
~ )  Pergamon Int. J. Heat Mass Transfer. Vol. 40, No. 3, pp. 665-687, 1997 
Copyright © 1996 Elsevier Science Ltd 

Printed in Great Britain. All fights reserved 
0017-9310/97 $15.00+0.00 

PII : S0017-9310(96)00154-8 

The unsteady penetration of free convection 
flows caused by heating and cooling flat surfaces 

in a porous media 
R. BRADEAN and D. B. INGHAM 

Department of Applied Mathematical Studies, The University of Leeds, Leeds LS2 9JT, U.K. 

P. J. HEGGS 
Department of Chemical Engineering, UMIST, Manchester M60 1QD, U.K. 

and 

I. POP 
Faculty of Mathematics, The University of Cluj, R-3400 Cluj, CP 253, Romania 

(Received 15 December 1995) 

Abstract--Free convection flow is generated in a porous media adjacent to a vertical or horizontal fiat 
surface which is suddenly heated and cooled, sinusoidally along its length. An approximate analytical 
solution, which is valid for small times and for any value of the Rayleigh number, Ra, is obtained by 
matching inner and outer expansions. A numerical solution is also obtained which matches the small time 
analytical solution to the ultimate steady-state solution when such a solution exists. In both configurations 
the flow pattern is that of a row of counter rotating cells situated close to the surface. When the surface is 
vertical and for Ra >~ 40, two recirculating regions develop at small times at the point of collision of two 
boundary layers which flow along the surface. However, for 40 <~ Ra <,% 150, the steady state solution, 
proposed by Bradean et al. [International Journal o f  Heat and Mass Transfer, 1996, 39, 2545-2557], using 
additional symmetrical conditions is unstable and at very large time the solution is periodic in time. In the 
situation in which the surface is horizontal the collision of convection boundary layers occurs without 
separation, tks time increases, the height of the cellular flow penetration increases and then decreases to its 
steady-state value. The heat penetrates infinitely into the porous media and the steady-state is approached 

later in time as the distance from the surface increases. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

The development cf supplementary energy resources, 
such as geothermal energy, has stimulated the study 
of convective flows through porous media. A very 
good and comprehensive review of the heat transfer 
mechanisms in geothermal systems has been per- 
formed by Cheng [i1], containing many numerical and 
experimental simulations of convective flows through 
different geothermal reservoirs around the world with 
application to power generation and liquid waste dis- 
posal. The more recent book by Nield and Bejan [2] 
gathered many other studies of convection through 
porous media with application to irrigation systems, 
exploration of petroleum and gas fields, porous insu- 
lations and cooling of rotating electric windings. 

In this paper the free convection fluid flow gen- 
erated by an impulsively heated and cooled, in space, 
vertical or horizontal surface is considered. In the 
steady-state vertical configuration, Bradean et  al. [3] 
showed that a cellular flow develops near the surface 
for small values of the Rayleigh number, Ra.  

However, for 40 ~< R a  ~< 150, additional symmetrical 
conditions in the x direction must be assumed in order 
to obtain convergent numerical solutions, and two 
recirculating regions develop at the point of collision 
of the two boundary layers which flow along the 
surface, as postulated by Smith and Duck [4] for the 
problem of a rotating sphere in a fluid at rest. 

Convergence of the numerical solution could not 
be obtained for R a  ~> 150 and the evolution of the 
recircUlating regions as the value of R a  increases 
implied that detachment occurs from the surface. In 
the horizontal situation, Poulikakos and Bejan [5] 
obtained steady-state numerical solutions using a pre- 
scribed temperature boundary condition at a large but 
finite distance from the surface. It was found that the 
cellular flow developed near the surface penetrates 
further into the porous media as R a  increases. How- 
ever, Bradean et  al. [6] showed analytically and 
numerically that the boundary condition of no heat 
transfer at an infinite distance from the surface is the 
appropriate physical boundary condition to enforce 
since the heat penetrates infinitely into the porous 
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NOMENCLATURE 

constant, equation (61) Uc 
non-dimensional distance from the x, y 
surface 
solution domain 
transformed streamfunction, equation 
(lO) 
acceleration due to gravity 
permeability of the porous media 
a characteristic length 
number of nodal points in the ~ c~ 
direction, equation (63) fl 
number of nodal points in the t/ v 
direction, equation (63) 
mean Nusselt number, equation (42) 
and (58) 
constant, equation (19) t/ 
average heat flux, equation (73) 7 
Rayleigh number 21, 22 
non-dimensional time 
non-dimensional temperature 
non-dimensional velocity components 
in the x and y directions, respectively 
mean fluid velocity, equations (41) and 
(57) 

a characteristic velocity 
non-dimensional Cartesian 
coordinates along and normal to the 
surface, respectively 
transformed coordinate, equation 
(66). 

Greek symbols 
thermal diffusivity 
coefficient of thermal expansion 
kinematic viscosity of the convective 
fluid 
non-dimensional streamfunction 
transformed coordinate, equation (10) 
transformed coordinate, equation (61) 
constant, equation (7) 
constants, equation (3). 

Superscripts 
^ dimensional variables 

scaled variables with the Rayleigh 
number, equation (7). 

media. As the Rayleigh number increases, the height 
of the cellular flow penetration decreases whereas the 
temperature at infinity increases. The flow does not 
separate at the point of collision of the two boundary 
layers which flow along the horizontal surface and 
this was also obtained by Ingham et  al. [7] in the 
situation in which the free convection boundary layers 
collide on a horizontal circular cylinder. 

For impulsively started problems there are usually 
restrictions on the validity of the analytical and/or 
numerical solutions in time, see the analytical solu- 
tions obtained by Wang [8, 9] and Pop et  al. [10, 11] 
using the method of matched asymptotic expansions 
and the numerical solutions obtained by Ingham et 

al. [7] and Collins and Dennis [12] using the numerical 
method of series truncation. However, numerical solu- 
tions which join the small and large time solutions 
have also been obtained by Ingham et  al. [13] and 
Ingham and Brown [14]. 

In this study an analytical solution which is valid 
for small times is obtained using a matching technique 
in a similar way to that described by Wang [6, 7]. The 
method is presented in more detail by Bradean et  al. 

[15, 16] and consists of obtaining expansions of the 
solution in terms of the small time inside and outside 
the thermal boundary-layer, which are then matched 
in order to take into account the outer flow from the 
thermal boundary-layer. 

Finite-difference solutions are also obtained for 
small and large times and for different values of the 

Rayleigh number using the fully implicit Crank-Nic- 
olson method. The prescribed constant temperature 
boundary condition is enforced at infinity by using a 
transformation in the direction normal to the surface 
as in the steady-state situations, see Bradean et  al. [3, 
6]. The appropriate scalings with the Rayleigh number 
and time are made at small times in the governing 
equations in order to take account of the growth of 
the thermal boundary-layer. 

2. FORMULATION OF THE PROBLEM 

A vertical horizontal surface is embedded in a 
porous media and initially the temperature, T . ,  is 
constant everywhere in space. Then at time f =  0 the 
surface is impulsively heated and cooled, sinusoidally 
along its length, namely we have : 

= Ta sin(2/L) + T .  

t'~>O, f = O ,  - ~ < 2 < o o  (1) 

when the surface is vertical and 

7 ~ = Ta cos(2/L) + T~ 

f~>0, 3~=0, - o o < ~ g < o o  (2) 

when the surface is horizontal, where the Cartesian 
coordinates (2, p) are chosen along and normal to the 
surface. It is assumed that the resulting flow is two- 
dimensional and the gravity, #, acts in the negative 
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or )~ direction depending on whether the surface is 
vertical or horizontal. Further, we assume Darcy's 
law and use the Boussinesq approximation. Then the 
non-dimensional governing equations can be written 
in terms of temperature, T, and streamfunction, ~k, see 
Nield and Bejan [2], as 

02~ ' 02~ 0T 0T 
0x---- S -~ . . . .  2, ~x + 22 fffy (3) Oy 2 

OT &pOT 0 ~ 0 T  1 ( 0 2 T  O0_o__T) 
at + dy ax 0x Oy - Raa\~x: + (4) 

where (2,, 22) = (1, 0) for the horizontal surface, 
(2~, 22) = (0, 1) for the vertical surface, 
Ra = KgflT~L/(v~) is the Rayleigh number and the 
velocities in the x and y directions are u = O~g/Oy and 
v = -O~k/Ox, respectively. The non-dimensional vari- 
ables are defined as follows : 

x = 2/L, y = y/L, u = a/U~, v = e/G (5) 

t = iLIUm, T = (73- Too)lT~, ~ = 6(U<L) (6) 

where U~ = KgflT.,#v is a characteristic speed. 
A thermal boundary-layer is formed at small times 

adjacent to the surface and its thickness is pro- 
portional to (t/Ra) 1/2. Thus the variation of the solu- 
tion with the Rayleigh number at small times is con- 
sidered by using the following scalings : 

y = jYRa ,/2, 0 = ~ Ra-~ (7) 

where 7 = 1/2 and 7 = 1 for the vertical and horizontal 
surfaces, respectiwfly, and the governing equations (3) 
and (4) become 

1 02~ "t 02~ 21 OT OT 
Ra Ox ~ 092 ~x -22  0~ (8) 

0T 1/2 ~fOl~ OT OtT/~f~ 1 02T 02T 
~7 +Ra - t ~ x  Ox = R a O x ~ + 0 7 "  

(9) 

In order to take into account the growth of the thermal 
boundary-layer at small times, the further trans- 
formations 

y =  2tl/24, ~=(4t)~f(x, 4, t) (10) 

are performed and. equations (8) and (9) become 

4t O2f + O2f OT OT 
RaOx 2 ~ -  = --2, ~x +22~-- ~ (11) 

OT /4 tV- I /2 /OFOT 3fOT~ 

1 OaT 1[02T 2 OTk 
=.--aOx--~+mt~-~-+ 4 ~ ) .  (12) 

It should be noted that at small times the thickness 
of the thermal boundary-layer does not depend on the 

inclination of the surface and this contrasts with the 
velocity scales which are different in the vertical and 
horizontal configurations. 

At t = 0, equations (11) and (12) for the tem- 
perature To and the streamfunction, f0, become : 

02To OTo 
+ 2 4 ~ -  = 0 (13) O~ 2 

_ OTo OTo 02f° 2, ~-x +22 (14) 
d4 2 d4 

which have to be solved subject to the boundary con- 
ditions 

To = 21 cos(x)+22 sin(x), f0 = 0 

a t 4 = 0 ,  0~<x~<2n (15) 

To-)O, dfo/O~--)O a s 4 ~ 0 ,  0~<x~<2~ (16) 

and the solution is given by 

To = 21 erfc(4) cos(x) +22 erfc(4) sin(x) (17) 

f0 = 2, [½(42 +~) erfc(4) - 2zr-l/24 e -¢~ - 3  sin(x) + 

22 [~ erfc(~)- n-  m (e-¢2 - 1)] sin(x). (18) 

Since the temperature along the surface in the x 
direction is 2n periodic, the solution domain for equa- 
tions (11) and (12) is chosen to be 

D =  { (x ,~ )eRxR:pn<~x<~(p+2)n ,  0-..<4<oo} 

(19) 

where, for convenience, we have taken p = 0 for the 
vertical surface andp = - 1 for the horizontal surface. 
Therefore, at small times, i.e. 0 < t ~< tp, where tp is a 
time to be specified, equations (11) and (12) have 
to be solved in the domain D subject to the initial 
conditions (17) and (18) and the following boundary 
conditions : 

T(x, 4) = 21 cos(x) + 22 sin(x), f(x,  4) = 0 

~ = 0 ,  pn<<.x<~(p+2)n (20) 

T(pn, 4) = T((p+2)n, 4), f(Pn, 4) = f ( (p+2)n ,  4) 

0 ~ < 4 < o o  (21) 

T(x, 4) ~ O, Of/d~(x, 4) ~ 0 

~ o o ,  pn<~x<~(p+2)n (22) 

for any t ~(0, tp). As time increases the thermal bound- 
ary-layer thickens and will only exist at large values 
of time when the Rayleigh number is very large. Thus, 
for times t > tp, it is more convenient to solve equa- 
tions (8) and (9) in the domain 

1)= { ( x , y ) ~ R x  R:p~ <~ x <<.(p+ 2)zq O~<y<oo}  

(23) 

subject to the initial condition given by the solution 
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of equations (11) and (12) at t = tp and the boundary 
conditions 

T(x,y') = 21 cos(x)+22 sin(x), ((x,37) = 0 

= 0 ,  p n < ~ x ~ < ( p + 2 ) n  (24) 

T(pn, ~) = T((p + 2)n, ~7), (25) 

( (Pn ,  y3 = (((P+2)n,37) 0 ~< .9 < 

T(x,~) --, o, o( /Oy(x,y)  -o o 

~--, oo, pn <~ x ~<(p+2)n (26) 

for any t > tp. 
In the steady-state vertical situation, Bradean et al. 

[3] could only obtain convergent numerical results for 
40 ~< Ra <~ 150 by considering additional symmetrical 
conditions in the x direction and hence the unsteady 
numerical solution may not converge to a steady- 
state for these values of the Rayleigh number. These 
conditions are therefore considered here in order to 
check the accuracy of the numerical method at large 
times, namely we look for solutions for which T = 0 
and q /=  0 at all planes x = kn, k integer. With this 
assumption, the temperature and the streamfunction 
are antisymmetric functions about the plane x = n, i.e. 
T(x ,y )  = - T ( 2 n -  x , y )  and ~k(x,y) = - q J ( 2 n - x , y )  
for any 0 ~< x ~< n and 0 ~< y < oo and at small times, 
i.e. 0 < t <~ tp, equations (11) and (12) now have to be 
solved in the domain 

D o =  { ( x , ~ ) ~ R × ~ : O < ~ x < ~  n, 0 -..< 4 < oo} (27) 

subject to the initial conditions (11) and the following 
boundary conditions 

T(x, ~) = sin(x), f ( x ,  ~) = 0 

T(x, 4) = O, f ix ,  ¢) = 0 x = O, 

4 = 0 ,  O ~ x < ~ n  

(28) 

0 ~< 4 < oo (29) 

T(x,¢)-~0, 8f/O¢(x,O--,O ¢ - o ~ ,  O<~x<<.n 

(30) 

for any te(0, tp). For larger values of time, i.e. t > tp, 
the problem reduces to solving equations (8) and (9) 
in the domain 

T(x,.9) -~ 0, 

for any t > tp. 

~qT/Oy(x,y)--,O ~ - o ~ ,  O<~x<~n 

(34) 

3. METHOD OF SOLUTION 

An analytical solution, which is valid at small times 
and for any value of the Rayleigh number, is obtained 
using the matched asymptotic expansions technique. 
Finite-difference results are also presented for small 
and large times in the range of Rayleigh numbers 
0 <~ Ra <~ 300 for the vertical surface and 0 ~< Ra <~ 
200/n for the horizontal surface. 

3.1. Analytical solution for  small times 
Expansions of the temperature and the stre- 

amfunction in terms of the small time are obtained in 
an inner region, inside the thermal boundary-layer. 
However, this solution is not valid in the entire solu- 
tion domain since there is an outer flow from the 
thermal boundary-layer and, therefore, an outer 
region, outside the thermal boundary-layer, has to be 
considered. In the outer region the temperature T = 0 
and the flow is potential. In order to obtain the outer 
expansion of the streamfunction the boundary con- 
dition at y = 0 is found by comparing the inner and 
outer expansions in an intermediate region. By adding 
now the inner and outer solutions and subtracting the 
common part we obtain a solution which is valid over 
the entire solution domain. The composite expansions 
of the temperature, streamfunction, mean fluid 
velocity, fi and mean Nusselt number, 57u, along the 
surface are obtained, see Bradean et al. [15, 16], as 
follows. 

(a) Vertical surface. 

T =  To+ T l t+O( t  2) 

f = f o + f l t + O ( t  2) 

where 

(35) 

(36) 

B o = { ( x , D ~ R x R : O < ~ x < < . n ,  0 ~<~7< oo} 

(31) 

subject to the initial conditions given by the solution 
of equations (11) and (12) at t = tp and the boundary 
conditions 

T(x,37) = sin(x), ((x,37) = 0 )7 = 0, 0 ~< x ~< n 

(32) 

T(x,)7)=0,  ( ( x , y ) = 0  x = O , n ,  0 ~ < j T < ~  

(33) 

To = erfc(~) sin(x) (37) 

T1 = R~ (~2 erfc(O -- n -  1/2 ~e-~ 2) sin(x) 

f 3n--4 2 
+ J ~ [ ( 2 ¢  + 1)erfc(~)-  2n-,/2 ~e-~ ~] 

3 1 ' 2  -2  1 2 1)er fc2(( ) - -~n - / 4e -¢ erfc(O + ~ (24 - -  

1 2.2 2 ~2)  
+ ~ e -  ~ -- ~ e -  ~sin(2x) (38) 
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f0 = [4erfc '4)-n-l /2(e-e:-e-Y)] sin(x) (39) 

2 [-1 3 
fl = ~aL g (4~ + 514) erfc(~) 

1 1/2 " -g~z-  (44" + 1)e -¢~ 

1 1'2 -] + g 7z- ~ e-YJ sin(x) 

+ { 1  (2~3 -- 34) erfc2(~) 

_ 1 zt-1/2 (4~.12 -- 11)e -~2 erfc(4) 

4 1'2 - ~(2n)- / e, rfc(x/~4) 

+ 3L ~1F3~-4 (24 3 + 34) + zt- l/2] erfc(4) 

3 n - 4 F  -1/2 2 3 
Llr 4 3~_4 4 

+~-1/21e-~-- (39-24x/~)n+836~ 

× ~- l/2e-2Y} sin(2x) (40) 

and 

i /= OO/OY)y=o dx = 2-4(~Ra)-l/2t~/Z+2Ra-lt 

-}~-l/ZRa-3/2t~/z +o(t z) (41) 

~U = f~ ( -- 0 T/O~)y = o d x  = 2 - 1  t - 1/2 [ 4 g  - 1/2 

+4~-l/ZRa-~t+O(t~)]. (42) 

(b) Horizontal surface. 

T =  To+ T~tl/2 + T2t+ T~t3/2 +O(t 2) (43) 

f = f o  +fl t 1/2 +fd+f~t  3/~ +0(t :) (44) 

where 

7"o = erfc(4) cos(x) 

T1 = 0 

/'2 = ~-2 [42 erfc(4)-~ 1/2~e-~2] cos(x) 
/~a 

(45) 

(46) 

(47) 

(48) 1"3 = 4Ra- 1/2 [h~ (4) + h2 (~) cos(2x)] 

f0 = [(½42 +¼) erfc(4) - - ½ g - U 2 ¢ e - ~ 2 - ¼ e  -y] sin(x) 

(49) 

A = 0 (50) 

2 1 14:/erfc(~) 
/ 

1 _1/2(43 ]sin(x) - g ~  +4)e -~ (51) 

f3 = h*(4) sin(2x) (52) 

where 

1 _ 2 ~  1 l 2 2 4-4e + igrc- / e-~  

13/ 3 3 
+ ~-~4 + ~ 4)erfc(4) 

13 
48 n-1/2(42 + 1)e -~2. (53) 

hz(¢) is the solution of equation 

d2h2 +24 d-~-~h~ a -6h2 
d42 

/ 
= ~ erfc2(4) +n-l/2 ~42- ~je erfc(ff) 

1 1 12/  2 - - 4 e  - 2 ¢ 2 - n  }re- e -¢ (54) 

subject to homogeneous boundary conditions, namely 

h2(¢)=0 a t e = 0  (55) 

h2 (0  --* 0 as ¢ ~ oo. (56) 

h~'(O is obtained by matching with the fourth-order 
outer flow and 

~ = (63~/017)y= o d x  = - 4 ~ - l / 2 t l / 2  + 2 R a - 1 / 2 t  
0 

4 
-- - -7~-l /2t3/2-Jf -O(t5/2)  (57) 

3Ra 

1 1 2  1 2  = 7 t - 1 / 2 t - l / 2 q - ~ a T Z -  / t / 

1/2 /'2 5r~ + Ra- ~ -- -~)t  +O(t3/z). (58) 

3.2. Numerical solution 
In order to enforce the boundary condition of no 

flow and zero temperature at infinity the solution 
domain D is divided into a finite region 
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D. = {(x ,~)eR x N:pn ~< x ~<(p+2)n, o~<~<a} 

(59) 

and a semi-infinite region 

D b = { ( X , ~ ) ¢ ~ ×  ~{: 

pn<~x<~(p+2)n, d ~ < ~ <  oo} 

which is then transformed using the scaling 

l + c ( ¢ - a )  

into the finite domain 

De = {(x,r / )~Nx R: 

pn<~x~<(p+2)n, 0~<r/~<l}. (62) 

The constant d > 0 is chosen for the numerical solu- 
tion to be independent of the value of d, whereas the 
parameter c has to be determined so as to match the 
grid systems in the domains Da and D~, namely 

n~ 
c - (63) 

d(n, - 1) 

where n~ + 1 and n, + 1 are the number of grid points 
taken in the ~ and ~/directions, respectively. 

Thus, at small times, i.e. 0 < t <~ tp, equations (11) 
and (12) are solved in the domain D, and the trans- 
formed equations 

0f 4t 02f +c2( 1 _~/)4 ~ _2c2(1 _q)3 0q 
Ra Ox 2 

OT 20T 
= - 2 ,  ~x +2zc(1--r/) ~-q (64) 

+c(1-r#)z¢4t~'-ile(OfOT\-R-da/ t Oq Ox OxOf ~ 

Ra 1 02T Ox 2 1 f 02T 2 OT 0-~ - + _d(1-~)'7~7~ ~ - 2 ~  ( 1 - o ) '  

+ (65) 

are solved in the domain D~ subject to the initial con- 
dition (17) and (18) and the boundary conditions 
(20)-(22). At larger values of time, i.e. t > tp, the 
transformation (61) is now used in the 37 direction, 
namely 

1 
Z = 1 (66) 

1 +c(37-d)  

and the problem reduces to solving equations (8) and 
(9) in the domain 

ida = {(x,37)eRxR:pn <...x ~(p+2)n,  0-.<37-..<d} 

(67) 

and the transformed equations 

1 02_q7 2.._z_)4 . _2c2(l_z_D3 
Ra Ox 2 -t'c tJ -ff~ 

OT _ ~ 2 0 T  
= --21 ~X +22C(1 Off (68) 

(60) ~ + c ( 1  -,2 n 1/2 ~//0~ffaT 0 f 0 T ~  
- z ,  Ka t ~  ~x ~x ~ J  

1 02T 2 OZT __z7)3 0T (61) -/~a O~- +c (1 -z-) 4 -  -2c2(1 
gz72 0Z 

(69) 

in the domain 

D~= {(x ,Z)~ExR:pn <~x <~(p+ 2)n, 0 ~ < ~ < 1 }  

(70) 

subject to the initial condition given by the solution 
of equations (11), (12), (64) and (65) at t = tp and the 
boundary conditions (24)-(26). 

In the situation in which the surface is vertical and 
for 40 <~ Ra <~ 300, the additional symmetrical con- 
ditions assumed in the steady-state by Bradean et al. 
[3] are also considered and a numerical solution in the 
domain Do is obtained in a similar way to that 
described above in the domain D. 

Finite-difference results have been obtained using a 
fully implicit Crank-Nicolson method. The successive 
over relaxation method is then used to solve the result- 
ing nonlinear system of algebraic equations iteratively 
at each time step. At each time step the iterative pro- 
cedure is terminated when the maximum difference 
between two successive iterations of the temperature 
and streamfunction becomes less than a preassigned 
value, say 10 -6 . However, at small times, i.e. 
0 < t ~< tp, we were unable to obtain a convergent 
numerical solutions of the full equations (11) and (12) 
in the domain D and the temperature at large distances 
from the surface tends to infinity as the number of 
iterations increases. This is most likely to have been 
caused by the accuracy of the computer which in the 
iterative procedure cannot adequately deal with the 
term ~ OT/O~ for large values of ~ and small values of 
OT/O¢. However, at small times the thermal boundary- 
layer is of thickness 0(1) in the domain D and therefore 
the temperature and the temperature gradient should 
be approximately zero in the domain Dc if the value 
of d chosen is sufficiently large. The difficulty can be 
overcome by neglecting the term ~OT/O~ for large 
values of ¢ in the energy equation, i.e. we neglect the 
term 

0T 
A=2[cd(1-q)2+q(1-q)]~q (71) 

on the right hand side of equation (65) in the domain 
De. The result is that convergent numerical solution 
can now be obtained which satisfy the hypothesis that 
A is approximately zero everywhere in the domain De. 
At larger values of time, i.e. t > tp, the full equations 
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(8) and (9) are solved in the domain /~. It is now 
convenient to choose tp = 1/4 since then 

.v= 4, ~ ( x , f ,  tp) =f(x ,~ , tp)  (72) 

and a value of d = 27z was found to be sufficiently 
large for the solution to be independent of d. 

The fluid velocity and the temperature gradient 
along the surface have been calculated from the 
numerically obtained solution for the streamfunction 
and the temperature. Then the mean fluid velocity, ~7 
and the mean Nusselt number, Nu, along the surface 
were calculated u,;ing Simpson's formula. 

4. RESULTS AND DISCUSSION 

An analytical solution for small times and numeri- 
cal results obtain,:d using the methods described in 
Section 3 are presented for the configuration in which 
the fiat surface is vertical or horizontal. It should be 
noted that analyt:Lcal and numerical results can also 
be obtained for different shaped surfaces, such as cir- 
cular or elliptic cylinders, in a similar way to that 
described for flat surfaces, namely by taking into 
account the growth of the thermal boundary-layer at 
small times. 

4.1. Vertical surface 
Numerical resu].ts have been obtained using differ- 

ent grid systems and time steps and the solution was 
found to be sufficiently accurate when using a grid 
system of step sizes ~/40 in the x, ~ and )7 directions 
and 1/40 in the r/ and ~ directions and a time step 
At = 0.05. Theretore, unless stated, the numerical 
results are presented for this discretization. 

The mean fluid velocity, ~ and the mean Nusselt 
number, ATu, along the surface calculated analytically 
and numerically are presented in Fig. 1 for different 
values of the Rayleigh number. The analytical and 
finite-difference re:mlts are in very good agreement up 
to a time which increases as Ra increases, e.g. t ~ 0.25 
for Ra = 1 and t 2,' 1 for Ra = 100 and this is because 
the dominant term in the analytical expansion of the 
solution is actually obtained from the boundary-layer 
equations. Howev,er, it is observed that for Ra >~ 100 
the solution seems to be in the boundary-layer regime, 
see Fig. 1 b and the analytical and numerical solutions 
are in very good agreement up to t ~ 1. 

The leading terra in the time variation of the mean 
fluid velocity is obtained by matching the outer flow 
from the thermal boundary-layer and Fig. la shows 
the importance of matching the inner and outer expan- 
sions. 

Due to the suddLen change of the surface tempera- 
ture, a thermal boundary-layer is formed at small 
times adjacent to the surface and streams which flow 
in opposite directions are generated along the hot and 
cold regions of the surface. Thus, the flow pattern 
develops into a row of counter-rotating cells. The heat 
and flow penetrates further into the porous media as 

the time or the Rayleigh number increases and the 
numerical results for Ra = 1 and t ~> 3 are in very 
good agreement with the steady-state numerical solu- 
tion obtained by Bradean et al. [3] (see Fig. 1). 

Figure 2 presents the streamlines obtained for 
Ra = 100 at different times and shows that at small 
times the flow separates from the surface at the point 
of collision of two adjacent boundary-layers, giving 
rise to two recirculating regions. The separation pro- 
cess can be deduced from the evolution of the fluid 
velocity and the horizontal temperature gradient at 
the surface which were calculated at different times 
as a function of the distance along the surface. The 
buoyancy force is proportional to the horizontal tem- 
perature gradient and at t ~ 4 becomes sufficiently 
strong near the location x = n so as to pull the fluid 
in opposite directions to that of the main flow. The 
result is that two adjacent counter-rotating recir- 
culating regions are developed in the vicinity of the 
location x = ~ on the surface and the time at which 
the flow separates decreases as Ra increases, e.g. t ~ 4 
for Ra = 100 and t ~ 3 for Ra = 300. The size of 
the recirculating regions increases as the time of the 
Rayleigh number increases. However, the magnitude 
of the buoyancy force near the location x = n on the 
surface decreases in time after the fluid separation, 
since the magnitude of the fluid velocity increases. 

Thus, at small times, the solution seems to develop 
towards the steady-state patterns as obtained by Bra- 
dean et al. [3], but at larger values of time small oscil- 
lations of the solution are observed in the recirculating 
regions. As the size of the recirculating regions 
increases in time, the amplitude of the oscillations 
increases until there is a complete breakdown of the 
symmetry in the x direction when the oscillations 
extend into the main cellular flow. It is found that the 
point of collision of the two adjacent boundary layers 
which flow along the surface oscillates about the plane 
x = 7t and only one recirculating region is developed 
at the time when the upper or lower cell crosses the 
plane x = n. However, as time increases, smaller and 
smaller recirculating regions are developed. At very 
large values of time the flow does not separate from 
the surface (see Fig. 2) and the solution becomes per- 
iodic in time. 

Figure 3 illustrates the time variation of the mean 
fluid velocity, t~ and the mean Nusselt number, Nu, 
is calculated for different grid systems. Very good 
agreement at small times is obtained between the solu- 
tions using 80 x 80 x 40 and 60 x 60 × 30 points in the 
x, 37 and Z directions, respectively, whereas at very 
large times there is very good agreement between the 
period and the amplitude of the oscillations. The only 
slight dependence of the solution on the grid system 
is found at moderate values of time and this is due to 
the breakdown of the symmetry in the x direction at 
t ~ 30. The period of the solutions for the stre- 
amfunction and temperature is that for the Nusselt 
number, namely p ,~ 8.4. The period of oscillations of 
the mean fluid velocity, i.e. Pu -~ 4.2, is approximately 
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Fig. 1. (a) The mean fluid velocity, ~7 and (b) the mean Nusselt number, ATu, calculated analytically and 
numerically at small times for Ra = 1, 100 and 300 and the steady-state values for Ra = 1 obtained by 

Bradean et al. [3]. Vertical surface. 

half that of the Nusselt number and this is caused by 
the symmetry of the velocity along the surface, see Fig. 
2 which presents the streamlines obtained at t = 90.30 
and 94.50 whereby the mean fluid velocity reaches 
two consecutive local minimum values. However, the 
streamlines and isotherms obtained at t = 90.30 and 
98.70 are found to be almost indistinguishable. 

Hence, the numerical results for R a  = 100, as 
obtained for small and large times, show that the 
steady-state numerical solution obtained by Bradean 
et  al. [3] is not stable. The symmetrical conditions 
considered in the steady-state situation are only valid 
up to a time which decreases as the Rayleigh number 
increases, whereas when using these conditions the 
unsteady numerical solution for t >~ 200 is in very 
good agreement with the steady-state numerical 
results (see Fig. 3). 

For R a  >~ 150 convergent steady-state numerical 
solutions could not be obtained and it was postulated 
that the recirculation regions detach from the surface. 
The evolution of the fluid velocity and the horizontal 
temperature gradient and, therefore, the buoyancy 
force along the surface was investigated after the fluid 
separation. Since the magnitude of the fluid velocity 
at the surface in the recirculating region increases as 
the time increases, the buoyancy force near the 
location x = ~ on the surface acts increasingly against 
the recirculating flow for t >~ 8, Thus, the recirculating 
regions rotate further from the surface as the time 
increases, but they do not detach from the surface as 
predicted in the steady-state problem since the devel- 
opment of the solution described above is changed 
by small oscillations which occur in the recirculating 
regions for t ~> 12. In Fig. 4 the mean fluid velocity 
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surface. 

and the mean Nus,;elt number are plotted against the 
time as calculated tbr different grid systems and using 
the additional syrrxnetrical conditions considered in 
the steady-state and show that up to t ~ 17 these 
conditions are satisfied by the numerical solution 
which eventually becomes periodic in time. As the 
Rayleigh number increases the period of  the solution 
for the streamfuncfion and temperature, which is the 
period of  oscillations of  the Nusselt number, 
decreases, i.e. p ~ 5.6 for Ra = 300. However,  the 
amplitude of  oscillations of  the mean fluid velocity 
increases as Ra increases, whereas the amplitude of  
the Nusselt number seems to be independent of  the 
Rayleigh number and the values calculated for 
Ra = 100 and 300 agree within 2°/'0. 

Figure 5 presents the streamlines for Ra = 300 at 
t = 50 and 52.8. It shows that now the flow separates 
at large times wherL the solution is almost periodic in 
time and a recirculating region is developed at a time 
near the point o f  collision of  the two adjacent bound- 
ary layers which flc,w along the surface. 

The additional symmetrical conditions assumed in 
the steady-state situation are now considered for 
Ra = 300 in order to check whether, in the absence of  
the instability in the x direction, the recirculating 
region developed at small times near the location 
x = n on the surface detach from the surface as pre- 
dicted by Bradean et al. [3]. Without  the interference 
of  the oscillations in the recirculating region, the buoy- 
ancy force now acts increasingly against the recir- 
culating flow up to t ~ 40, when it becomes sufficiently 
strong so as to pull the fluid in the opposite direction 
to that of  the recirculating flow. The result is that a 
second recirculating region, which increases in size as 
the time increases, develops as the first recirculating 
region detaches from the surface, see Fig. 5 where the 
streamlines are presented at t = 50 and 80. 

However,  the second recirculating region is con- 
sumed by the main cell when the first recirculating 
region has completely detached from the surface and 
this is because it rotates in the direction of  the main 
cell. Then a third recirculating region develops in a 



676 R. B R A D E A N  et al. 

X 

( 

0 

(a) 

1 2 3 4 5 6 

X 

C 

0 1 2 3 4 5 6 

(b) 
Fig. 5. S t reamlines  for Ra = 300 ob ta ined  at  (a) t = 50 and  (b) t = 52.8 and  us ing the add i t i ona l  sym- 

metr ica l  cond i t ions  and  at  (c) t = 50 and  (d) t = 80 in the ver t ical  conf igurat ion.  (Continued opposite.) 



The unsteady penetration of free convection flows 677 

X 

0 

(c) 
t 2 3 4 5 6 

N 

Y 

3 

X 

0 

(d) 

1 2 3 4 5 6 
Y 

Fig. 5. Continued. 

similar way to that described at small times for the first 
recirculating region and this rotates in the opposite 
direction to that of the main cell (see Fig. 5d). This 
evolution of the ,;olution is repeated until a recir- 
culating flow region stabilizes near the surface. At 
very large times the solution oscillates in time in the 
recirculating region which does not detach from the 
surface and eventually becomes periodic in time. 

The mean fluid velocity fi and the mean Nusselt 
number, A~u, as a function of time presented in Fig. 6 
shows that in this situation the solution at large times 
is more dependent on the grid system than is the 
solution obtained in the domain/ ) .  The number of 
recirculating regions that detach from the surface 
depends on the mesh size. However, at very large 
times, the period and the amplitude of the oscillations 
do not depend on the grid system provided that the 
step sizes are sufficiently small. 

The period of the streamfunction and temperature 
solutions is again the same as the period of oscillations 
of the Nusselt number, namely p ~ 11.35 and the 
streamlines and isotherms obtained at t = 251 and 

262.35, at which the Nusselt number reaches two con- 
secutive local minimum values, are found to be almost 
indistinguishable. 

4.2. Horizontal surface 
An investigation of numerical results obtained for 

different grid systems and time steps showed that the 
numerical solution is sufficiently accurate when using 
80 points in the x, ¢ and )7 directions and a time 
step At = 0.05. The number of points in the r /and g 
directions is taken to be dependent on the Rayleigh 
number and 40, 80 and 120 points are chosen for 
Ra = 10/Tr, 100/zr and 200/n, respectively, in order to 
obtain the solution at very large values ofy. However, 
using a different mesh size in the r /and g directions 
does not influence the solution in the domain / )  and, 
therefore, the numerical results presented for this con- 
figuration have been obtained using the above dis- 
cretizations. 

Figure 7 presents the mean fluid velocity, t7 and the 
mean Nusselt number, Nu, along the surface at small 
times and shows very good agreement between the 
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Vertical surface. 

analytical and numerical results up to a time which 
increases as the Rayleigh number increases, i.e. up to 
t ~ 0.5 for Ra  = 10/lr and t ~ 3 for R a  = 200/n. As 
time increases the magnitude of  the mean fluid velocity 
increases from ~ = 0 at t = 0 whereas in the situation 
when the surface is vertical the mean fluid velocity 
impulsively increases up to t7 = 2 at t = 0 and then 
decreases in time. The values of  the mean Nusselt 
number calculated at small times for R a  = 100 and 
200/rr indicate that the boundary-layer regime is 
approached at R a  ,~ 200/n (see Fig. 7b). It should 
be noted that the boundary-layer scalings with the 
Rayleigh number  at small times and the steady-state 
do not  coincide and this was also obtained by Pop et 

al. [11]. 
The streamlines and isotherms for R a  = 10/n, 100/n 

and 200/7r and at different times are plotted in Fig. 8 
and show that the heated and cooled horizontal sur- 
face generates streams which flow between the cold 
and hot  regions of  the surface, giving rise to a cellular 
flow. Initially, both the heat and flow penetrate to 

larger distances into the porous media as time 
increases. However,  the height of  the cellular flow 
penetration reaches a maximum value at a large time, 
which increases as the Rayleigh number increases and 
then slowly decreases towards the steady-state value 
obtained by Bradean et  al. [6]. For  small values of  the 
Rayleigh number, i.e. Ra  = 10/n, the height to which 
the flow penetrates into the porous media remains 
almost constant at very large times since its maximum 
value is approximately the steady-state value and the 
streamlines obtained at t = 200 (see Fig. 8) and the 
steady-state are found to be almost indistinguishable. 
As Ra  increases the maximum height of  the cellular 
flow increases, whereas the height of  the steady-state 
flow slightly decreases, see Bradean et  al. [6] and Fig. 
8 shows the streamlines and isotherms for Ra  = 100/n 
at t = 300 and 2000. It is interesting to note that 
the shape of  the streamline and isotherm patterns 
obtained at t = 300, when the height of  the cellular 
flow reaches its maximum value, is similar to those 
obtained by Poulikakos and Bejan [5] in the steady- 
state problem using a prescribed temperature bound- 
ary condit ion at a large but finite distance from the 
surface. However,  Bradean et al. [6] showed that this 
boundary condition cannot  be enforced in the steady- 
state problem since the heat penetrates infinitely into 
the porous media and the temperature at infinity 
depends on the Rayleigh number. For  t ~> 800 the 
height of  the cellular flow very slowly decreases 
towards the steady-state value obtained by Bradean 
et  al. [6] and at t = 2000 the streamlines near the 
surface are similar to the steady-state patterns. For  
larger values of  the Rayleigh number the maximum 
height of  the cellular flow is very large and numerical 
results have been obtained only up to R a  = 200/7t. 
For  R a  = 200/~ the evolution of  the solution is similar 
to that described for Ra  = 100/~ but the time at which 
the solution becomes comparable with the steady- 
state solution is too large and numerical results have 
been obtained only up to t = 2000, see the streamlines 
and isotherms plotted in Fig. 8. However,  the numeri- 
cal results show that the flow does not  separate from 
the horizontal surface at the point  of  collision of  two 
boundary layers. 

Since the hot  fluid rises and the cold fluid is trapped 
near the surface the temperature of  one cell becomes 
hotter as the time or the Rayleigh number  increases 
and at large times above the cellular flow the heat 
is transferred by conduction to infinity. In order to 
investigate the penetration of  heat into the porous 
media, the temperature as a function o f y  at x = 0 and 

for R a  = 10/~r is plotted in Fig. 9. At  large times, 
the temperature above the cellular flow does not  
depend on x and decreases from a positive value to 
zero at infinity. As time increases the solution very 
slowly develops towards the steady-state solution 
obtained by Bradean et  al. [6]. However,  a steady- 
state solution of  similar shape to that obtained at 
t = 200 which satisfies T ~ 0 as y -o oo is not  possible 
since the heat conduction equation has to be satisfied 
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Table 1. The mean velocity, fi and the mean Nusselt number, 
AVu, along the horizontal surface for (a) Ra = 10fir and (b) 
Ra = 100 and 200/n calculated at large times and the steady- 

state value~; obtained by Bradean et al. [6] 
(a) 

t a 57u 

50 - 1.761 0.607 
100 - 1.756 0.601 
150 ~ 1.754 0.598 
200 - 1.753 0.597 

- 1.745 0.587 

(b) 

Ra = i[ 00/~ Ra = 200/~z 
t fi fffu fi Nu 

500 -- 4.211 0.394 -- 5.366 0.452 
1000 --4.104 0.369 --5.139 0.399 
1500 -- 4.074 0.362 -- 5.020 0.372 
2000 --4.063 0.359 --4.949 0.357 

--4.006 0.346 --4.755 0.318 

Table 2. The temperature at the location x = 0 and y = 1.80 
for Ra = 100/n and at different times calculated (A) using 

equation (76) and (N) numerically 

T(0,1.80) 
t A N 

50 0.289 0.292 
100 0.301 0.302 

this is due to the fact that the average heat flux at the 
surface tends to zero as t ~ oo. However,  the numeri- 
cal results obtained at large times indicate that the 
solution decays algebraically to the steady-state solu- 
tion. An empirical expression of  the solution at very 
large times can be obtained at any point in the solution 
domain by assuming that 

T(x , y )  = To~(x ,y)+ T_~(x , y ) t  -p~(x'y) (74) 

~//(x,y) = Ip~(x ,y) -q-I~_l(x ,y) t  -q'(x'y) (75) 

where To~ and ~b~ are the steady-state solution and 
T_I, Pl, ~k I and q~ are calculated at a point (x ,y )  
in the solution domain using the numerical results 
obtained at two different very large times. For  exam- 
ple, for Ra = 10/~ equation (74) is determined at the 
location x = 0 and y = 1.80 using the numerical solu- 
tion obtained at t = 150, 200 and the steady-state, 
namely 

T = 0 .326-0 .341t  -°'s66 (76) 

and Table 2 shows that there is good agreement 
between this equation and the numerical results. How- 
ever, further analytical study is required in order to 
obtain expansions of  the solution in terms of  the large 
time. 

above the cellular flow and the solution is a constant 
temperature which depends on the Rayleigh number. 

The average heat flux at the surface 

== f~  (-~T/rq~)y=o dx  (73) Q 

as a function of  time for different values of  Ra is 
plotted in Fig. 10 and shows that, unlike the vertical 
configuration when the average heat flux at the surface 
is zero at all time:z, more heat enters than leaves the 
porous media and, therefore, heat enters the porous 
media at all times. This is the reason behind the infinite 
heat penetration. However,  at very large values of  
time, the average: heat flux at the surface slowly 
decreases towards zero and this is consistent with the 
steady-state solution. 

Table 1 presents the values of  the mean fluid 
velocity, a and the mean Nusselt number, ~Tu, along 
the surface for Ra = 10/~, 100/Tz and 200/7t at pro- 
gressively increasing values of  time and a slow 
approach to the steady-state values is apparent. Since 
the heat penetrates infinitely into the porous media, 
the steady-state temperature for Ra = 10/n is com- 
pared at different distances from the surface with the 
temperature at large times in Fig. 11. It is obtained 
that the steady-state is approached at larger values of  
time as the distance from the surface increases and 

5. CONCLUSION 

The analytical and numerical results are found to 
be in very good agreement at small times and show 
that near the heated and cooled flat surface the flow 
consists of  a row of  counter-rotating cells, each cell 
developing along either the hot  or cold regions of  the 
vertical surface and between the cold and hot regions 
of  the horizontal surface. 

In the vertical configuration the heat and flow pen- 
etrate further into the porous media as the time or 
Rayleigh number increases. For  Ra >~ 40 and at small 
t imes the flow separates from the surface and the 
solution appears to develop towards the steady-state. 
However,  the additional symmetrical conditions 
assumed in the steady-state situation are only satisfied 
up to a time which decreases as Ra increases and at 
very large times the solution is periodic in time. A 
recirculating flow region develops at a time near the 
point of  collision of  two boundary layers which flow 
along the vertical surface, provided that the Rayleigh 
number is sufficiently large. 

When the surface is horizontal the cellular flow 
initially penetrates further into the porous media and 
the temperature of  one cell becomes hotter as time or  
Rayleigh number increases. However,  at very large 
times, the height of  the flow penetration decreases 
to its steady-state value whereas the heat above the 
cellular flow is transferred by conduction to infinity. 
The greater the distance from the surface the later is 
the steady-state approached. Unlike the vertical con- 
figuration, the flow does not  separate from the hori- 
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zontal  surface at  1:he poin t  of  collision of  two bound-  
ary layers. 
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