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The Annals of Statistics 
1988, Vol. 16, No. 3, 1044-1068 

ESTIMATION IN THE PRESENCE OF INFINITELY MANY 
NUISANCE PARAMETERS-GEOMETRY OF 

ESTIMATING FUNCTIONS 

BY SHUN-ICHI AMARI AND MASAYUKI KUMON 

University of Tokyo 
When there exist nuisance parameters whose number increases in propor- 

tion to that of independent observations, it is in general difficult to get a 
consistent or efficient estimator of a common structural parameter. The 
present paper proposes a new theory based on a vector bundle consisting of 
certain random variables over the statistical model. Structures and properties 
of estimating functions are elucidated in the class of consistent estimators. A 
necessary and sufficient condition is obtained for the existence of a consistent 
estimator given by an estimating function. A necessary and sufficient condi- 
tion is then given for the existence of the optimal estimator in this class, 
which is further obtained when it exists. In their derivations, the concept of 
dual connections and parallel transports plays an essential role. The results 
are applied to a special type of exponential family, and the optimal estima- 
tors are explicitly obtained in some examples. This explains the reason why 
the conditional score plays an important role. 

1. Introduction. The present paper treats the problem of estimating a 
structural parameter when there exist nuisance parameters whose number in- 
creases in proportion to the number of independent observations. Let xi,..., x n 
be n independent observations, where each xi is a vector random variable whose 
density function is given by p(xi; 9, {). The scalar parameter a is to be 
estimated and is called a structural parameter. The (i, i = 1,...,n, are scalar 
nuisance parameters, which are unknown, taking on arbitrary values, and they 
are not necessarily an i.i.d. sample from an unknown distribution p(() of (. The 
problem is considered asymptotically in n, so that estimators of the structural 
parameter are evaluated by their asymptotic behaviors for large n. 

This problem was treated by Neyman and Scott (1948), where it was re- 
marked that the maximum likelihood estimator does not necessarily enjoy the 
consistency or the asymptotic efficiency in the sense of attaining the Cramer-Rao 
bound. Since then, many researchers have tackled this problem. Andersen (1970) 
showed that the conditional maximum likelihood estimator is consistent in a 
special type of model. See also Cox (1975). Concerning efficiency, Godambe (1976) 
introduced the conditional score function and showed its optimality in a finite 
but special case. Lindsay (1982) extended this idea in an asymptotic but more 
general situation. 
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AMS 1980 subject classifications. Primary 62F10; secondary 62F12. 
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GEOMETRY OF ESTIMATING FUNCTIONS 1045 

We treated this problem in Kumon and Amari (1984) from the geometrical 
point of view. Three classes of estimators C0 D C1 D C2 were introduced: A 
C0-estimator is given as the solution of the equation 

n 

Y. Yxi, a) =0, 
i=1 

where y(x, 9) is called an estimating function; see Godambe (1960, 1976) and 
Godambe and Thompson (1978). The class C1 consists of all the consistent 
estimators in C0, and the class C2 consists of all the uniformly informative 
estimators in C1. The main result in Kumon and Amari (1984) is that a new 
lower bound, other than the Cramer-Rao bound, is given for the asymptotic 
variance of estimators in C2 and the optimal estimators in C2 are explicitly given 
for some examples. 

The aim of the present paper is to study the structure and the asymptotic 
behavior of all the Cl-estimators or estimating functions, providing a geometric 
theory of estimating functions; cf. Godambe (1960, 1976) and Godambe and 
Thompson (1978). We solve the following three problems for C1-estimators by 
constructing a differential geometrical theory. They are (i) to give a necessary 
and sufficient condition for the existence of Cl-estimators, (ii) to elucidate 
structures of all the Cl-estimators and (iii) to give a necessary and sufficient 
condition for the existence of the optimal Cl-estimator and to obtain it when it 
exists. The theory is applied to statistical models in which there exists a 
sufficient statistic s(x, 9) for the nuisance parameter f when 9 is fixed, where 
abstract results in this paper become very transparent. The present theory also 
explains why the conditional score plays an important role [Andersen (1970) and 
Godambe (1976)]. We can also treat the case when the number of dimensions of 
xi is different for each i. This case occurs when a different number qi of 
independent observations are made from a distribution p(x; 9, (i) for each i. It 
is possible to construct a geometrical theory of C2-estimators, although limita- 
tion of space does not permit us to describe it. 

It should be remarked that there are many other approaches to this type of 
problem. Our approach is to obtain the estimator in C1 which is universally 
optimal for any sequence of nuisance parameters 1 . 42, -- v This criterion of 
optimality is very strong so that the best estimator exists only in a very 
restricted class of distributions. Indeed, it is the aim of the present paper to 
obtain the class of such distributions and to obtain the optimal estimator in this 
class. Another approach is to obtain the optimal estimator depending on the 
realized sequence 1, 2.... when it can be regarded as an i.i.d. sample from an 
unknown but fixed distribution p(s). Such a problem is said to be semiparamet- 
ric [Begun, Hall, Huang and Wellner (1983)], and the optimal estimator has 
already been obtained by using the adaptive estimator technique [Stein (1956), 
Bickel (1982) and Pfanzagl (1982); see also Bickel and Klaassen (1986)]. Lindsay 
(1983, 1985) also treated this problem. The third one is the minimax approach, 
aimed at obtaining the optimal estimator in the minimax sense, that is, to 
minimize the estimating loss provided the worst sequence 1, 42, - - is chosen 
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1046 S.-I. AMARI AND M. KUMON 

from some prescribed class; see Hasminskii and Ibragimov (1983) and Nussbaum 
(1984). Obviously, the optimal solutions are different when the problems are set 
up in different ways. However, it is expected that the geometrical approach is 
useful and helpful for other approaches. 

The present theory is constructed on the basis of differential geometry [see 
Amari (1982), Amari (1985), Amari, Barndorff-Nielsen, Kass, Lauritzen and Rao 
(1987) and Barndorff-Nielsen, Cox and Reid (1986)], and the concept of Hilbert 
fiber bundle (see Appendix D) and a pair of dual affine connections or parallel 
transports play a fundamental role. This suggests a new direction of develop- 
ment as well as its usefulness of the differential geometrical approach in statis- 
tics. However, we cannot be able to spare so much space for rigorous differential 
geometrical treatment. Refer to Kobayashi and Nomizu (1963) for detailed 
accounts on fiber bundles. 

2. Explanation of the problem and classes of estimators. We begin with 
describing the problem, the classes of estimators treated here and the regularity 
conditions. Let M = {p(x; 9, i)) be a parametric statistical model, where 
p(x; 0, i) is the probability density function of a q-dimensional vector random 
variable x specified by two scalar parameters 0 and i. Let xl, x2,..., x,,, ... be a 
sequence of independent observations, where the ith observation xi is assumed 
to be subject to p(x; 0, {i), i = 1, 2,.... In other words, the parameter 0, which 
is called the structural parameter, is common to all the observations but the 
value of the parameter i, which is called the nuisance or incidental parameter, 
changes observation by observation. Let x- = (xl, x2,. .. ) be an infinite sequence 
of observations and let t = (il, i2 ... ) be a corresponding infinite sequence of 
the values of i. We put in = (xl,..., xn) and in = R12 . in) for their n 
sections. The problem is to estimate the structural parameter 0 based on the n 
observations .i without any knowledge of the true in. We evaluate the asymp- 
totic behavior of an estimator O(xn) for large n and search for the best estimator 
in a class of estimators given in the following discussion. In Section 5 we treat 
the case where the dimension number qi of the ith observation xi is not 
necessarily the same for all i. This is the case when an unequal number qi of 
independent observations is repeated for the distribution p(x; 0, {i) in the ith 
trial. 

We introduce the following classes of estimators [Kumon and Amari (1984)]. 
(i) Class CO: An estimator 0 belongs to CO, when it is given by the solution of 

the estimating equation for some y(x, 0), 
n 

(2.1) y(xi, 6) = O. 
i=l1 

The function y(x, 0), which depends neither on J nor on n, is called the 
estimating function of the estimator. Notice that two estimating functions 
y(x, 0) and a(0)y(x, 0) give the same estimator 0, provided a(O) $ 0 for all 0. 

(ii) Class C1: An estimator 6 in class CO belongs to C1, when it is consistent 
and is asymptotically normally distributed with a variance of order n- 1. 
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GEOMETRY OF ESTIMATING FUNCTIONS 1047 

When there is no fear of confusion, we write as y(x, 6) e C1 when the 
associated 6 belongs to C1. The present paper studies characteristics of estima- 
tors in the class C1. 

We assume several regularity conditions in the following. Since we have 
interest in geometrical structures of the present problem rather than the rigorous 
regularity conditions, they are stronger than needed. 

(1) The statistical model M forms a two-dimensional differentiable manifold 
in which the parameters (6, () E e x - give a coordinate system of M. Thus, 
the parameter space 0 x _ is an open subset of R 12. 

(2) Let u(x; 6, {) and v(x; 6, () be the 6- and {-score functions for the 
likelihood p(x; 6, (), 
(2.2) u(x; 6, () = d6log p(x; 6, ), 
(2.3) v(x; 6, a) = dlogp(x; 6, (), 
where ao = d/d6, at = d/at. It is assumed that 

(2.4) Eo, j,[u(x; 0, ()2] < x0, 

(2.5) Ee, , f[V(X; 0, t)21 < 0, 

for any 6, 0, {', where EO j, denotes the expectation with respect to p(x; 6, c'). 
Moreover, it is assumed that the Fisher information matrix is nondegenerate. 

(3) Estimating functions are smooth in 6, and y(x, 6) and dey(x, 6), where 
da = a/da, have finite third-order moments on the entire M. 

The asymptotic variance of an estimator 6 is calculated as follows. By 
expanding the estimating equation (2.1) around the true 6, we have 

E{y(xi, a) + doy(xi, 6)(6 6)) = op(l 612). 

From the regularity condition (3), we see that, for any sequence t and any 6, 
n-1Yy(xi, 0) and n-1E doy(x1, 6) converge to their expectations in probability. 
Hence, we have 

n1/2 - 0) - {n-1/2 Ey(xi, 6) }/{n-1 E ady(xi, 6)) + OP(n ). 

Moreover, the central limit theorem holds for the random variable n- 112Ey(xi, 6). 
This shows that 6 is asymptotically normally distributed and is consistent for 
any t and any 6, when and only when its estimating function y(x, 6) satisfies 

Eel A yx, 0)] = 0, 
for all (8, {), provided Ee, j,dey(x, 6)] * 0. The asymptotic variance of 0 defined 
by 

a.v.6; 0,] = lim Ep, n(.n 6 ])2 
n -- 00 

is given by 

(2.6) a.v.[; 0, (] = ((y(x, 6)2))e/((dey(x, 6)))2, 
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1048 S.-I. AMARI AND M. KUMON 

where << >> denotes 
n 

<<a(x))>> = lim n- 
, 
E Eo,da(xi)]. n -? ioo 

We thus have 

THEOREM 1. An estimator 9 belongs to C1, when and only when its estimat- 
ing function y(x, 9) satisfies 

E,, j[y(x,9)I = 0, E, t[y2] < 00, E, j[doy]2 > E, 

for some E > 0. 

An estimator 0 E C1 is said to be asymptotically universally optimal or 
shortly optimal when for all t and 9 its asymptotic variance is not larger than 
that of any other 0' E C1, i.e., 

a.v. [ 0; 0, (]< a.v.[ 0 ( 

holds for all ( and 9. 
One may think that the estimating equation (2.1) is very special, because it is 

a sum of independent random variables y(x1, 9),..., y(x,, 9). A more general 
form of estimating equation is Y(x,,, 9) = 0, which cannot in general be decom- 
posed into the sum Xy(xi, 9). Therefore, we need to treat an extended class C 
consisting of general estimating functions Y(x-,, 0)'s satisfying E0 Y(x,, 9)] = 
0, E J [Y2] < oo and Ee, [deY(xn, f)]2 > e for any 9 and (, where E6, 
denotes the expectation with respect to p(Xn; 9, 0 ) = H lp(xi; 9, (i). How- 
ever, it can be shown that if the optimal estimator exists in C1' and is symmetric 
with respect to n variables n = (x1, x2,..., xn), then the corresponding estimat- 
ing function Y*( n, 9) can be expressed as the sum Y*( ,, 9) = Ey*(xi, 9) (see 
Appendix A). 

3. Hilbert bundle on statistical model. 

3.1. Hilbert bundle. This subsection introduces the notion of a vector bundle 
on the statistical model M. This bundle will provide a framework for analyzing 
the class C1 of estimators. With each point (9, () of the two-dimensional 
manifold M = {p(x; 9, ()}, we associate a linear space RB6, consisting of all the 
random variables r(x) which have zero expectations with respect to p(x, 9, t) 
and finite second-order moments, 

(3.1) Re, = {r(x)IEe, [r(x)] = 0, E, t[r(x)2] < 00 

for any ('. It includes the 9- and (-score functions, u(x; 9, () E 

RB,R , v(x; 9, J) E Re, ?. Intuitively, any r(x) E Re j represents a direction of 
small relative deviation of the probability distribution p(x; 9, {), because 

p(x; 9, (){1 + er(x)} 
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GEOMETRY OF ESTIMATING FUNCTIONS 1049 

is a probability distribution which does not necessarily belong to M, but is close 
to p(x; 9, (), when E is infinitesimally small. The score functions u and v 
represent the deviations of p(x; 9, {) caused by a small change in 9 and (, 
respectively. The linear space spanned by these scores 
(3.2) T, j = {au(x; 9, {) + bv(x; 9, ()}, 

where a and b are scalar coefficients, is the tangent space at (9, () of M, where 
the natural basis de and dc are represented, respectively, by the random 
variables u and v [see Amari (1985)]. It is a linear subspace of Re, t. 

An aggregate of Re, 's at all (9, e) E M is denoted by 
(3.3) R URe,t. 

0, ( 

Such an aggregate is called a fiber bundle over M, when all the Re, 's are 
homeomorphic to a topological space F and, for any point denoted by (9, (), 
there exists a neighborhood N(9, () of (9, t) such that U(e', >')E N(e, o)R 0, is 
homeomorphic to the direct product N(9, () x F (see Appendix D). The space 
Re, , is called a fiber over a point (9, (). The present R is a Hilbert bundle over 
M, because each fiber Ro, t is a natural Hilbert space of random variables whose 
inner product is defined by 
(3.4) Kr,s)et=Ej[rs], forr,s eRo,. 

Similarly, we can define a vector bundle by the aggregate of Te ('S) 
(3.5) T= Us, tT, . 

This is called the tangent bundle of M. It is a subbundle of R. Let us denote the 
inner products of the two score functions u, v E T6' t by 

goo = (u, u), got u (U, v), g(t = (v, v). 
Then the resulting 2 x 2 matrix 

g[o go1 
g= jget g(] 

is the Fisher information matrix of M. This is a Riemannian metric of M [Rao 
(1945) and Amari (1985)]. 

We next define the concept of a section of the bundle R. A function r(x; 9, () 
of x, 9 and ( is called a (smooth) section, when it defines an element r(x; 9, () E 
Roe t for each point (9, () E M, i.e., it satisfies 

Ee, [r(x; 9, t)] = 0, E, j,[r2] < X, 
for all (9, J) and J'. The set of all the sections of R is denoted by S(R), 

(3.6) S(R) = {r(x; 9, {)Ir(x; 9, () E R8 J, 
where r is smooth in 9 and J. It is again a vector space. An estimating function 
y(x, 9) E C1 is an example of a sction, because it satisfies Eo, t[y] = 0, 
E9, 1Jy2] < X for all (9, J) and J'. However, it is a special section in the sense 
that y(x, 8) is free of J. 
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1050 S.-I. AMARI AND M. KUMON 

A section t of the tangent bundle T is similarly defined. It is a random 
variable t(x; 6, 4) e Te t, smoothly depending on 0 and 4. It is also called a 
vector field on M. The 0-score u(x; 6, t) and the 4-score v(x; 0, 4) are examples 
of the vector fields, and a section t(x; 0, 4) is uniquely decomposed into the sum 

t(x; 0, 4) = a(6, 4)u(x; 0, 4) + b(6, 4)v(x; 0, 4). 
The vector space consisting of all the sections of T is denoted by S(T). It is a 
subspace of S(R). 

In order to give an intuitive understanding of our general theory, a special 
type of statistical model, which we call the 4-exponential type, will be used as a 
general example. When the density function is written as 
(3.7) p(x; 6, 4) = exp{4s(x, 6) + r(x, 6) - 4(O6 )}, 
with respect to some dominating measure P(x), a statistical model M is called a 
4-exponential family. For each fixed 6, it is an exponential family for the 
nuisance parameter 4 with sufficient statistic s(x, 0). This type of statistical 
model is widely used for examining the present problem, e.g., Andersen (1970), 
Godambe (1976), Lindsay (1982), etc. 

EXAMPLE 1. Let xl N(4, 1) and x2 N(64, 1) be two independent normal 
random variables with unit variance. Then the joint density function of x= 
(X1, X2) is given by 

p(x; 6, 4) = exp{ - 2(x1 - 4)2 - 2(X2 - 4)2 - log(27)} 

exp{4((x + 0X2) - 2(X2 + X2) - 142(02 + 1) - log(2T)). 

This is a 4-exponential family with 

s(x,60) = xl ?60x2, r(x, 0) = (X2 + x2). 

The scores are given by 

U(X; 0, ) = ((X2 - 642), 

V(X; 0, 4) = X1 + 0X2 - 4(1 + 02), 

and are examples of the vector field. An example of a section is 

r(x; 6, 4) = (xl - )3 + (X2 - 6)3. 

The quantity 

y(x; 6, 4) = (X1 + 6X2)(X2 -X1) 

is another example of a section. Since it is free of 4, it is an estimating function 
of a consistent estimator belonging to C1. 

3.2. A dual pair of paraUlel transports in R. A dual pair of covariant 
derivatives or parallel transports are introduced here. They play a central role in 
the present geometrical theory. Let us first define a family of differential 
operators via) depending on a real parameter a. It operates on a section 
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GEOMETRY OF ESTIMATING FUNCTIONS 1051 

r(x; 0, {) as 
l+a 1-a 

(3.8) v(a)r= atr- 2 Ee t[atr] + 2 rv 

where v is the {-score defined by (2.3). 
We call via) the a-covariant derivative in the direction of the (-coordinate. 

This is a natural generalization of the a-covariant derivative or the a-connection 
[see Amari (1985)]. It is easy to prove 

(3.9) Ees[V0)r]=0, 
because of the identity 

atEO,jr] = Ee,4dtr] + E0,jrv]. 
Hence, Via) is a mapping from S(R) to itself. The cases with a= +1 are 
especially important. We denote the a = 1 and - 1 covariant derivatives by Vi e) 
and Vim), and call them the exponential (e-) and the mixture (m-) covariant 
derivatives, respectively. It is easy to define the a-covariant derivative vJa) in 
the 0-direction in a similar manner and then to extend it in arbitrary directions. 
It is also not difficult to prove that the properties of covariant differentiation are 
satisfied by the preceding definition, although we do not mention them. 

A section r(x; 0, () E S(R) satisfying 
(3.10) = 0, 
is called an a-parallel section along the (-coordinate. Since (3.10) is a first-order 
linear ordinary differential equation, we obtain an a-parallel section r by solving 
it. In particular, when ro(x, 0) E R, t0 is specified at one 40, we can uniquely 
extend it to the a-parallel section r(x; 0, () which satisfies 

r(x; 0, 0) = ro(x, 0). 
This extension defines the mapping 

( )7 t : R o,( Ro,( 

which maps ro(x, 0) E R, to to (a)7ror r(x; 0, ) E R e,. It is an isomorphism " 0 
from R, to to R9, ?, and we call it the a-parallel transport from Re, t0 to Re , 
along the {-coordinate. Using the ca-parallel transport (')f7( the a-covariant 
derivative can be expressed as 

1 
v a)r = lim 07j,r(x; 0, (') - r(x; 0, ()) 

In order to obtain the parallel transport of a = a(x, 0) E R6 0, we need to 
solve the differential equation V(')r = 0 with the initial condition r(x; 0, 0) = a 
at i = 4o. The e- and m-parallel transports corresponding to a = 1 and a = -1, 
which are of our concern, are explicitly given as 
(3.11) iTi a = a - Ee,( ja], 

(3.12) -r a { p(x; 0, J)/p(x; 0, e'))a. 
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1052 S.-I. AMARI AND M. KUMON 

These are derived by solving (3.10) for a = 1 and -1, respectively. 
A remarkable feature of (3.11) and (3.12) is that they depend only on the end 

points J and ('. This is trivial in the present case where t is a scalar. However, in 
a general case when f is a vector parameter, there are many routes connecting 
two points t and ('. It is easy to define the a-covariant derivative in this general 
case. The problem is whether the a-parallel transport (4 depends on the route 
connecting ( and (' or not. This in turn depends on whether the a-curvature of 
R vanishes or not. The answer is that R is curvature-free for a = + 1 and (e)1T, 

and (m)4' do not depend on the route. The proof is given in Appendix B. Because 
of this property, the present theory can directly be extended to the case with 
vector 6 and vector ( without essential change. 

As a final account, we note the relationship between the metric and the 
parallel transport. A parallel transport vit' is said to be metric, when it preserves 
the metric structure of R in the sense that, for r, s E Ro t, 

(r, s)i = (<r, )v 

where (r, s )> is an abbreviation of (r, s)Oe . Two parallel transports s' and s 
are said to be mutually dual, when they together preserve the metric in the sense 
that 

(r, s), = (?r'r, 's" )v 

[see Nagaoka and Amari (1982) and Amari (1985)]. It is easy to prove 

THEOREM 2. The a- and -a-parallel transports are mutually dual. In 
particular, the 0-parallel transport is metric. 

For a = ? 1, the e- and m-parallel transports are mutually dual, 
(3.13) (r, s) = ((e) tr (m)ts) 

Its differential expression is 

dt(r, s) = ((e) Vr, s) + (r, (m)Vs), 
for r, s E S(R). These formulas will be frequently used in due course. 

EXAMPLE 1 (continued). The m- and e-parallel transports of u(t)= 
u(x; 6, {) and v(() = v(x; 6, {) from t to (' are given as 

)T' u(j) = Au(t), (m)(T'v() = Av(t), 

where 
A = exp{(i - 0')(X1 + 6x2) - 2(1 + 92)((2 - 

(e)4T U() = {(X2 - 6') = WOU(0) 

(% V(O) = X1 + OX2 - (i +, 2) ) 

3.3. Direct sum decomposition of R. By using the dual e- and m-parallel 
transports, we study the direct sum decomposition of the Hilbert space Re, t and 
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GEOMETRY OF ESTIMATING FUNCTIONS 1053 

the Hilbert bundle R. Let 
(m)E7t5TOE -, {(m) Tt it E Te, } 

be the m-parallel transport frcm (' to ( of the tangent space To C, at (0, c'). It is 
a linear subspace of R0, t. Let us consider the union of such (mL4,To t, for all (', 

U(M) C " 

and let R T be the smallest closed linear subspace of Re t including the 
preceding union. In other words, R is the closure of the subspace spanned by 
the vectors for all {' of the m-parallel transports from (' to ( of the tangent 
vectors t E T, ,. Then Re, t is decomposed into the following direct sum 

(3.14) Re,t = Ro ( Ro4c, 
where RA 4 is the orthogonal complement of RT ( in Re t with respect to the 
inner product (3.4). We call R the tangential subspace of Re, t and call R , t 
the ancillary subspace of RO, C. 

We next decompose the RT . Let RN be the closure of the linear subspace 
spanned by the m-parallel transports from (' to f of the a-scores v E To, ? for all 
(', i.e., the minimal closed subspace including (m)Cv(x; 0, (') for any {'. Obvi- 
ously, R,, j which is called the nuisance subspace, is a closed subspace of R S. 
Hence, R T is decomposed into the following direct sum 

(3.15) RT = RN (DR, 

where the orthogonal complement RI, j of R t in R4 t is called the information 
subspace of Re, S. Combining (3.14) and (3.15), we obtain the final orthogonal 
decomposition of Re into three subspaces, 

(3.16) RF,t = R,, ,, S. 
Such a decomposition is obtained at every point (0, {) of M. The aggregates 

(3.17) RI= URO,ty 
CC` 

(3.18) RN= URO, 
0, { 

R T= UR , R A= UR A 

define subbundles of R. In particular, R' and RN are called the information and 
nuisance subbundles, respectively. Corresponding to (3.16), R can also be ex- 
pressed as 
(3.19) R = RI,@ RA @ RN 
which is called the Whitney sum of the subbundles R', RA and RN. 

We define the concept of e- and m-closedness of a subbundle, which char- 
acterizes the preceding subbundles. A subbundle R' of R is said to be e- (or m-) 
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1054 S.-I. AMARI AND M. KUMON 

closed, when (e)zrtr e R1, j (or (m)4,r e R', j) holds for any r E Re t, and for any 
( and {'. When R is decomposed into the orthogonal Whitney sum R = R$ D R2, 
the following duality holds for the e- and m-closedness. 

LEMMA 1. A subbundle R1 is e- (or m-) closed, if and only if R2 is m- (or e-) 
closed. 

PROOF. For any r E 
R, t 

and s E R', t, 
we have from (3.13) 

0 = (r, s), = ((m)qt'r (e)'s)t, 

at any ( and {'. If R' is m-closed, then (m)4E'r e R', . Since r is arbitrary, 
(mXi[r cover the entire R', t. Hence, we have (e S E R3 so that R2 is 
e-closed. The converse is quite the same. [] 

Among our subbundles, RN and RT are m-closed by definition. Hence, it 
follows from the lemma that their complements R' E RA and RA are e-closed. 
Note that the information subbundle RI, although it is the complement of the 
m-closed RN, is not in general e-closed, since the complement is taken not in R 
but in RT. We summarize the results in the following theorem. 

THEOREM 3. The nuisance and tangential subbundles R N and RT are 
m-closed, and the ancillary subbundle RA and its Whitney sum RA @3 R' with 
the information subbundle R' are e-closed. 

In a i-exponential family, the m-parallel transport of a(x) E R(, j, from (6, (') 
to (6, {) is given from (3.12) by 

(m) ta = {p(x; 6, (')/p(X; 0, )}a 

= exp{(W' - {)s - (4' - a 

where 4,' = i(, i'). Since the (-score is v = s - dap, the nuisance subspace R N 

is spanned by 

(Mtv(') = (S - dat')exp{(t' - O)s - (4' - 4)) 
= exp[- s + 4,] dt,exp[l's - 4']. 

The linear combination of the preceding functions with a weighting function 
b(t') yields 

Ib(')(ml lv(t') dt' = exp[-st + 4]Ja(t')exp[sjf - 4'] di', 

where dib(f) = -a(f), in which the second factor is regarded as the Laplace 
transform of an exp( - 4). This is a function in s whose expectation vanishes at 
(0, {). Hence, we have 

(3.20) RN0t = { f(s,6, )I(f)0= 01, 
where f is an arbitrary function expressed by the Laplace transform of an 
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GEOMETRY OF ESTIMATING FUNCTIONS 1055 

arbitrary function a(4) in the previous form. This is the space of zero mean 
random variables generated by s. 

We next study the tangential subspace Ro V. Since the 6-score is u = os + 
adr - a,e,, by calculating the linear combination 

la(t')(m)s7T,~u(t') dt', 

we see that R9 R is of the form 

(3.21) R = {h(s; 6, t)I(h)0e, = 01, 
where 

h(s; 6, k) = d8k(s; 6, a) d6s + k(s; 6, ()(der + ( das) + f(s; 6, ), 
with arbitrary functions k and f. 

Since the orthogonal projection of the random variable z(x) to R' N is given 
by the conditional expectation 

PNz = E[zls], 
the projection P' Of z(x) E Ro to the information subspace R" t is given by 

PIz = z - E[zls]. 

Hence, the information subspace RI , = 0 is wtten as 

(3.22) R,= {(dk + (k(s))P'dos + k(s)P'dor}. 

It is remarked that 
P'z = 0, 

when and only when z is written as a function of s. 

EXAMPLE 1 (continued). The nuisance subspace RW t of Example 1 consists 
of the random variables of the form f (s) - c, where s = xl + 6x2, c = Ee, J f (s)] 
and f is an arbitrary function. The tangential subspace R T consists of the 
random variables of the form 

f (s) + x2k(s) - c(6, (), 
where f and k are arbitrary. The ancillary subspace R,, consists of random 
variables orthogonal to the preceding. For example, k(s){(x2 - x1)2 - (1 + 62)) 

belongs to Ro A. From 

X2- E[X21S] = (X2 - 6X1)/(1 + 62), 

we see that R, ( is composed of random variables of the form k(s)(x2 - 6x1). 
This shows that 

y(x, 6) = (X2 - 6X)(X1 + 6X2) 

belongs to RI O. Hence, it is a section belonging to R'. An example of sections 
belonging to RA is 

k(s)((X2 - OX1)2 - (1 + 02)}. 
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1056 S.-I. AMARI AND M. KUMON 

4. Geometrical structures of estimating functions. 

4.1. Condition for existence of Cl-estimators. Having defined necessary geo- 
metrical concepts, we are now ready to investigate structures of estimating 
functions and to derive all the Cl-estimators. In some cases, there are no 
consistent estimators in CO and the class C1 is void. Before obtaining the optimal 
estimator in C1, we thus need a necessary and sufficient condition for the 
existence of Cl-estimators. 

An estimating function y(x, 9) belonging to C1 is a section because 
Eej [y(x, 9)] = 0 holds at all (9, () E M. It moreover satisfies 

V e)y(X 9) = dsy-EE, [ dty] = 0, 

so that it is an e-parallel section. As can be easily shown, an e-parallel section 
r(x; 9, () is in general of the form 

r(x; 9, () = r(x, 9) - c(9, (), 

where c(9, ) = E,j [r(x, 9)]. An estimating function y(x, 9) E C1 is special in 
the sense that it does not depend on ( at all. Such an e-parallel section is called 
an e-invariant section or shortly an invariant section. Conversely, an invariant 
section y(x, 9) yields a Cl-estimator, provided it satisfies E, j[ doy]2 > E. Let I 
be the set of all the invariant sections. It forms a vector space. Any element 
y(x, 9) E I belongs to Re, j at any (. Hence, I is regarded as a subspace of Re, e 
at any (9, (). Now we study the vector space I which yields all the C1-estima- 
tors. 

THEOREM 4. The vector space of invariant sections is decomposed in Re, ? at 
any t as 

I=R DRa A. 

PROOF. Given y(x, 9) E I, differentiating the identity (y),, = 0 with respect 
to (', we have (y, v(t')),, = 0, where K ) is the abbreviation of Ee, ( [ ]. Then, 
using (3.13), we have at any (, 

0 = ( ey 
(m)= ( V 

Since (' is arbitrary, this implies that y belongs to the complement of RN t or to 
0,@ i t Let us next take any a(x, 9) E RI , and b(x, 9) E R, , at one 

and put yo(x, 9) = a(x, 9) + b(x, 9). This yo E Re, t can be extended to a 
section y(x; 9, () by the e-parallel transport along the s-coordinate, 

y(x; 9 {) =,(e)XTho(X, 9) = yO(X, 9) - (yO)>, 

which obviously is e-parallel. Since R' @D RA is e-closed, it also belongs to 
RI ED RA. Hence, what is to be proved is that y(x; 9, {) does not depend on t or 
that 

f(s) = (Yo), 
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GEOMETRY OF ESTIMATING FUNCTIONS 1057 

vanishes at all (. By differentiating this, we have 

atf (t) = Kyo,v(W)) = (Yo- (yo), V(W)t 
= 

)' ()t = KyO , 
) c> 

= o, 

because of yo E Ro t, RoAtt. Moreover, f(4) = 0 at ( = ('. Hence, f(() = 0 for 
all (, proving that 

y(x; 0,) =y0(x; ) 
belongs to I. O 

The theorem implies that any y(x, 0) E I is uniquely decomposed into 

(4.1) y(x, 9) = y'(x; 9, {) + yA(x; 9, () 
at any (, where yI E Ro t and yA e R A Conversely, for any a(x, 9) E RI 
and b(x, 0) E Re, o given at an arbitrary J0, the sum y(x, 0) = a(x, 0) + b(x, 9) 
itself gives an invariant section. Its information part y'(x; 0, J) is equal to 
a(x, 9) at ( = (O but it in general depends on (. It is this information part that 
is important in estimation. 

LEMMA 2. Any estimating function y(x, 9) in C1 has nonvanishing informa- 
tion part y'(x; 9, t) in the decomposition (4.1) at all (9, (). 

PROOF. Suppose contrary to the lemma that there exists a y e C1 such that 
y'(x; 9, 40) = 0 at some {O. Then y(x, 9) = yA(x; 9, (0) E RA at this Jo and 
y(x, 9) is the e-parallel extension of this yA from tO to all (. Since RA is 
e-closed, the e-parallel transport of y(x, 9) = yA(x; 9, (0) from t to any t 
belongs to RA , so that y'(x; 9, 0) = 0 for all t. Since yE Re A at any {, we 
have by differentiating (y)> = 0 with respect to 9, 

de(y>z= -(y, u(W)) = 0, 

because u(() E R' t. But this contradicts the third condition given in Theorem 1 
defining the class C1. O 

Combining the previous theorem and lemma, we have the theorem concerning 
the existence for consistent estimators in CO. 

THEOREM 5. A necessary and sufficient condition for the existence of an 
estimator belonging to C1 is RI , {0} at some (9, {). 

From (3.22), we immediately have 

COROLLARY 1. There always exist Cl-estimators in a i-exponential family, 
except for the case when both des and der are functions of s. 

As was noted in the last section, Cl-estimators exist in Example 1. We next 
give an example in which Cl-estimators do not exist. 

This content downloaded from 195.221.106.47 on Thu, 2 Oct 2014 10:15:16 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1058 S.-I. AMARI AND M. KUMON 

EXAMPLE 2. Let x = (xl, x2) be a pair of mutually independent random 
variables which assume two values 0 and 1 and let their probabilities be given by 

Pr(xl = 0) = 1/{1 + exp(0 + ()} 

Pr(x2 = 0) = 1/{1 + exp f (()), 
where f(() is a known function. By using the function 81(z) which is equal to 1 
when z = 1 and otherwise equal to 0, the log likelihood of x can be written as 

l(X; 6, 0) = (6 + 0) SA(Xl) + f (0 A(x2) 

-log{1 + exp(0 + t)}{1 + expf(t)} 

Thus, this is of i-exponential type if and only if f(() is a linear function. It is 
easy to show that Re, t is spanned by three random variables 

(X) 81(X2) - C119 01(X1){ 1 - (X2)) - C10, 1 - 81(xl)} A(x2) -Col 

where the constants cij are added such that the expectations vanish. When f(t) 
is nonlinear, the nuisance subspace Ro is proved to be three dimensional, too. 
Hence, Ro ' = {0}, so that from Theorem 5 there exists no Cl-estimator. 

4.2. Optimal estimating function in C1. We have shown that every estimat- 
ing function in C1 has a nonvanishing information component. We now define 
a special section u1 belonging to the information subbundle by the projection of 
the 0-score u(x; 6, {) to the information subspace R', 

(4.2) u'(x; 6, () = P'u(x; 6, {). 
We call u1 the projected score. The following theorem shows the important role 
played by the projected score u1. 

THEOREM 6. A necessary and sufficient condition for the existence of the 
optimal estimator in C1 is that one of the following cases holds. 

(i) The projected score u'(x; 6, {) is invariant, i.e., it does not depend on (, 

u'(x; 6, () = uI(x, 6). 
(ii) The information subspace RI, f is one dimensional and the projected score 

uI is written as 

u'(x; 0, {) = c(0, {)u,(x, 0), 

i.e., RI is e-closed. In the previous two cases, the optimal estimating function is 
given by the i-free u'(x, 0) or uI(x, 0). 

PROOF. Suppose that there exists the optimal estimating function 
y*(x, 6) E C1. Since it includes no nuisance component, we decompose it into the 
sum 

= c*(, {)u' + y2*I(X; 0, {) + y*A(x; 6, ), 

where y2*I E Ro i is orthogonal to uI and y*A E RA. Putting A(() = ((uI)2> 
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GEOMETRY OF ESTIMATING FUNCTIONS 1059 

and B(() = <(y2I) + ((y*A)2)>, we have 

(y*2>4= c*2A + B, - (dy*)j = (u, y*) = c*A. 

Hence, the asymptotic variance of y* is given from (2.6) by the limit as n -x o 
of nv(Y*, tn), 

V(Y*, tn) ={ (0c*2Ai+ B+)) (ci*Ai) 
2 

where 
l = c*(, (i), Ai = A(ti), Bi = B(ti) 

We now show that y2*1(t) = y*A(t) = 0 must hold identically in (. Suppose on 
the contrary that there exists a 40 such that y2* I(o) or y*A(qo) is nonzero. Then 
B(to) > 0, so that, for the special sequence to = (4oy 40) 40. I I I) 

v(y*, to) > 1/{nA(to)} = v(u'(4o), to). 
This shows that the estimating function y(x, 0) = u'(x, 0, 60) gives a smaller 
asymptotic variance than y* at least for the sequence (0, contradicting the 
optimality of y*. Consequently, we have 

y*(x, 0) = c*(0, ()u'(x; 0, ), 
which means that the optimal y* must be proportional to the projected score u 
at every (0, (). 

We hereafter consider the two cases separately. 
(i) c*(0, () is free of {, c*(0, () = c*(@). In this case, the projected score u 

should be also free of (, and the optimal y* is equal to ui(x, 0). 
Conversely, suppose that the projected score u1 is free of (. Then the 

optimality of the estimating function given by u 'is proved in the following way. 
Let us take any y E C1 and decompose it as 

y = C(0, ^)UI + I + yA 

Then its asymptotic variance satisfies 

V(y; tn) 2 (,CiAi)/{( 5?ciAi)2 }>2 1/(I:Ai) =V( U1 X n) 

This proves that u1 is optimal. 
(ii) c*(0, () depends on {. The proof is given in Appendix C. 0 

We have thus obtained the two cases: (i) The projected score u 'is invariant. 
(ii) The information subspace RI ? is one-dimensional and R' is e-closed. But 
the second case seems rather exceptional. Godambe (1976) treated the following 
case. Suppose that there exists a statistic t with frequency function h(t; 0, () 
such that the conditional frequency function of x given t depends only on 0, that 
is, 

p(x; 0, f) = t(x, 0)h(t; 0, 1). 
He showed that the optimal estimating function is given by 

u*(x, 0) = aolog ft(x, 0). 
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In this case, it is easy to show that the nuisance subspace is given by 
R = {a(h; 0, {)IE[a] = 0), 

and the information subspace R', i is one dimensional, which is spanned by 
u*(x,0). Hence, by projecting the 0-score 

u(x; 0, () = u*(x, 0) + dOlog h(t; 0, () 
onto RI , we have 

u'(x, 0) = u - E [ulh] = u*(x, 0). 

The following theorem shows the relation of the projected score to the 
information unbiased estimators (Lindsay, 1982). 

THEOREM 7. The optimal estimator in C1 is information unbiased in the 
case when the projected score uI is invariant. 

PROOF. An estimating function y(x, 0) is said to be information unbiased 
when it satisfies 

(y2) = -(d9y) = (U, y). 
By definition, we have 

<((UI)2)0 t= (u, u'O), , 
so that the optimal estimating function y = u1 is information unbiased. OJ 

COROLLARY 2. When and only when PI'ds = 0 and PIder # 0, there exists 
the optimal Cl-estimator in a i-exponential family. The optimal estimating 
function is PI'dr = d6r - E[Idrls] and is information unbiased. 

PROOF. Since the projected score u, is given by 

u, = {Pdaos + P'dor, 
we can easily check conditions (i) and (ii) in Theorem 6. Condition (i) means 
PIdOs = 0, and the optimal estimating function is given by the (-free u1 = PIder, 
if it is not zero. On the other hand, the condition (ii) that RO, ' is one 
dimensional does not hold in a {-exponential family, as is seen from (3.22), except 
for the case s(x, 0) = 0, in which case condition (i) also holds. This proves the 
corollary. 0 

EXAMPLE 1 (continued). It is easy to show 

PI'oS = (x2 - 0x1)/(1 + 02), P'dor = 0, 
so that from Corollary 2, there exist no optimal estimators in C1. We can show 
that the optimal estimator exists in class C2. 

EXAMPLE 2 (continued). In Example 2, when f is linear, e.g., f(s) = {, the 
distributions are of i-exponential type with s(x, 0) = SA(x1) + 81(x2), r(x, 0) = 
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o 01(xl). Hence, P'dos = 0, P'aor # 0, so that from Corollaries 1 and 2, the 
optimal estimator exists in C1, which is given by P'aor or 

0O, when xi =x2 

y(x, 0) = 1 , when x1 = andx2 = O, 
t exp 0, when x1 = 0 and X2 = 1. 

EXAMPLE 3. For the normal statistical model N(t, 0), let x = (xl, ..., xq) be 
q, q 2 3, independent realizations from the same N(g, 0). The density function 
is 

(Sq 
p(x, 0,) = (27TO) qexp-(1/20) E (xj _ )2} 

= exp[((qx./0) - q(Z2 + x.2)/(20) 

_q{ t(2/0) + log(2?T@)}/2], 

where 
q 

x. = xj lq, z2= (xj-x.)2/q. 
j=i j=i 

This is a (-exponential family with 
s(x, 0) = qx./0, r(x, 0) = -(q/20)(Z2 + X2) 

Then 
aesd -qx./02 and dr=q(z2 +X2)/(202), 

so that 
PIa0s = 0 but P'dar # 0. 

Hence, from Corollary 1, the class C1 is not empty, and furthermore from 
Corollary 2, the optimal estimator in C1 is given by P'der. An easy calculation 
shows 

P'ar = {qz2 _ (q - 1)0)/(202). 

This estimating function can be also written as u- (<u), where u= 
u{x; 0, ((x, 0)) and 4(x, 0) is the maximum likelihood estimator of t. That is, 
the optimal one is the bias-corrected maximum likelihood estimator of 0. In 
Kumon and Amari (1984), it was derived as the optimal one in the class C2, but 
we found that it is optimal in the wider class C1. 

5. Discussion. (1) We have so far assumed that each xi has the equal 
dimensionality q. However, there often occurs the case when the ith random 
variable xi = (xi1,..., xiq) consists of qi independent observations xij, j = 
1,..., qi, from the same distribution p(x; 0, ), where qi are not necessarily 
equal. We can generalize our theory to be applicable to the case when the 
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dimension number qi of the ith observation is not fixed. In this case, the 
probability density is written as p(x; 0, t, q), where q denotes the dimension of 
x explicitly. When x consists of q independent observations x = (x1,..., xq), we 
have 

q 

(5.1) p(x; 0, t, q) = H p(xi; , t, 1). 
j=1 

An estimating function is also written as y(x, 0, q) by denoting the dimension 
number explicitly. For each point (0, t) E M, we associate the Hilbert spaces 
Re, c(q) for all possible q's. The subspaces Re T(q), RI, i(q), etc., are defined for 
each q separably. Similarly, the score functions u(x; 6, (, q) and v(x; 0, (, q) as 
well as u'(x; 0, (, q) are defined for each possible q. The sequence ( = (1, 42, . . .) 

should be replaced by ( = (a, ql; 42' q2; ... ), where the dimension number in 
each observation is explicitly denoted. Then the structure theorems and optimal- 
ity theorems for the Cl-estimators given in Sections 4.1 and 4.2 hold without any 
change, if we read that the conditions in the theorems hold for each q. In 
particular, when (5.1) holds, the optimal y(x; 0, q) is given by 

q 

y(x; 0, q) = E y(xj; 0, 1), 
j=l 

provided the optimal y(x; 0,1) exists in C1 for q = 1. It should be remarked that 
the case with q = 1 is meaningless in some cases, although the optimal y(x; 0, q) 
exists. 

EXAMPLE 3 (continued). If qi are different in this example, the optimum y is 
given by 

q 

y(x; 0, q) =qz2- (q - 1)= (Xj- X.)2 _ (q - 1)6. 

(2) Following up the previous work of Kumon and Amari (1984), we have 
analyzed the structures of the estimating functions and derived optimality 
results. Based on the Hilbert bundle approach, we have identified the class C1 as 
the direct sum of Hilbert spaces RI i E Rs A. 

We then discussed the optimality result in the class C1. It is related to the 
specific section of the information subbundle R', the projected score u= P'u. It 
gives the optimal estimator if and only if it is invariant, i.e., free from (. 

(3) Although the structure and optimality theorems given in Section 4 hold in 
general situations, there remain some difficulties. The first one is that it is not 
easy to examine whether or not the conditions of these theorems hold in general 
models other than the {-exponential family. The second and more serious one 
comes from the setting of the problem. One criterion of the universal optimality 
might be too strong to guarantee the existence of the optimal estimator in C1. 
Then if there exists no optimal estimator in C1, what shall we do? A customarily 
used way out is to reformulate the problem by regarding the nuisance parameter 
( as a random variable. The sequence (n = (4 ..., I) is then treated as 
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independent samples from some distribution specifying (; see, e.g., Bickel (1982), 
Begun, Hall, Huang and Wellner (1983) and Lindsay (1985). Another way is the 
minimax approach; e.g., see Hasminskii and Ibragimov (1983) and Nussbaum 
(1984). Our geometrical framework is useful for these approaches. 

APPENDIX A 

PROPOSITION. Let C' be the set of zero-unbiased estimating functions 
Y(.i, 9) which are symmetric with respect to iE,- (xl,..., xJ). The asymptotic 
variance of Y E C' is measured by the limit in n - oo of nv(Y, n), 

V(Y, S) = 

where U(tn) = U( n; 9, n) = YU(Xi; 9, i)- If there exists the optimal estimat- 
ing function Y*(i, 9) E C" satisfying v(Y*, tn) ? v(Y, tn) for any Y E C.' and 
for any 9 and (, then it can be expressed as 

n 

(A.1) y*(x, 9) = ? y*(xi, 9), 
i=1 

by using some y*(x, 9). 

PROOF. Let us introduce the linear spaces of random variables 

R = r(i)l(r(ij)) = 0, <r2) < oo}, 

Ri = {r(xi)l(r(xi)) = 0, (r2) < x}, i = 1,..., n. 

For rl, r2 e R, by defining the inner product by (rl, r2) = (r1r2), R becomes a 
Hilbert space and each Ri is a closed subspace of R. Note that for any ri E R 
and rj E Rj, i 1 j, <ri, rj) = 0 holds because of the independency of xi and xj. 
Let Y*(i,,, 9) E R be the optimal estimating function in C'. Then by letting 
(A.2) y- E[Y* IxiL] 
be the conditional expectation of Y* with respect to xi, we have yi* E Ri. In 
fact, Yi* is the orthogonal projection of Y* E R onto Ri. Thus, if we put 
F = R1 QD ... *@ Rn, according as the direct sum decomposition R = F eD G, Y* 
is decomposed into 

Y* YF* + YG, 
where YF = Eyi* E F, YG* e G, from which we have 

V(Y*, n) = [(YF*2 + (YG*2)]/(YU(tn))2. 
Note that U(J(f) E F. We show YG* = 0. To do so, let us fix a sequence 4t = 

..., * rll Then 

V(Y*, to) > (=YF)/(YFU( 0)> U [YF( 0), t0] j 
where the equality holds if and only if YG*(tO) = 0. Since Y* is optimal and to is 
arbitrary, it follows that Y.* = 0 identically. The optimal Y* = YF* is therefore 
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expressed as the sum of yi*, i = 1,..., n. By the definition (A.2), the yi* depends 
on 6 and (n, i as Yi* 7 Y*(Xi; 6, hn, ), where tin, i denotes the sequence obtained 
by deleting {j from t. as in, i = (,P . * *i-i, li*... i * )- 

We show that each yi* is free from n, i, i.e., yi* = y*(xi, 6). Let us put 
$n, 1,2 = (t3 .4*.. *n) and Xn, 1,2 = (X3, X4, ..., Xn). Then from the symmetry 
Y* (x1 , X2n1 2, 6) = Y*(x2, X1, x1,2, 6), we have 

y *(xi; 6, t2' 5n,,1,2) + Y* (X2; 
6 

1 l n,1,2) 

y *(X2; 6, t2' tn,1,2) + Y*(Xl; 6, 4l tn,1,2) 

From this it follows that there exist y and c such that 

y* (x1; 
6, 

n) 
= 

Y(X1; 
6, 

tl) tn,1,2) + C(tn) 

and 

y*(X2; 6, (n2) = Y(X2; 6, t2' tn,1,2) -C(tn 

hold. Since y* is free from l, by denoting a new y(x1; 6, tn12) = 

Y(X1; 6,1 t, In,1,2) and C(tn,1) = c(tl*, In,1) for any fixed *, we have 

y*(xi; 69, tn,l) = Y(x1; 69, n,1,2) + C(tn,l) 

Furthermore, from the zero-unbiasedness of y*, we see that 

E [ Y(xi; 0, tn, 1,2) ] = - C(tn,1) - 

Clearly, the left-hand side is free from t2' so that c = C(tn 1,2). By summarizing, 
we have 

Y= Y(X1; 6, n,1,2) + c(tn,1,2) 

Let us next take the pair yj* and y3*. Then the same argument leads to 

Y= Y(x1; 6, tn,1,3) + C(tn, ,3) 

where tn,1,3 = ( 2 44* . In), and in general 

Y (1; f9 1 n, 1, j) + c (I, j,; for j = 2, 3,... n. 
These n - 1 relations together imply that 

y=y(x1,6) and c=c(6). 
Hence, we have 

Yi* = Y(X16 ) + c(6), 
and in general 

Yi* Y(X., ) + c(6), i = 1,..., n, 
showing that yi* is free from tn, i E 

APPENDIX B 

For a vector parameters = (tc), let (a),v be the a-covariant derivative along 
the tA-coordinate. Then the a-curvature is defined by the second-order differen- 
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GEOMETRY OF ESTIMATING FUNCTIONS 1065 

tial operator in S(R), 
(a1K =(a) V (a) v(a) VP (a) VA' 

As it stands, it measures the commutability between (a)v and (a)Vv. In fact, it 
can be shown that a necessary and sufficient condition for the route independ- 
ency of the a-parallel transport is 

(a)K r= 0, 
for any r E S(R) and any u, P. By a direct calculation we have 

(a)Kr = (1 - a2)((dfr)v, - (dar)vL)/4, 
where 

da,r = dr/la, v, = a log p(x; 0, {)/atv. 

Hence, (a)K, r = 0 identically if and only if a = + 1. 

APPENDIX C 

We first define some notation. The projected score u'(x; 0, () at each (0, {) 
spans a one-dimensional subspace R' e, j of RI, j. The information subspace R, ' 
can then be decomposed into 

RI =RI,0 + RI,,t 

so that the information subbundle R' is also decomposed into the Whitney sum 

R' = RI E RI, 
where 

RI= UR',, R= UR, 

Now we assume that there exists the optimal estimating function y*(x, 0) and 
that c* = c*(0, () depends on {. Then we first show that the bundle RI E3 RA is 
e-closed. Contrary to that, suppose that there exist 40, 0 (# 4) and y2I E RI 0 0 
such that 

(e)qJ1yI = bu I((l) +y2' ( J) + YA ( 1), 

where 
b + O, Y2 (41) E R2, 0 J1, y (() R t @ 

We consider the following estimating function which depends on a scalar param- 
eter e, 

Y,(X, 0) = C*(0, O)uI(x; 0, W) + EY2I(X; 0, t) 

= {c*(0, tl) + Eb}u'(x; 0, 41) + ey'(,1), 
where 

E-:: @ R A 
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1066 S.-I. AMARI AND M. KUMON 

For the sequence tol = (toj 4j (o 41, ... ), by differentiating v(ye, (o1) with re- 
spect to e, we have at e = 0, 

d 
d-V(y, Y 1e = v(y*, tol) [2 bAoAlc (c - ce) 

*C2Ao + cl2A1)(cOAo + clA,)], 
which is nonzero. Therefore, there exists an E* > 0 such that 

V(Y,.*, to,) < V(Y* to,0) 

holds. But for the sequence o - (= , c01 .O. . ), we have of course v(y*, to) < 
v(yE*, t), which is a contradiction. Hence, RI @ RA must be e-closed when the 
optimal estimator exists in case (ii). This in turn implies that in the Whitney 
sum 

R = RN e RI @ RI 9 RA 
RN E RI is m-closed. Thus, we have 

(M) ?U(() = C(t, {o)U(tO) + UN(to), 

where uN() E Re to. By projecting the preceding onto RI to, we see that 
U = Utu'() = RI0 is a one-dimensional space spanned by u'(t0) - 

c*(6, {O)y*(x, 6), and thus R' is e-closed. This completes the necessary part of 
(ii). To prove the converse, suppose that dim RI , 1 and RI is e-closed. Then 
it is immediate to show that uI can be written as 

U'(X; 6, {) = C(6, ()U,(X, 6), 

by some {-free uI(x, 0). Furthermore, any y E C1 can be decomposed into 
y - uI yA, yA yA(x,=) E Re at any t. Thus, we have 

V(Y (n 2 E i Ai) (ySci lAi) -V (U0 tn)~ 

proving the optimality of ui. 

APPENDIX D 

Let us define a Hilbert space Ro by 
Ro = {r(x)IE6 j [ r2 ] < oo for any(6, ) EM). 

This is a Hilbert space with an inner product 
<rs>o = Eo,jo[rFS]j, where we fix a point (0, 40) E M. 

A closed subspace Ro of Ro is defined by 
Ro = {r(x) e Ro01<r, l) = 01, 

whose topology is given by the inner product < , )0. The statistical model 
M = {p(x; 6, ()} has a natural topology of two-dimensional Eucidean space R 2. 
Then Ro x M is a (trivial) fiber bundle, and our 

R = URe,, Re, {r(x)l<r,)1ej = 0) 
i, l 

is its subbundle satisfying local triviality. 
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GEOMETRY OF ESTIMATING FUNCTIONS 1067 

More formally, we define a map f from our R to the trivial bundle Ro x M, 

f: R = UR, &- Ro x M, 

by 

f(r) = r- (r,1)0. 

It is easy to show that f is a bijection. 
A topology is then neutrally introduced in R by this mapping, i.e., by defining 

that a subset d of R is open iff f(69) is open in R0 x M. By definition, it is 
evident that f is a homeomorphism between R and Ro x M. This proves local 
triviality. Therefore, the R forms a fiber bundle. 
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