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Our research strategy has been to identify generic tasks--basic combinations of 
knowledge structures and inference strategies that are powerful for solving certain 
kinds of problems. Our strategy is best understood by considering the "interaction 
problem", that representing knowledge for the purpose of solving some problem is 
strongly affected by the nature of the problem and by the inference strategy to be 
applied to the knowledge. The interaction problem implies that different knowledge- 
acquisition methodologies will be required for different kinds of reasoning, e.g. a 
different knowledge-acquisition methodology for each generic task. We illustrate this 
using the generic task of hierarchical classification. Our proposal and the interaction 
problem call into question many generally held beliefs about expert systems such as 
the belief that the knowledge base should be separated from the inference engine. 

Introduction 

Knowledge acquisition is the process that extracts knowledge from a source (e.g. a 
domain expert or textbook) and incorporates it into a knowledge-based system that 
solves some problem. Whether the knowledge is acquired by a knowledge engineer 
or by a program, ultimately the knowledge must be encoded in some knowledge- 
base representation. Consequently, knowledge acquisition cannot be separated from 
a broader theory of knowledge-based reasoning; a solution to knowledge acquisition 
must be compatible with a solution to the general problem of knowledge-based 
reasoning. 

For some time now, we have been developing a theory of generic tasks that 
identifies several types of reasoning that knowledge-based systems perform and 
provides a overall framework for the design and implementation of such systems 
(Chandrasekaran 1983, 1984, 1986). In this paper, we present our theory as a way to 
exploit the "interaction problem". Because each generic task exploits it differently, 
each one should be associated with a different knowledge-acquisition methodology. 

First, we pose and discuss the interaction problem. Next, we review our theory of 
generic task~: ,the characteristics of a generic task and the generic tasks that have 
been identified so far. In view of the interaction problem, we propose our theory of 
generic tasks as a framework for identifying different knowledge-acquisition 
methodologies. We illustrate this using the generic task of hierarchical classification. 
Finally, we reflect on a number of beliefs that have driven much of the past research 
on knowledge acquisition and knowledge-based reasoning. 
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The interaction problem 

The interaction problem is this: 

Representing knowledge for the purpose of solving some problem is strongly affected by 
the nature of the problem and by the inference strategy to be applied to the knowledge. 

In other words, how knowledge is represented has a close relationship to how 
knowledge is used to solve problems; knowledge is dependent on its use. The 
interaction problem is not a new notion. Minsky, in his famous frame proposal, 
argues that "factual and procedural contents must be more intimately connected to 
explain the apparent power and speed of mental activities" (Minsky, 1975, p. 211). 
Marr has noted that "how information is represented can greatly affect how easy it is 
to do different things with it" (Marr 1982, p. 21). Our argument takes a different 
perspective, that the problem and the inference strategy influence what knowledge is 
represented and how knowledge is encoded, i.e. knowledge will be represented to 
take advantage of what it will be used for. 

The interaction problem, if true, has serious implications for how knowledge 
acquisition should be done. Because some knowledge representation must be the 
target of knowledge acquisition, knowledge-acquisition methodologies must take the 
interaction problem into account. Also, if different kinds of reasoning have different 
kinds of interactions, there is a need for a different knowledge-acquisition 
methodology for each kind of reasoning. 

REASONS FOR THE INTERACT/ON PROBLEM 

Figure 1 illustrates the situation that gives rise to the interaction problem. Starting 
with a problem and a domain expert (or some other source of knowledge), the goal 
of knowledge acquisition is to construct a knowledge-based system that solves the 
problem by the combination of a knowledge base and an inference strategy (a 
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FIG. 1. Initial and goat states of the knowledge-acquisition process. 
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process to use or interpret the knowledge). There are two primary reasons why this 
leads to the interaction problem. 

(1) Choice of knowledge. The knowledge acquisition process must choose what 
knowledge to ask for and what knowledge to encode. The choice is driven by 
the need to gain leverage on the problem by obtaining knowledge with high 
utility and to reduce complexity by avoiding or discarding knowledge with low 
utility. Not everything the domain expert knows has the same level of 
usefulness, and in any case, it is not feasible to acquire everything that the 
domain expert knows. 

(2) Constraints of inference strategy. A knowledge representation requires some 
process that, given a description of a situation, can use (or interpret) the 
knowledge to make conclusions. It is this process which we call the "inference 
strategy" ("inference engine" is an equivalent phrase). The knowledge must 
be represented so that the inference strategy reaches appropriate conclusions 
(appropriate to the problem being solved) in a timely fashion. Consequently, 
the knowledge must be adapted to the inference strategy to ensure that 
certain inferences are made from the knowledge and not others. Also, give a 
choice of inference strategies, there will be an interaction between the 
strategy chosen and the form of knowledge. 

E X A M P L E S  OF T H E  I N T E R A C T I O N  P R O B L E M  IN R U L E - B A S E D  R E P R E S E N T A T I O N S  

The idea of rules is to explicitly map situations to actions. Naturally then, the focus 
is on determining what conditions characterize the situations and what conclusions 
characterizes the actions. The result is that two different problems in the same 
domain can have different rules representing the "same" knowledge. For example in 
diagnosis, rules of the form "symptom--~ malfunction" will be implemented, while 
in prediction of symptoms, the rules will be in the form "malfunction~ symptom". 
In each case, the knowledge will be adapted to the problem. One might argue that 
there is no difficulty with keeping both problems in mind, and so both kinds of rules 
can be in the same knowledge base. Of course, given that one has already taken the 
interaction problem into account, the knowledge base then will have rules appropri- 
ate for the problems to be solved.t 

Another source of interaction is that special programming techniques are needed 
to encode problem-specific inference strategies. For example, R1 (McDermott, 
1982), which is implemented in OPS5 (Forgy, 1981), performs a sequence of "design 
subtasks", each of which is implemented as a set of production rules. However, 
OPS5 has no construct equivalent to a subtask, so the grouping of rules and the 
sequencing from one set of rules to another are achieved by programming 
techniques. Clearly, the constraints of OPSS's production rule representation has 
had a significant effect on how Rl 's  knowledge was encoded. 

Different,inference strategies for rules are also a source of interaction. If 

t It is actually dangerous  to have both kinds of rules in a knowledge base. Given some confidence in a 
malfunction,  then some confidence in the symptoms  it causes should be inferred. However,  one shouldn ' t  
infer confidence in other  malfunctions that cause the same symptoms.  
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EMYCIN's backward-chaining strategy is used, rules can combine with other rules 
to increase or decrease confidence in a given conclusion (van Melle, 1979). On the 
other hand, if OPS5's recognize-and-act strategy is used, only one rule at a time can 
be fired, so that situations must be matched to actions much more exactly. Also, the 
"context" must be carefully controlled to ensure that appropriate rules are 
considered. Note that the difference is not whether EMYCIN does forward- or 
backward-chaining, but that EMYCIN allows rules to act in parallel, while OPS5 
applies rules in serial. 

THE INTERACTION PROBLEM IN OTHER REPRESENTATIONS 

Rule-based and logic-based representations are fairly similar with respect to the 
interaction problem. Like rules, logic provides for a direct way for drawing 
conclusions from situations. In the context of a specific problem, it is useful to 
encode only those propositions that can make problem-relevant conclusions. 
Logic-based representations are also like rules with respect to implementing special 
structures and dealing with different inference strategies. To implement R1 in 
predicate logic, for example, a subtask construct would also have to be implicitly 
programmed. Two different inference strategies for logic, such as PROLOG and 
resolution theorem proving, are quite different to use. 

The emphasis in frame representations is on describing the conceptual structure of 
the domain. However, different problems might need quite different conceptual 
structures. For example, classificatory problem solving (Gomez & Chandrasekaran, 
1981; Clancey, 1985) in general needs a generalization hierarchy (hypothesis- 
subhypothesis), while routine design (Brown & Chandrasekaran, 1986) in general 
needs a structural hierarchy (component-subcomponent). Of course, one of 
Minsky's original intentions was to express the interaction between knowledge and 
inference strategies. For example, the idea of attaching various kinds of information 
to a frame is for controlling how the frame will be used. 

EXPLOITING THE INTERACTION PROBLEM 

The interaction problem will not go away no matter what representation is chosen. 
Every knowledge-based system will be developed, debugged, and maintained so its 
knowledge works with its inference strategy and so its knowledge in combination 
with its inference strategy solves a certain problem. It is not feasible to undertake an 
exhaustive study of a domain to acquire any and all the knowledge associated with 
that domain. It is important to realize that knowledge-based systems are powerful 
only when selected portions of domain knowledge, appropriately interpreted, are 
needed to solve problems. 

Instead of trying to lessen the impact of the interaction problem, our research 
strategy has been to exploit it. We claim that different representations can be 
exploited in different ways and are thus more applicable to certain kinds of problems 
than others. This is where our theory of generic tasks comes in. Our intent is to 
propose types of problem solving in which the representation and the inference 
strategy can be exploited to solve certain kinds of problems. For a particular domain 
and problem, our intent is to encode a selected portion of domain knowledge into 
an efficient and maintainable problem solving structure. 
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The proposal 
Intuitively one would think that diagnosis in different domains would have certain 
types of reasoning in common, and that design in different domains would also have 
certain types of reasoning in common, but that diagnostic reasoning and design 
problem-solving will be generally speaking different. For example, diagnostic 
reasoning generally involves malfunction hierarchies, rule-out strategies, setting up a 
differential, etc., while design involves device/component hierarchies, plans to 
specify components, ordering of plans, etc. However, the formalisms (or equiv- 
alently the languages) that have been commonly used for knowledge-based systems 
do not capture these distinctions. Ideally, diagnostic knowledge should be repre- 
sented by using the vocabulary that is appropriate for diagnosis, while design 
knowledge should have a vocabulary appropriate for design. Our approach to this 
problem has been to identify generic tasks--basic combinations of knowledge 
structures and inference strategies that are powerful for dealing for certain kinds of 
problems. The generic tasks provide a vocabulary for describing problems, as well as 
for designing knowledge-based systems that perform them. 

CHARACTERIZATION OF A GENERIC TASK 

Each generic task is characterized by information about the following: 

(1) The type of problem (the type of input and the type of output). What is the 
function of the generic task? What is the generic task good for? 

(2) The representation of knowledge. How should knowledge be organized and 
structured to accomplish the function of the generic task? In particular, what 
are the type of concepts that are involved in the generic task? What concepts 
are the input and output about? How is knowledge organized in terms of 
concepts? In essence, we adopt Minsky's idea of frames as a way to organize 
the problem solving process (Minsky, 1975). 

(3) The inference strategy (process, problem-solving, control regime). What 
inference strategy can be applied to the knowledge to accomplish the function 
of the generic task? How does the inference strategy operate on concepts? 

The phrase "generic task" is somewhat misleading. What we really mean is an 
elementary generic combination of a problem, representation, and inference strategy 
about concepts. The power of this proposal is that if a problem matches the function 
of a generic task, then the generic task provides a knowledge representation and an 
inference strategy that can be used to solve the problem. Figure 2 illustrates how 
this fits into knowledge acquisition. Identifying a generic task that is applicable to 
the problem is an intermediate goal of knowledge acquisition. The problem must 
match the type of problem that the generic task can solve. The generic task then 
specifies a type of strategy and a type (or form) of knowledge for solving the 
problem, Further stages of the knowledge-acquisition process (not illustrated in the 
figure) are to obtain domain knowledge and to particularize the inference strategy. 

EXAMPLES OF GENERIC TASKS 

Our group has identified several generic tasks. Here, we briefly describe the generic 
tasks of hierarchical classification (Gomez & Chandrasekaran, 1981) and object 
synthesis by plan selection and refinement (Brown & Chandrasekaran, 1986). 
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FIG. 2. Using generic tasks in knowledge acquisition. 

Hierarchical classification 
Problem: Given a description of a situation, determine what categories or 
hypotheses apply to the situation. 

Representation: The hypotheses are organized as a classification hierarchy in 
which the children of a node represent subhypotheses of the parent. There must be 
knowledge for calculating the degree of certainty of each hypothesis. 

Important concepts: Hypotheses. 
Inference strategy: The establish-refine strategy specifies that when a hypothesis 

is confirmed or likely (the establish part), its subhypothesis should be considered 
(the refine part). Additional knowledge may specify how refinement is performed, 
e.g. to consider common hypotheses before rarer ones. If a hypothesis is rejected or 
ruled-out, then its subhypotheses are also ruled-out. 

Examples: Diagnosis can often be done by hierarchical classification. In planning, 
it is often useful to classify a situation as a certain type, which then might suggest an 
appropriate plan. The diagnostic portion of MYCIN (Shortliffe, 1976) can be 
thought of as classifying a patient description into an infectious agent hierarchy. 
PROSPECTOR (Duda, Gaschnig & Hart, 1980) can be viewed as classifying a 
geological description into a type of formation. Hierarchical classification is similar 
to the refinement part of Clancey's heuristic classification (Clancey, 1985). 

Object synthesis by plan selection and refinement 
Problem: Design an object satisfying specifications. An object can be an abstract 
device, e.g. a plan or program. 

Representation: The object is represented by a component hierarchy in which the 
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children of a node represent components of the parent. For each node, there are 
plans that can be used to set parameters of the component and to specify additional 
constraints to be satisfied. There is additional knowledge for selecting the most 
appropriate plan and to recover from failed constraints. 

Important concepts: The object and its components. 
Inference strategy: To design an object, plan selection and refinement selects an 

appropriate plan, which, in turn, requires the design of subobjects in a specified 
order. When a failure occurs, failure handling knowledge is applied to make 
appropriate changes. 

Examples: Routine design of devices and the synthesis of everyday plans can be 
performed using this generic task. The MOLGEN work of Friedland (Friedland, 
1979) can be viewed in this way. Also Rl's subtasks (McDermott, 1982) can be 
understood as design plans. 

OTHER PROPERTIES OF GENERIC TASKS 

Generic tasks have a number of other properties. First, there is not a one-to-one 
relationship between generic tasks and problems. A problem might match the 
function of more than one generic task, so that several strategies might be used to 
solve the problem, depending on the knowledge that is available. For example, a 
design problem might be solvable by hierarchical classification if there is only a 
limited number of possible designs. Also, generic tasks can be composed for more 
complex reasoning, i.e. one generic task problem solver might call upon another to 
solve a subproblem. Typically, knowledge-based systems must be analysed as using 
combinations of generic tasks, rather than just using a single one. 

Second, we are interested in human-like problem-solving, which, we assume, is 
about concepts and is non-quantitative. This leads us to look for ways that 
knowledge can be distributed over the concepts of a domain. Distribution of 
knowledge opens the possibility for parallel processing, e.g. refinement of a 
hypothesis in hierarchical classification can be done in parallel. The criterion of 
non-quantitative problem solving generally excludes normative methods such as 
linear programming and Bayesian optimization. 

Third, a complete description of a generic task should include not only the items 
mentioned above, but also how it can be used for explanation, learning, and 
teaching. In this view, things like explanation and learning are not separate generic 
tasks, but are processes to be integrated into a generic task. 

Fourth, each generic task can be associated with a programming language that 
embodies the kind of knowledge and inference strategy that the generic task 
specifies. For example, CSRL is a language developed for hierarchical classification 
(Bylander & Mittal, 1986), and DSPL, a language for object synthesis using plan 
selection and refinement (Brown, 1985). The languages of the generic tasks should 
be useful for guiding and mediating knowledge acquisition, which implies that each 
language should be useful for: pointing out what knowledge needs to be obtained, 
decomposing problems into subproblems, combining information in decision-making 
(especially uncertain information), debugging knowledge, allowing incremental 
expansion of the knowledge base, and providing process guidance to implementors.t 

f This list is adapted from (Bradshaw, 1986). 
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OTHER GENERIC TASKS 

Other generic tasks that have been identified include knowledge-directed informa- 
tion retrieval (Mittal, Chandrasekaran & Sticklen, 1984), abductive assembly of 
explanatory hypotheses (Josephson, Chandrasekaran & Smith, 1984), hypothesis 
matching (Chandrasekaran, Mittal & Smith, 1982), and state abstraction (Chandra- 
sekaran, 1983). More detail on the overall framework can be found in Chandraseka- 
ran (1986). 

Exploiting hierarchical classification 

Each generic task exploits domain knowledge differently; it calls for knowledge in a 
specific form that can be applied in a specific way. Because the knowledge- 
acquisition methodology must be able to extract and select the appropriate 
knowledge, each generic task calls for a different knowledge acquisition methodol- 
ogy. For illustration we consider the generic task of hierarchical classification (HC). 
In HC, the emphasis is on obtaining the classification hierarchy that contains the 
hypotheses that are relevant to the problem and can be used with the establish- 
refine strategy. This section does not provide a complete knowledge-acquisition 
methodology for HC, but outlines a number of considerations that a methodology 
must take into account. Additional guidelines for using HC can be found elsewhere 
(Mittal, 1980; Bylander & Smith, 1985). 

DETERMINING HYPOTHESES OF INTEREST 

HC is useful for determining the hypotheses that apply to a situation. An important 
step then is to decide upon the hypotheses that the problem-solver should 
potentially output. For example in diagnosis, the potential malfunctions of the 
object should be considered. The goal here is to determine the specific categories 
that should be produced, so if a general category is considered (e.g. "something is 
wrong with X"), then more specific categories should be generated (e.g. by asking 
"What types of problems can occur with X?"). Determining the usefulness of a 
category is discussed below. 

ANALYSING COMMONALITIES AMONG HYPOTHESES 

Once a collection of classificatory hypotheses have been identified, one needs to 
determine the commonalities among the hypotheses. These commonalities become 
potential candidates for mid-hierarchy hypotheses in the classification hierarchy. 
The easiest example to handle is when one hypothesis is clearly a subhypothesis of 
another, i.e. it asserts a more specific category. In general, two hypotheses may 
have commonalities along the following lines: 

Definitional--The two hypotheses share a definitional attribute, e.g. hepatitis and 
cirrosis are liver diseases. Rain and snow are forms of precipitation; 
Appearance--The two hypotheses are recognized using common pieces of 
evidence. Both cholestasis and hemolytic anemia have jaundice as a common 
symptom. Wet grass is symptomatic of both rain and dew; 
Planning--The two hypotheses are associated with similar plans of action. Both 



KNOWLEDGE-BASED REASONING 239 

the common cold and allergies are reasons to take plenty of facial tissue with you. 
Either lightning or strong winds are good reasons for staying inside. 

The ideal hypothesis asserts some definitional attribute over all its subhypotheses, 
has an appearance common to all its subhypotheses, and also provides constraints 
on the plans associated with its subhypotheses. 

In general, the hierarchy should follow a definitional decomposition whenever 
possible. However, there are cases where appearance is an important consideration. 
For example, the Dublin-Johnson syndrome is a benign hereditary disorder that 
mimics key symptoms of cholestasis (jaundice, conjugated hyperbilirubinemia--high 
amounts of conjugated bilirubin in the blood). Because it looks so much like 
cholestasis, it is most useful to make it a subhypothesis of cholestasis. 

ASSESSING EVIDENCE FOR OR AGAINST HYPOTHESES 

The above two steps should generate a large number of hypotheses. However, not 
all of them will be useful for HC, i.e. there is a need to select a classification 
hierarchy that can be used to exploit the establish-refine strategy, getting rid of any 
intermediate hypothesis do not provide additional problem-solving power. Because 
the language we have used for HC, CSRL, requires a classification tree (Bylander & 
Mittal, 1986), we have become familiar with some of the strategies for evaluating 
hypotheses. However, the following questions are relevant whether a tree or tangled 
hierarchy is used. 

Are there sufficient criteria to distinguish the hypothesis from other hypotheses? 
In other words, does this hypothesis have a different appearance from other 
hypotheses? 
Is there evidence that distinguishes the hypotheses from its siblings? Because the 
establish-refine strategy does not consider a hypotheses unless its parent (or one 
of its parents in a tangled hierarchy) is relevant, evidence that distinguishes the 
hypothesis from its siblings is especially important. 
Is the evidence normally available? Evidence for or against an hypothesis is not 
very useful if it is not likely to be available to the system when it is running. For 
example in medical diagnosis, some tests are relatively risky, expensive, or 
time-consuming to perform, so it is best to use hypotheses that rely on outward 
signs and symptoms and generally available laboratory data. 

We have generally used another generic task, hypothesis matching, for mapping 
evidence to confidence values in hypotheses (Chandrasekaran et al., 1982). 
However, we do not want to complicate the central issue by considering combina- 
tions of generic tasks. Examples of how hypothesis matching can be exploited are 
provided in Sticklen, Chandrasekaran & Smith (1985) and Bylander & Mittal, 
(t986). 

DEBUGGING ,HYPOTt IESES 

An important part of knowledge acquisition is being able to find out what 
knowledge was incorrect or left out when something goes wrong. In HC, the 
following problems can occur: 

Missing hypothesis--add the hypothesis to the classification hierarchy; 
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Wrong confidence value---debug the knowledge that produces the confidence 
value. Sticklen et al. (1985) describes how hypothesis matching can be debugged. 
The problems below assume that the confidence values are reasonable in view of 
the evidence considered; 
Relevant hypothesis not considered--a hypothesis is not considered if one of its 
ancestors is not refined.t There are two possible problems with the ancestor. 

There is not enough evidence to support the ancestor. To resolve this problem, 
one needs to find more evidence for the ancestor, lower the threshold for 
refining the ancestor, or implement more suitable ancestors, i.e. find better 
hypotheses for the establish-refine strategy. 
The hypothesis is not definitionally a subhypothesis of the ancestor. In this case, 
the solution is to implement more suitable ancestors. 

Irrelevant hypothesis considered--A hypothesis is considered only if one of its 
parents was refined.$ Two causes of this problem are similar to the previous 
problems--when there is not enough evidence to oppose the parent or the 
hypothesis is not definitionally a subhypothesis of the parent. Similar fixes apply 
to these cases. 

Another possible cause is that the establish-refine strategy being used is too 
simple. Sometimes a hypothesis should not be considered even if its parent is 
established. For example, if one of the hypothesis's siblings is confirmed, and the 
hypothesis is incompatible with its siblings, then the hypothesis should not be 
considered. The solution here is to adapt the establish-refine strategy to lake this 
additional information into account. It should be noted that this problem is not a 
defect of establish-refine. Instead, it shows that establish-refine is really a family of 
strategies. The CSRL language, for example, provides a default establish-refine 
strategy and allows other establish-refine strategies to be defined. 

KNOWLEDGE ACQUISITION FOR HIERARCHICAL CLASSIFICATION 

The point of HC is to determine the hypotheses that describe a situation. The point 
of knowledge acquisition for hierarchical classification is to obtain the knowledge 
(the classification hierarchy) so that HC can be effectively performed. That is, 
knowledge acquisition needs to exploit the interactions between the representation, 
inference strategy, and the problem. Exploiting HC means the construction of a 
classification hierarchy that contains the hypotheses to be considered and that allows 
the establish-refine strategy to efficiently search the hypotheses. Thus a knowledge 
acquisition methodology for HC needs to evaluate each hypothesis for its relevance 
as a potential output and in view of the evidence that can support or oppose it. 

A re-examination of past beliefs 

Some generally held beliefs about knowledge-based systems need to be re-examined 
in light of the interaction problem and our proposal to exploit it. These beliefs have 

t This s ta tement  is true only for a classification tree. For a tangled hierarchy, ~ hypothesis  is not  
considered if every path from the root node to the hypothesis has a node that was not  refined. 

$ It is possible that some otber  problem solver might directly ask a classifier to consider  a hypothesis. 
This problem would be then at t r ibutable to the other  problem solver, not  the classifier, 
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served the first generation of knowledge-based systems well, especially in stimulat- 
ing much research and discussion. However, we believe it is the time to reconsider 
them. 

BELIEF 1: KNOWLEDGE SHOULD BE UNIFORMLY REPRESENTED AND CONTROLLED 

This belief denies the interaction problem and implies that there is nothing to be 
gained by using different representations to solve different problems. Our ex- 
perience is that when the problems of a domain match the generic tasks, the generic 
tasks provide explicit and powerful structures for understanding and organizing 
domain knowledge. 

BELIEF 2: THE KNOWLEDGE BASE SHOULD BE SEPARATED FROM THE INFERENCE 
ENGINE 

This belief denies that the inference strategy affects how knowledge is represented. 
However, its real effect has been to force implementors to implicitly encode 
inference strategies within the knowledge base. Both MYCIN, whose diagnostic 
portion is best understood as HC, and R1, which is best understood as routine 
design, show that this separation is artificial. 

BELIEF 3: CONTROL KNOWLEDGE SHOULD BE ENCODED AS METARULES 

Although metarules address the problem of how to have multiple, explicit strategies 
in a rule-based system, the metarule approach ignores other aspects of the 
interaction problem. The "separation of control knowledge from domain knowl- 
edge" promotes the view that domain knowledge can be represented independent of 
its use, i.e. that different sets of metarules can be applied as needed. However, 
given a clear strategy (whether metarules or inference engine) and a problem to be 
performed, the domain knowledge will be adapted to interact with the strategy to 
solve the problem. 

BELIEF 4: THE ONTOLOGY OF A DOMAIN SHOULD BE STUDIED BEFORE 
CONSIDERING HOW TO PROCESS IT 

We believe that ontology should not be performed just for its own sake, but in view 
of the problems that need to be done. For example, to apply HC to a domain, there 
is a need to focus on the hypothesis space and evaluate hypotheses. Although other 
knowledge structures (e.g. component hierarchies, causal networks) may be useful 
for other generic tasks, if HC is going to be performed, then knowledge acquisition 
should concentrate on those aspects of the domain that are relevant to HC. This is 
not to say that a domain should not be analysed to identify what generic tasks are 
appropriate; however, this kind of domain analysis does not require an exhaustive 
ontology of the domain. 

BELIEF 5: COI~RECT REASONING IS A CRITICAL GOAL FOR KNOWLEDGE-BASED 
SYSTEMS 

Everything else being equal, being correct is better than being incorrect. However, 
an emphasis on correctness detracts from more critical issues. One of those issues is 
developing an understanding of the appropriate strategies to be applied to a 
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problem. For example, there has been much research and debate about normative 
methods for calculating uncertainty. The reasoning problem, though, is not how to 
precisely calculate uncertainty, but how to avoid doing so. In diagnosis, for 
example, there is much more to be gained by using abduction (assembling composite 
hypotheses to account for symptoms), then by independently calculating the degree 
of certainty of each hypothesis to several decimal places of accuracy. 

BELIEF 6: COMPLETENESS OF INFERENCE IS A CRITICAL GOAL FOR KNOWLEDGE- 
BASED SYSTEMS 

Everything else being equal, being complete is better than being incomplete, but an 
emphasis on completeness ignores the fact that certain kinds of inferences will be 
more important than others for a particular problem. For example in our description 
of HC, we did not mention that when a subhypothesis is confirmed, one can infer 
that its ancestors are also confirmed. This is not because we believe that a HC 
problem solver should never perform this inference, but because other inferences 
are the crucial aspects of HC: refinement of a hypothesis if it is likely and pruning of 
its subhypotheses when it is ruled out. 

BELIEF 7: A REPRESENTATION THAT COMBINES RULES, LOGIC, FRAMES, ETC. IS 
WHAT IS NEEDED 

Such representations appear to be a good compromise since they let you represent 
knowledge in the "paradigm" of your choice. Unfortunately, this is, at best, only an 
interim solution until something better is found. None of the individual repre- 
sentations fully address the interaction problem, nor do they distinguish between 
different types of reasoning. 

Generic tasks at the "right" level of abstraction 

The first generation of research into knowledge-based systems has conducted an 
extensive search for a "holy grail" of representation, in which knowledge could be 
represented free of assumptions of how it would be used. For any particular 
problem, though, certain kinds of inferences and certain pieces of knowledge will be 
critical to the problem, and consequently, domain knowledge needs to be organized 
so those inferences are performed efficiently. This is how the interaction problem 
arises, and why it will never go away. Instead of futilely trying to avoid it, the 
interaction problem needs to be studied and understood so that methods of 
exploiting it can be discovered and applied. 

Our theory of generic tasks is an attempt to provide the "right" level of 
abstraction for this and other problems of knowledge-based reasoning. Each generic 
task provides a knowledge structure in which knowledge can be organized at a 
conceptual level. In hierarchical classification, the concepts are hypotheses or- 
ganized as a classification hierarchy. Each generic task identifies a combination of a 
problem definition, representation, and inference strategy that exploits the interac- 
tion problem. We have shown how the generic task of hierarchical classification can 
be associated with a knowledge-acquisition methodology that takes advantage of the 
interactions between domain knowledge and the establish-refine strategy. 

Research supported by Air Force Office of Scientific Research, grant 82-0255, and Defense 
Advanced Research Projects Agency, RADC Contract F30602-85-C-0010 
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