hypothesis-
subhypothesis), while routine design (Brown & Chandrasekaran, 1986) in general
needs a structural hierarchy (component-subcomponent). Of course, one of
Minsky's original intentions was to express the interaction between knowledge and
inference strategies. For example, the idea of attaching various kinds of information
to a frame is for controlling how the frame will be used.

EXPLOITING THE INTERACTION PROBLEM

The interaction problem will not go away no matter what representation is chosen.
Every knowledge-based system will be developed, debugged, and maintained so its
knowledge works with its inference strategy and so its knowledge in combination
with its inference strategy solves a certain problem. It is not feasible to undertake an
exhaustive study of a domain to acquire any and all the knowledge associated with
that domain. It is important to realize that knowledge-based systems are powerful
only when selected portions of domain knowledge, appropriately interpreted, are
needed to solve problems.

Instead of trying to lessen the impact of the interaction problem, our research
strategy has been to exploit it. We claim that different representations can be
exploited in different ways and are thus more applicable to certain kinds of problems
than others. This is where our theory of generic tasks comes in. Our intent is to
propose types of problem solving in which the representation and the inference
strategy can be exploited to solve certain kinds of problems. For a particular domain
and problem, our intent is to encode a selected portion of domain knowledge into
an efficient and maintainable problem solving structure.

KNOWLEDGE-BASED REASONING 235

The proposal
Intuitively one would think that diagnosis in different domains would have certain
types of reasoning in common, and that design in different domains would also have
certain types of reasoning in common, but that diagnostic reasoning and design
problem-solving will be generally speaking different. For example, diagnostic
reasoning generally involves malfunction hierarchies, rule-out strategies, setting up a
differential, etc., while design involves device/component hierarchies, plans to
specify components, ordering of plans, etc. However, the formalisms (or equiv-
alently the languages) that have been commonly used for knowledge-based systems
do not capture these distinctions. Ideally, diagnostic knowledge should be repre-
sented by using the vocabulary that is appropriate for diagnosis, while design
knowledge should have a vocabulary appropriate for design. Our approach to this
problem has been to identify generic tasks--basic combinations of knowledge
structures and inference strategies that are powerful for dealing for certain kinds of
problems. The generic tasks provide a vocabulary for describing problems, as well as
for designing knowledge-based systems that perform them.

CHARACTERIZATION OF A GENERIC TASK

Each generic task is characterized by information about the following:

(1) The type of problem (the type of input and the type of output). What is the
function of the generic task? What is the generic task good for?

(2) The representation of knowledge. How should knowledge be organized and
structured to accomplish the function of the generic task? In particular, what
are the type of concepts that are involved in the generic task? What concepts
are the input and output about? How is knowledge organized in terms of
concepts? In essence, we adopt Minsky's idea of frames as a way to organize
the problem solving process (Minsky, 1975).

(3) The inference strategy (process, problem-solving, control regime). What
inference strategy can be applied to the knowledge to accomplish the function
of the generic task? How does the inference strategy operate on concepts?

The phrase "generic task" is somewhat misleading. What we really mean is an
elementary generic combination of a problem, representation, and inference strategy
about concepts. The power of this proposal is that if a problem matches the function
of a generic task, then the generic task provides a knowledge representation and an
inference strategy that can be used to solve the problem. Figure 2 illustrates how
this fits into knowledge acquisition. Identifying a generic task that is applicable to
the problem is an intermediate goal of knowledge acquisition. The problem must
match the type of problem that the generic task can solve. The generic task then
specifies a type of strategy and a type (or form) of knowledge for solving the
problem, Further stages of the knowledge-acquisition process (not illustrated in the
figure) are to obtain domain knowledge and to particularize the inference strategy.

EXAMPLES OF GENERIC TASKS

Our group has identified several generic tasks. Here, we briefly describe the generic
tasks of hierarchical classification (Gomez & Chandrasekaran, 1981) and object
synthesis by plan selection and refinement (Brown & Chandrasekaran, 1986).

236 T. BYLANDER AND B. CHANDRASEKARAN

Initial:

In termediote
goal:

Problem

i Strategy
type

Usesx~ /

Knowledge
type

Generic task

Domain I & expert

I Knowledge-
acquisit on
process

I

So,ve .J Probre t:
q ,ype l i

. t%;nce
Problem

FIG. 2. Using generic tasks in knowledge acquisition.

Hierarchical classification
Problem: Given a description of a situation, determine what categories or
hypotheses apply to the situation.

Representation: The hypotheses are organized as a classification hierarchy in
which the children of a node represent subhypotheses of the parent. There must be
knowledge for calculating the degree of certainty of each hypothesis.

Important concepts: Hypotheses.
Inference strategy: The establish-refine strategy specifies that when a hypothesis

is confirmed or likely (the establish part), its subhypothesis should be considered
(the refine part). Additional knowledge may specify how refinement is performed,
e.g. to consider common hypotheses before rarer ones. If a hypothesis is rejected or
ruled-out, then its subhypotheses are also ruled-out.

Examples: Diagnosis can often be done by hierarchical classification. In planning,
it is often useful to classify a situation as a certain type, which then might suggest an
appropriate plan. The diagnostic portion of MYCIN (Shortliffe, 1976) can be
thought of as classifying a patient description into an infectious agent hierarchy.
PROSPECTOR (Duda, Gaschnig & Hart, 1980) can be viewed as classifying a
geological description into a type of formation. Hierarchical classification is similar
to the refinement part of Clancey's heuristic classification (Clancey, 1985).

Object synthesis by plan selection and refinement
Problem: Design an object satisfying specifications. An object can be an abstract
device, e.g. a plan or program.

Representation: The object is represented by a component hierarchy in which the

KNOWLEDGE-BASED REASONING 237

children of a node represent components of the parent. For each node, there are
plans that can be used to set parameters of the component and to specify additional
constraints to be satisfied. There is additional knowledge for selecting the most
appropriate plan and to recover from failed constraints.

Important concepts: The object and its components.
Inference strategy: To design an object, plan selection and refinement selects an

appropriate plan, which, in turn, requires the design of subobjects in a specified
order. When a failure occurs, failure handling knowledge is applied to make
appropriate changes.

Examples: Routine design of devices and the synthesis of everyday plans can be
performed using this generic task. The MOLGEN work of Friedland (Friedland,
1979) can be viewed in this way. Also Rl's subtasks (McDermott, 1982) can be
understood as design plans.

OTHER PROPERTIES OF GENERIC TASKS

Generic tasks have a number of other properties. First, there is not a one-to-one
relationship between generic tasks and problems. A problem might match the
function of more than one generic task, so that several strategies might be used to
solve the problem, depending on the knowledge that is available. For example, a
design problem might be solvable by hierarchical classification if there is only a
limited number of possible designs. Also, generic tasks can be composed for more
complex reasoning, i.e. one generic task problem solver might call upon another to
solve a subproblem. Typically, knowledge-based systems must be analysed as using
combinations of generic tasks, rather than just using a single one.

Second, we are interested in human-like problem-solving, which, we assume, is
about concepts and is non-quantitative. This leads us to look for ways that
knowledge can be distributed over the concepts of a domain. Distribution of
knowledge opens the possibility for parallel processing, e.g. refinement of a
hypothesis in hierarchical classification can be done in parallel. The criterion of
non-quantitative problem solving generally excludes normative methods such as
linear programming and Bayesian optimization.

Third, a complete description of a generic task should include not only the items
mentioned above, but also how it can be used for explanation, learning, and
teaching. In this view, things like explanation and learning are not separate generic
tasks, but are processes to be integrated into a generic task.

Fourth, each generic task can be associated with a programming language that
embodies the kind of knowledge and inference strategy that the generic task
specifies. For example, CSRL is a language developed for hierarchical classification
(Bylander & Mittal, 1986), and DSPL, a language for object synthesis using plan
selection and refinement (Brown, 1985). The languages of the generic tasks should
be useful for guiding and mediating knowledge acquisition, which implies that each
language should be useful for: pointing out what knowledge needs to be obtained,
decomposing problems into subproblems, combining information in decision-making
(especially uncertain information), debugging knowledge, allowing incremental
expansion of the knowledge base, and providing process guidance to implementors.t

f This list is adapted from (Bradshaw, 1986).

238 T. BYLANDER AND B. CHANDRASEKARAN

OTHER GENERIC TASKS

Other generic tasks that have been identified include knowledge-directed informa-
tion retrieval (Mittal, Chandrasekaran & Sticklen, 1984), abductive assembly of
explanatory hypotheses (Josephson, Chandrasekaran & Smith, 1984), hypothesis
matching (Chandrasekaran, Mittal & Smith, 1982), and state abstraction (Chandra-
sekaran, 1983). More detail on the overall framework can be found in Chandraseka-
ran (1986).

Exploiting hierarchical classification

Each generic task exploits domain knowledge differently; it calls for knowledge in a
specific form that can be applied in a specific way. Because the knowledge-
acquisition methodology must be able to extract and select the appropriate
knowledge, each generic task calls for a different knowledge acquisition methodol-
ogy. For illustration we consider the generic task of hierarchical classification (HC).
In HC, the emphasis is on obtaining the classification hierarchy that contains the
hypotheses that are relevant to the problem and can be used with the establish-
refine strategy. This section does not provide a complete knowledge-acquisition
methodology for HC, but outlines a number of considerations that a methodology
must take into account. Additional guidelines for using HC can be found elsewhere
(Mittal, 1980; Bylander & Smith, 1985).

DETERMINING HYPOTHESES OF INTEREST

HC is useful for determining the hypotheses that apply to a situation. An important
step then is to decide upon the hypotheses that the problem-solver should
potentially output. For example in diagnosis, the potential malfunctions of the
object should be considered. The goal here is to determine the specific categories
that should be produced, so if a general category is considered (e.g. "something is
wrong with X"), then more specific categories should be generated (e.g. by asking
"What types of problems can occur with X?"). Determining the usefulness of a
category is discussed below.

ANALYSING COMMONALITIES AMONG HYPOTHESES

Once a collection of classificatory hypotheses have been identified, one needs to
determine the commonalities among the hypotheses. These commonalities become
potential candidates for mid-hierarchy hypotheses in the classification hierarchy.
The easiest example to handle is when one hypothesis is clearly a subhypothesis of
another, i.e. it asserts a more specific category. In general, two hypotheses may
have commonalities along the following lines:

Definitional--The two hypotheses share a definitional attribute, e.g. hepatitis and
cirrosis are liver diseases. Rain and snow are forms of precipitation;
Appearance--The two hypotheses are recognized using common pieces of
evidence. Both cholestasis and hemolytic anemia have jaundice as a common
symptom. Wet grass is symptomatic of both rain and dew;
Planning--The two hypotheses are associated with similar plans of action. Both

KNOWLEDGE-BASED REASONING 239

the common cold and allergies are reasons to take plenty of facial tissue with you.
Either lightning or strong winds are good reasons for staying inside.

The ideal hypothesis asserts some definitional attribute over all its subhypotheses,
has an appearance common to all its subhypotheses, and also provides constraints
on the plans associated with its subhypotheses.

In general, the hierarchy should follow a definitional decomposition whenever
possible. However, there are cases where appearance is an important consideration.
For example, the Dublin-Johnson syndrome is a benign hereditary disorder that
mimics key symptoms of cholestasis (jaundice, conjugated hyperbilirubinemia--high
amounts of conjugated bilirubin in the blood). Because it looks so much like
cholestasis, it is most useful to make it a subhypothesis of cholestasis.

ASSESSING EVIDENCE FOR OR AGAINST HYPOTHESES

The above two steps should generate a large number of hypotheses. However, not
all of them will be useful for HC, i.e. there is a need to select a classification
hierarchy that can be used to exploit the establish-refine strategy, getting rid of any
intermediate hypothesis do not provide additional problem-solving power. Because
the language we have used for HC, CSRL, requires a classification tree (Bylander &
Mittal, 1986), we have become familiar with some of the strategies for evaluating
hypotheses. However, the following questions are relevant whether a tree or tangled
hierarchy is used.

Are there sufficient criteria to distinguish the hypothesis from other hypotheses?
In other words, does this hypothesis have a different appearance from other
hypotheses?
Is there evidence that distinguishes the hypotheses from its siblings? Because the
establish-refine strategy does not consider a hypotheses unless its parent (or one
of its parents in a tangled hierarchy) is relevant, evidence that distinguishes the
hypothesis from its siblings is especially important.
Is the evidence normally available? Evidence for or against an hypothesis is not
very useful if it is not likely to be available to the system when it is running. For
example in medical diagnosis, some tests are relatively risky, expensive, or
time-consuming to perform, so it is best to use hypotheses that rely on outward
signs and symptoms and generally available laboratory data.

We have generally used another generic task, hypothesis matching, for mapping
evidence to confidence values in hypotheses (Chandrasekaran et al., 1982).
However, we do not want to complicate the central issue by considering combina-
tions of generic tasks. Examples of how hypothesis matching can be exploited are
provided in Sticklen, Chandrasekaran & Smith (1985) and Bylander & Mittal,
(t986).

DEBUGGING ,HYPOTt IESES

An important part of knowledge acquisition is being able to find out what
knowledge was incorrect or left out when something goes wrong. In HC, the
following problems can occur:

Missing hypothesis--add the hypothesis to the classification hierarchy;

240 T. BYLANDER AND B. CHANDRASEKARAN

Wrong confidence value---debug the knowledge that produces the confidence
value. Sticklen et al. (1985) describes how hypothesis matching can be debugged.
The problems below assume that the confidence values are reasonable in view of
the evidence considered;
Relevant hypothesis not considered--a hypothesis is not considered if one of its
ancestors is not refined.t There are two possible problems with the ancestor.

There is not enough evidence to support the ancestor. To resolve this problem,
one needs to find more evidence for the ancestor, lower the threshold for
refining the ancestor, or implement more suitable ancestors, i.e. find better
hypotheses for the establish-refine strategy.
The hypothesis is not definitionally a subhypothesis of the ancestor. In this case,
the solution is to implement more suitable ancestors.

Irrelevant hypothesis considered--A hypothesis is considered only if one of its
parents was refined.$ Two causes of this problem are similar to the previous
problems--when there is not enough evidence to oppose the parent or the
hypothesis is not definitionally a subhypothesis of the parent. Similar fixes apply
to these cases.

Another possible cause is that the establish-refine strategy being used is too
simple. Sometimes a hypothesis should not be considered even if its parent is
established. For example, if one of the hypothesis's siblings is confirmed, and the
hypothesis is incompatible with its siblings, then the hypothesis should not be
considered. The solution here is to adapt the establish-refine strategy to lake this
additional information into account. It should be noted that this problem is not a
defect of establish-refine. Instead, it shows that establish-refine is really a family of
strategies. The CSRL language, for example, provides a default establish-refine
strategy and allows other establish-refine strategies to be defined.

KNOWLEDGE ACQUISITION FOR HIERARCHICAL CLASSIFICATION

The point of HC is to determine the hypotheses that describe a situation. The point
of knowledge acquisition for hierarchical classification is to obtain the knowledge
(the classification hierarchy) so that HC can be effectively performed. That is,
knowledge acquisition needs to exploit the interactions between the representation,
inference strategy, and the problem. Exploiting HC means the construction of a
classification hierarchy that contains the hypotheses to be considered and that allows
the establish-refine strategy to efficiently search the hypotheses. Thus a knowledge
acquisition methodology for HC needs to evaluate each hypothesis for its relevance
as a potential output and in view of the evidence that can support or oppose it.

A re-examination of past beliefs

Some generally held beliefs about knowledge-based systems need to be re-examined
in light of the interaction problem and our proposal to exploit it. These beliefs have

t This s ta tement is true only for a classification tree. For a tangled hierarchy, ~ hypothesis is not
considered if every path from the root node to the hypothesis has a node that was not refined.

$ It is possible that some otber problem solver might directly ask a classifier to consider a hypothesis.
This problem would be then at t r ibutable to the other problem solver, not the classifier,

KNOWLEDGE-BASED REASONING 241

served the first generation of knowledge-based systems well, especially in stimulat-
ing much research and discussion. However, we believe it is the time to reconsider
them.

BELIEF 1: KNOWLEDGE SHOULD BE UNIFORMLY REPRESENTED AND CONTROLLED

This belief denies the interaction problem and implies that there is nothing to be
gained by using different representations to solve different problems. Our ex-
perience is that when the problems of a domain match the generic tasks, the generic
tasks provide explicit and powerful structures for understanding and organizing
domain knowledge.

BELIEF 2: THE KNOWLEDGE BASE SHOULD BE SEPARATED FROM THE INFERENCE
ENGINE

This belief denies that the inference strategy affects how knowledge is represented.
However, its real effect has been to force implementors to implicitly encode
inference strategies within the knowledge base. Both MYCIN, whose diagnostic
portion is best understood as HC, and R1, which is best understood as routine
design, show that this separation is artificial.

BELIEF 3: CONTROL KNOWLEDGE SHOULD BE ENCODED AS METARULES

Although metarules address the problem of how to have multiple, explicit strategies
in a rule-based system, the metarule approach ignores other aspects of the
interaction problem. The "separation of control knowledge from domain knowl-
edge" promotes the view that domain knowledge can be represented independent of
its use, i.e. that different sets of metarules can be applied as needed. However,
given a clear strategy (whether metarules or inference engine) and a problem to be
performed, the domain knowledge will be adapted to interact with the strategy to
solve the problem.

BELIEF 4: THE ONTOLOGY OF A DOMAIN SHOULD BE STUDIED BEFORE
CONSIDERING HOW TO PROCESS IT

We believe that ontology should not be performed just for its own sake, but in view
of the problems that need to be done. For example, to apply HC to a domain, there
is a need to focus on the hypothesis space and evaluate hypotheses. Although other
knowledge structures (e.g. component hierarchies, causal networks) may be useful
for other generic tasks, if HC is going to be performed, then knowledge acquisition
should concentrate on those aspects of the domain that are relevant to HC. This is
not to say that a domain should not be analysed to identify what generic tasks are
appropriate; however, this kind of domain analysis does not require an exhaustive
ontology of the domain.

BELIEF 5: COI~RECT REASONING IS A CRITICAL GOAL FOR KNOWLEDGE-BASED
SYSTEMS

Everything else being equal, being correct is better than being incorrect. However,
an emphasis on correctness detracts from more critical issues. One of those issues is
developing an understanding of the appropriate strategies to be applied to a

242 T. BYLANDER AND B. C H A N D R A S E K A R A N

problem. For example, there has been much research and debate about normative
methods for calculating uncertainty. The reasoning problem, though, is not how to
precisely calculate uncertainty, but how to avoid doing so. In diagnosis, for
example, there is much more to be gained by using abduction (assembling composite
hypotheses to account for symptoms), then by independently calculating the degree
of certainty of each hypothesis to several decimal places of accuracy.

BELIEF 6: COMPLETENESS OF INFERENCE IS A CRITICAL GOAL FOR KNOWLEDGE-
BASED SYSTEMS

Everything else being equal, being complete is better than being incomplete, but an
emphasis on completeness ignores the fact that certain kinds of inferences will be
more important than others for a particular problem. For example in our description
of HC, we did not mention that when a subhypothesis is confirmed, one can infer
that its ancestors are also confirmed. This is not because we believe that a HC
problem solver should never perform this inference, but because other inferences
are the crucial aspects of HC: refinement of a hypothesis if it is likely and pruning of
its subhypotheses when it is ruled out.

BELIEF 7: A REPRESENTATION THAT COMBINES RULES, LOGIC, FRAMES, ETC. IS
WHAT IS NEEDED

Such representations appear to be a good compromise since they let you represent
knowledge in the "paradigm" of your choice. Unfortunately, this is, at best, only an
interim solution until something better is found. None of the individual repre-
sentations fully address the interaction problem, nor do they distinguish between
different types of reasoning.

Generic tasks at the "right" level of abstraction

The first generation of research into knowledge-based systems has conducted an
extensive search for a "holy grail" of representation, in which knowledge could be
represented free of assumptions of how it would be used. For any particular
problem, though, certain kinds of inferences and certain pieces of knowledge will be
critical to the problem, and consequently, domain knowledge needs to be organized
so those inferences are performed efficiently. This is how the interaction problem
arises, and why it will never go away. Instead of futilely trying to avoid it, the
interaction problem needs to be studied and understood so that methods of
exploiting it can be discovered and applied.

Our theory of generic tasks is an attempt to provide the "right" level of
abstraction for this and other problems of knowledge-based reasoning. Each generic
task provides a knowledge structure in which knowledge can be organized at a
conceptual level. In hierarchical classification, the concepts are hypotheses or-
ganized as a classification hierarchy. Each generic task identifies a combination of a
problem definition, representation, and inference strategy that exploits the interac-
tion problem. We have shown how the generic task of hierarchical classification can
be associated with a knowledge-acquisition methodology that takes advantage of the
interactions between domain knowledge and the establish-refine strategy.

Research supported by Air Force Office of Scientific Research, grant 82-0255, and Defense
Advanced Research Projects Agency, RADC Contract F30602-85-C-0010

KNOWLEDGE-BASED REASONING 243

References

BRADSHAW, J. M. (1986). Presentation at the Knowledge Acquisition for Knowledge-Based
Systems Workshop, Banff, Canada.

BROWN, D. C. (1985). Capturing mechanical design knowledge. Proceedings of the 1985
ASME International Computer in Engineering Conference, Boston.

BROWN, D. C. & CHANDRASEKARAN, B. (1986). Knowledge and control for a mechanical
design expert system. Computer, 19, 92-100.

BYLANDER, Z. & MI'VrAL, S. (1986). CSRL: A language for classificatory problem solving
and uncertainty handling. AI Magazine, 7, 66-77.

BYLANDER, T. • SMITII, J. W. (1985). Mapping medical knowledge into conceptual
structures. Proceedings of Expert System in Government Symposium. IEEE Computer
Society, McLean, Virginia, pp. 503-511.

CHANDRASEKARAN, B. (1983). Towards a taxonomy of problem solving types. AI Magazine,
4, 9-17.

CHANDRASEKARAN, B. (1984). Expert systems: matching techniques to tasks. In Artificial
Intelligence Applications for Business. Norwood, New Jersey: Ablex, pp. 116-132.

CttANDRASEKARAN, B. (1986). Generic tasks in knowledge-based reasoning: high-level
building blocks for expert system design. IEEE Expert 1, 23-30.

CHANDRASEKARAN, B., MITI'AL, S. & SMITH, J. W. (1982). Reasoning with uncertain
knowledge: the MDX approach. Proceedings of the Congress of American Medical
lnformatics Association. San Francisco: AMIA, pp. 335-339.

CLANCEY, W. J'. (1985). Heuristic classification. Artificial Intelligence, 27, 289-350.
DUDA, R. O., GASCItNIG, J. G. & HART, P. E. (1980). Model design in the prospector

consultant system for mineral exploration. In Expert Systems in the Microelectronic Age.
Edinburgh University Press, pp. 153-167.

FORGV, C. L. (1981). Technical Report CMU-CS-81-135, OPS5 Users Manual. Carnegie-
Mellon University.

FRIEDLAND, P. (1979). Knowledge-based experiment design in molecular genetics. Ph.D.
thesis, Computer Science Department, Stanford University.

GOMEZ, F. & CHANDRASEKARAN, B. (1981). Knowledge organization and distribution for
medical diagnosis. IEEE Transactions on Systems, Man and Cybernetics, SMC-ll,
34-42.

JOSEPHSON, J. R., CHANDRASEKARAN, B. & SMITtl, J. W. (1984). Assembling the best
explanation. Proceedings of the IEEE Workshop on Principles of Knowledge-Based
Systems. IEEE Computer Society, Denver, pp. 185-190.

MARR, D. (1982). Vision. W. H. Freeman.
McDERMO77", J. (1982). RI: A rule-based configurer of computer systems. Artificial

Intelligence 19, 39-88.
VAN MELLE, W. (1979). A domain independent production-rule system for consultation

programs. Proceedings of the Sixth International Conference on Artificial Intelligence.
Tokyo, pp. 923-925.

Mx~qsKv, M. (1975). A framework for representing knowledge. The Psychology of Computer
Vision. McGraw-Hill, p. 211-277.

MI'VrAL, S. (1980). Design of a distributed medical diagnosis and database systcm. Ph.D.
thesis, Department of Computer and information Science, The Ohio State University.

MrVrAL, S., CIIANDRASEKARAN, B. & STICKLEN, J. (1984). Patrec: a knowledge-directed
database for a diagnostic expert system. Computer 17, 51-58.

SIIORTLIFFE, E. H. (1976). Computer-Based Medical Consultations: MYCIN. New York:
Elsevier.

STICKLEN, J.,,CAIANDRASEKARAN, B. & SMITH, J. W. (1985). MDX-MYCIN: the MDX
paradigm applied to the MYCIN domain. Computers and Mathematics with Applications,
11, 527-539.

