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Numerical computations are reported of turbulent natural convection of air in two tall 
rectangular enclosures with heated and cooled vertical walls. The very different aspect 
ratios considered, 30:1 and 5:1, lead to appreciable differences in f low structure in the 
two cases. It is found that a version of the Jones- Launder low- Reynolds-number k-~ model, 
used previously to compute heat transfer rates downstream of an abrupt expansion, leads 
to a very satisfactory agreement with reported experimental data of the velocity and thermal 
field, including the distribution of the Nusselt number. 
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Introduction 

Turbulent, confined, buoyancy-driven, or buoyancy-modified, 
flows arise in many engineering structures ranging in scale from 
1-mm diameter coolant passages in turbine blades to large 
auditoria. Buoyant forces affect both the general movement 
of the fluid within the enclosure and the turbulent mixing 
processes. It is thus by no means certain that a turbulence 
model developed for flows with negligible stratification will 
extrapolate correctly to situations where buoyant effects are 
strong. 

In cases where the buoyant motion arises from heat transfer 
through vertical or nearly vertical walls, the greatest effects of 
buoyancy occur very close to the wall where viscous effects are 
appreciable. This renders inapplicable the use of local-equilibrium 
logarithmic velocity and temperature-versus-distance variations 
extensively used to simplify the calculation of near-wall flows. 
While George and Capp 1 have proposed an alternative inner- 
layer scaling for naturally driven flow, the more convincing 
modeling attempts have instead extended numerical compu- 
tations up to the wall itself, applying molecular transport 
boundary conditions there. Here we mention the studies of To 
and Humphrey 2 of the natural boundary layer on a vertical 
plate, Cotton and Jackson a'4 of turbulent mixed convection in 
vertically upward flow through heated tubes, and our colleagues 
Betts, Dafa'Alla, and Haroutunian., s'6 who have considered 
fully developed natural convection between infinite vertical 
parallel planes with one heated and one cooled wall. As 
in the earlier work of Plumb and Kennedy, 7 all of these studies 
solved low-Reynolds-number forms of the turbulence-energy 
(k) and energy-dissipation-rate (e) equations and, while the 
main thrust of the To-Humphrey study was on results obtained 
employing an algebraic second-moment (ASM) closure, that 
investigation, like the others cited, presented results for the 
simpler and more widely applied eddy-diffusivity model. 

For the test cases examined by To and Humphrey and Cotton 
and Jackson, very satisfactory agreement with experiment 
resulted from the use of the k-e eddy-viscosity model (EVM). 
The same could not be said for the fully developed buoyant 
cavity study of Betts and Dafa'Alla, however, for peak velocities 
were appreciably too low and heat fluxes too high. Indeed, this 
work brought out what a sensitive test case this was for 
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discriminating between alternative versions of the k-e eddy- 
viscosity model, the overprediction of the wall heat flux ranging 
from 40 to 100% for the versions tested.* An important 
difference between the buoyant cavity flow and the other two 
studies noted above is that, in the former, the maximum 
turbulent energy is to be found at the center plane; we shall 
argue that this feature is a substantial contributor to the poor 
agreement reported in Ref. 6. 

The flow geometry considered in the present study is the 
buoyantly driven rectangular cavity. We cover both the narrow 
cavity case examined experimentally by Ince 9 and Betts and 
Dafa'Alla 6'1° (which approximates in its midregion the flow in 
an infinitely tall rectangular enclosure) as well as a cavity of 
5:1 aspect ratio for which LDA data have been reported by 
Cheesewright et al.11 As in the simpler flows discussed above, a 
low-Reynolds-number model is required. We decided to retain 
a k-e EVM (though with a simply buoyant flow adaptation) 
initially with a view to using these results as a yardstick against 
which the performance of a second-moment closure could be 
judged. As it turned out, agreement with the data fell within 
the uncertainties in the experimental values associated with 
possible small departures from two-dimensionality and from 
the precise boundary conditions. Further refinement to the 
modeling within the context of the presently considered test 
cases was thus not possible. 

The second section describes briefly the turbulence model 
adopted, while the main features of the numerical solver and 
the grid independence tests performed are presented in the third 
section. The principal computational results are reported and 
compared with experiments in the fourth section, together with 
a reconsideration of the George and Capp wall laws. 

Turbulence model 

In Cartesian tensor notation the equations describing the mean 
flow and temperature within the cavity are 

aP a / F~u, auj] __~ 
l-.u,.,; c3xj 

* These were the same model proposals previously examined by Patel 
et al. 8 for boundary layers in pressure gradients. 
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We note that in the two-dimensional computations the Bouss- 
inesq approximation is not made in any of the transport 
equations, though density fluctuations are accounted for only 
in the gravitational term (see Equation 7). 

With two exceptions the Reynolds stresses and heat fluxes 
are obtained from the Jones-Launder 12 low-Reynolds-number 
k-e model with the modified coefficients recommended in Ref. 
13. The turbulent stresses and heat fluxes are given by 

- 2 [ ~ U ~  ~U~\ (3) 

p u T =  /~t 00 (4) 
ao t3xj 

where #t=cupk2/8 and a o, the turbulent Prandtl number, is 
taken as a constant. 

In Ref. l l  the turbulence energy k and ~ (the part of the 
(kinematic) energy dissipation rate associated with spectral 
transfer) are obtained from their own transport equations as 
follows: 

~x~ (pVjk)= #+ ~xj] (5) 

dx~ (pV j~)= I1 + ~xj] ~ PR--c,2p 

P \ t3x 2 ] (6) 

In these equations, e, the total dissipation rate of k, equals 
~+2v(Okl/2/Oxk) 2 while Pk denotes the generation rate of 
turbulence energy, in the present case due to buoyancy as well 
as shear effects: 

_ _  t3Uj ~ 
Pk = -- RUiUj -- O~ UiOg i (7) 

Ox 2 

where ~ is the dimensionless volumetric expansion coefficient 
of the fluid medium with respect to temperature. Air is the fluid 
medium for the two cases here considered, and the value of ct 
is taken as unity; i.e., the air is regarded as an ideal gas. The 
following standard values proposed in Ref. 13 are adopted for 

the empirical coefficients: 

3.4 
c/ =0.09 exp(  (1 + ~ 5 0 ) i )  ' GI=1"44 

c,2 = 1.9211-0.3 e x p ( -  R2)], Rt=pk2/#~ 

ak= 1.0, a , =  1.3, aO=0.9 

Rodi and Scheuerer's 8 survey of alternative k-e models concluded 
that these values gave as successful a prediction of various 
boundary layers as any of the 10 variants they tested. 

We note at this point the two nonstandard features of the 
model. First, the introduction of Equation 4 into Equation 7 
would give an expression for the buoyant generation that 
vanished if the vertical temperature gradient was zero. It is well 
known, however, that in a simple shear flow with only cross- 
stream temperature variations the heat flux in the flow direction 
is usually significantly larger than in the cross-stream direction. 
The neglect of this streamwise flux (which results from using 
an eddy-diffusivity model) is of no consequence in predicting 
the mean flow in the absence of buoyant effects because the 
gradient of the flux (which is what appears in the mean enthalpy 
equation) is negligible compared with cross-stream gradients. 
In Equation 7, however, it is the flux itself rather than its 
gradient that appears. In naturally driven conditions the term 
may be of significance and, in vertical shear layers, modeling 
its effect via an EVM will be inadequate. Lin and Churchill 14 
assumed the vertical flux of heat to equal that of the horizontal 
flux, but this representation neglects the fact that in a vertical 
shear flow (as in the present case) the streamwise flux will 
generally change sign if the velocity gradient does, whereas 
the cross-stream flux will be virtually unaffected. We adopt 
instead the generalized gradient diffusion hypothesis (GGDH), 
apparently first introduced by Daly and Harlow: is 

k ~0 (8) 
u,O = - co ~ u,uk ~x~ 

which, unlike Equation 4, does give a vertical flux driven by a 
horizontal temperature gradient in the presence of shear. Here 
uiu k is given by Equation 3. In order to depart as little as 
possible from the eddy-viscosity formulation, the coefficient Co 
has been set equal to ~(c,/cre) so that, in a horizontal shear flow, 
where the principal temperature and velocity gradients are 

Notat ion  
Cp Specific heat at constant pressure 
D Width of enclosure 
g Gravitational acceleration 
gi Gravitational acceleration vector (0, - g ,  0) 
H Height of enclosure 
k Turbulent kinetic energy 
P Mean pressure 
Pk Generation rate of turbulent kinetic energy 
Pr Molecular Prandtl number 
R t Turbulent Reynolds number, pk2/it~ 
Rar Local Rayleigh number, 2ga AOwy3/Ov 2 
Ra 2g~ AOD3/Ov 2 
Raq Heat-flux-based Rayleigh number Ra Nu 
U~ Mean velocity in direction xl 

Kinematic Reynolds stress 
Kinematic turbulent heat flux 

V Vertical mean velocity 
V* Vertical velocity in George and Capp coordinates; see 

Equation 13 

x Horizontal coordinate with origin at left (hot) surface 
xi Cartesian space coordinate 
y Vertical coordinate with origin at lower edge of cavity 
ct Dimensionless volumetric expansion coefficient, = 1 

for ideal gas 
A® Temperature excess above ambient or midplane value 

Turbulence energy dissipation rate 
Part of e associated with spectral transfer ~ = e -  
2v(c3kl/2/t3xj) 2 

0 Temperature fluctuation 
O Local mean temperature (absolute scale) 
x Thermal conductivity 
2 Thermal diffusivity lc/pCp 
/~ Dynamic viscosity 
/6 Turbulent viscosity 
v Kinematic viscosity 
p Density 
or, Turbulent Prandtl number for ~b transport (~ = 0, k, e) 
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vertical, Equation 8 should give the same result in the buoyant 
source term as Equation 4. 

The second and more important modification made to the 
standard k-e model is the inclusion of a near-wall source term in 
the e equation. It is known that in boundary layers approaching 
separation the k-e model returns near-wall length scales that 
are too large, t6'17 In separated flows the problem is more 
serious, particularly if an equation for e is solved up to the 
wall in place of wall functions. Yap, ~s studying heat transfer 
rates downstream from an abrupt pipe enlargement, obtained 
predicted Nusselt numbers some five times higher than experi- 
ment in the vicinity of the reattachment point. He therefore 
added a source S~ to the right side of the transport equation 
for ~, Equation 6: 

[k3/2 "~[k3/2"~2 ~2 
S,=0.83~ec, y--1)~e~yly ) ~ (9) 

where y is the distance from the wall and ct (=  2.5) is the slope 
of the turbulent length scale k3/2/~, in the near-wall region of a 
constant-stress shear flow (it is analogous to the von Karman 
constant in the mixing length hypothesis). Thus, the term is 
zero in a wall flow in local equilibrium and is uninfluential in 
the outer region because there k3/2/e increases less rapidly than 
y, and so the final product in Equation 9 diminishes rapidly. 
In a near-wall separated region where k3/2/g given by Equation 
6 might typically be four times larger than c~y, S, acts to increase 
e, thereby decreasing k (and k3/2/e); it thus drives the length 
scale level toward its local equilibrium value. Although the term 
is purely phenomenological, it has been found beneficial in 
predicting other shear flows affected by force fields currently 
under study in Manchester. ~9 

Now, the flow considered here is not a separated flow, and 
it may not be evident that the additional source term should 
be influential. The reason that it is, is that the largest levels of 
turbulence energy in the infinite buoyant cavity occur in the 
central region. As in a separated flow, therefore, there is a strong 
diffusion of turbulence energy toward the wall, and it seems to 
be in these circumstances that Equation 6 returns levels of 
that are too low. To be consistent with the intention of Equation 
9, we have included sources associated with both of the vertical 
walls, but, where it matters (i.e. close to one of the walls), it is 
only the contribution from the nearest wall that is significant. 

T h e  n u m e r i c a l  p r o c e d u r e  

Numerical solutions to the cavity flows reported below were 
obtained using the extensively applied TEAM code of Huang 
and Leschziner, 2° a two-dimensional finite-volume elliptic 
solver employing primitive variables (velocity components and 
pressure) distributed on the usual staggered grid. The solution 
proceeds iteratively by updating variables a line at a time, the 
variables being solved sequentially, 

The wall-function sequences in the original program were 
replaced by the appropriate boundary conditions at the wall 
( U i = k = ~ = 0 ;  ® as noted below) while the low-Reynolds- 
number terms were coded into the k and ~ source arrays. 

All two-dimensional computations reported here were per- 
formed on a carefully graded 60 x 60 mesh (Figure 1), this being 
the finest achievable with the computer resources available to 
us. For the infinie buoyant cavity only one plane of nodes was 
required, and, for this case, successive runs were made with the 
equivalent of* 60, 100, 150, and 180 nodes between the vertical 

* In fact, for the one-dimensional computations the Boussinesq approxi- 
mation was made and viscosity taken as constant leading to anti- 
symmetric flow about the midplane of the channel. Consequently, our 
grid extended only from one wall to the midplane. 
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Figure 1 Mesh distribution 

walls. In fact, refinement from 60 to 100 nodes produced 
changes in maximum velocity and Nusselt number of only about 
1%; further refinements brought negligible further change. The 
gratifyingly small grid resolution error with 60 nodes is probably 
associated with the relatively modest levels of Rayleigh number 
considered here; as a result, the effective viscosity changes over 
the flow by only one order of magnitude and the sublayers, 
where molecular transport is the dominant mechanism, occupy 
a larger proportion of the flow than in forced-convection 
boundary layers. 

P r e s e n t a t i o n  and  d iscuss ion  of  resul ts  

The first task was to check the one-dimensional finite-element 
predictions of Betts and Dafa'Alla 6 for the infinite buoyant 
cavity. The same rate of heat flow into and out of the cavity 
was prescribed at the cavity walls. The results, given in Table 1, 
confirmed the conclusion of Ref. 6 that the Launder-Sharma 1 a 
version of the k-e EVM (while performing the best of the forms 
tested in Ref. 6) seriously overpredicted heat transfer rates and 
underpredicted the maximum velocity. This anomalous behavior 
arises, one must suppose, from generally overpredicted levels 
of turbulent viscosity. 

The next step was to include the two amendments of the 
turbulence model discussed earlier: the Yap lS e source (Equation 
9) and the G G D H  representation of ufl (Equation 8), in the 
buoyant source. From Table 1 we see that inclusion of the 
former brings a striking improvement in agreement; indeed, 
the computations now show a marginally higher velocity and 
lower heat flux than the measurements. 9 Some of this small 
discrepancy is removed by introducing the modified buoyant 
source into Equation 7. The Cartesian coordinate expression 
for the buoyant source of k is in this case 

coc u k3 ~3V 63~) 
g e 2 dx dx 
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Table 1 Nusselt number and maximum veocity in infinite buoyant 
cavity 

Basis N u Vm. x (cm/s) 

Experiment in 30:1 
cavity (midheight 
value) 4.9 11.40 
Computation: 
standard k-e TM 6.53 8.96 

Computation: 
inclusion of 
source (Equation 9) 4.66 12.40 
Computation: 
inclusion of Equation 9 
and use of Equation 8 
in Pk 4.74 12.10 

40 

O(oC) 

0 

Figure 2 

201 i 

x/D 0"5 

v(m/s) 

0-15 

0.10 

005 

I 
0 x/D 0-5 

Measured and computed profiles in an infinite cavity: (a) 
temperature; (b) vertical velocity; symbols experimentsS'9; - - -  k-e 
EVM without Yap correction; k-~ EVM including Yap correction 

Since t~®/~x is negative everywhere and 8 V/Ox is also negative 
over most of the region where turbulent transport is significant, 
the term raises the turbulence energy slightly leading to the 
indicated changes in maximum mean velocity and Nusselt 
number. The corresponding mean velocity and temperature 
distributions are shown in Figure 2. The experimental results 
are those obtained by averaging the profiles for the upfiowing 
and downflowing halves of the cavity. As we shall see, these are 
not quite the same. 

Attention was turned next to computing the flow in the 
complete 30:1 two-dimensional cavity for which data are 
reported in Refs. 9 and 10. The thermal boundary condition 
prescribed on the heated side was that of uniform heat flux, 
while on the cooled side of the enclosure the measured (nearly 
uniform) wall temperature was applied. The short, well-insulated 
end walls were assumed adiabatic.* In these computations the 
variation of mean density and viscosity over the flow was in- 
cluded. Figures 3 and 4 show the mean velocity and temperature 
profiles at midheight and at two planes near the top and bottom 
of the cavity. The data at the midplane are those shown in 
averaged form in Figure 2: the differences in the profile in the 
vicinity of the velocity maximum on the hot and cold side are 
now clearly visible. While the computations do not exhibit 

* In fact, although the original data were taken in a 30:1 cavity, 9 the 
later addition of further insulation to the top and bottom end walls 
reduced the aspect ratio to 28.9:1. This small change in geometry, which 
only became known to the authors after all the computations had been 
made, is not expected to have had any significant effect. 

precise antisymmctry (the variation in mean density ensures 
that), the distribution on the two sides is a good deal more 
similar than the data. The latter are evidently not compatible 
with a two-dimensional mass conservation, since at midheight 
on the hot side the measured velocity is nevcr less than the 
computed value, while on the cold side it is never greater. The 
broken line shows the predicted behavior if the Yap correction, 
Equation 9, is not included: the benefits from the inclusion are 
evident. 

The problem with lack of two-dimensionality of the data is 
also evident at the planes near the top and bottom of the cavity. 
There are, however, interesting features shown by the computed 
and measured velocity fields which arc not clouded by the mass 
imbalance of the experiments. If the boundary conditions on 
each side of the cavity had been the same (e.g., both walls 
uniform heat flux or both uniform temperature) and the 
variation of density was negligible, the velocity profile along 
y/D = 0.05 would be the mirror image of that along 0.95. In 
fact, although the shapes at the two stations arc rather similar, 
the levels of velocity arc roughly 30% greater near the top than 
near the bottom. The experiments and computations are in 
accord in this respect. The thin upward-moving shear layer 
adjacent to the hot wall near the bottom of the cavity and the 
downward-moving flow near the top of the cold wall are, 
according to the predictions (Figure 5), essentially laminar. The 
close agreement with experiment suggcsts that this accords with 
the actual situation. 

The level of agreement between the measured and computed 
temperature profiles shown in Figure 4 is probably satisfactory 
in view of the lack of perfect two-dimensionality of the velocity 
field noted above. The differences in the profile shapes at 0.05 
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Figure 3 Measured and computed velocity profiles at three heights 
in 30:1 cavity. Key as Figure 2 
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Figure 4 Measured and computed temperature profiles at three 
heights in 30:1 cavity. Key as Figure 2 
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Figure 6 Nusselt number in 30:1 cavity: - -  computations; A 
cold wall; O hot wall; where /k and O are experiments in Ince 9 

cavity. In the absence of more precise information, the compu- 
tations were made with adiabatic top and bottom walls. 
Comparisons with data are thus confined to the midplane where 
end effects should be negligible. Figure 7 compares the predicted 
velocity distribution with the measurements reported by Cheese- 
wright e t  al.  11 after these authors had applied a correction for 
three-dimensional effects. The agreement is extremely close, 
including the weak under/overshoot in velocity in the core 
region. The corresponding temperature profiles in Figure 8 
indicate that the core is at virtually a uniform temperature, 
though with slight undulations associated with the weak 
secondary vortices. The core level temperature is, however, 
significantly less than our predictions. While such unequal 
temperature drops across the near-wall sublayers could arise if 
the boundary layer on one side were distinctly more turbulent 
than the other, this seems unlikely to be the main cause of the 
discrepancy. If it were, the velocity at the midplane would also 
be affected and, as we have seen, the predicted velocity field is 
in excellent accord with the measurements. The most likely 
source of the discrepancy seems to be heat loss in the experi- 
ments through the side walls, which, according to the 
experimenters,l 1,21 amounted to more than 15% of the total 
heat input to the fluid. Such loss would obviously lower the 
mean level of temperature in the cavity. 

The computed streamline pattern over the cavity is shown 
in Figure 9, where, for clarity, the length of the arrows has 
been plotted proportional to the square root of the velocity 
rather than to the velocity itself. The complex pattern of weak 
secondary motions is in marked contrast to the single cell 
produced in the 30:1 cavity. 

Because the thermal layers on the two vertical walls do not 

and 0.95 reflect the differences of the thermal boundary con- 
ditions at the heat-conducting walls. Figure 5 compares the 
profiles of effective viscosity across the same three planes as 
before with and without the Yap correction: a greater percentage 
reduction in viscosity from including the e source occurs near 
the ends of the cavity than at the center. The figure confirms 
the laminar character of the rising shear layer at 0.05 and the 
falling one at 0.95. 

Turning now to the heat transfer coefficients, Figure 6 
presents the variation of Nusselt number along the heated and 
cooled vertical walls. Here the temperature difference in Nu is 
that between the wall in question and the centerline. There is 
a close correspondence between the computed and measured 
variations except near the top of the enclosure on the cooled 
wall. The cause of this discrepancy seems to be that a small 
heat leakage through the top wall of the enclosure (ignored in 
the computation) reduces the normal temperature gradient at 
the top of the cool wall, thus lowering the heat transfer rate. 

Cheesewright e t  al.  11 have made extensive complementary 
studies in a cavity with a 5:1 aspect ratio. In their experiments 
the boundary layers on the two vertical walls do not directly 
interact, and, in contrast to the 30:1 cavity considered above, 
the central region is one of nearly uniform temperature and 
relatively low turbulence levels. The experiments were performed 
with carefully controlled uniform temperatures on the two 
primary vertical walls. Despite 200 mm of expanded Polystyrene 
on the top of the cavity, however, the authors report there was 
evidence of a small unquantified heat loss through this surface, 
which, while negligible by comparison with the total heat flow 
through the cavity, nevertheless significantly reduced the stable 
stratification of the fluid flowing slowly along the top wall. 
Consequently, the collapse of turbulence was by no means as 
complete as at corresponding positions at the bottom of the 
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Figure 7 Midheight mean velocity profile in 5:1 cavity: O experi- 
ment Cheesewright et al.~; - - -  k-e EVM without Yap correction; 
- -  k-e EVM including Yap correction 
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interact, Cheesewright et al. Ix chose to present their heat- 
transfer rate data based on Nusselt and Rayleigh numbers in 
which the relevant length dimension is taken as the vertical 
distance from the "origin" of the boundary layer, i.e., the 
bottom of the hot wall and the top of the cold wall. The 
temperature difference was taken as the magnitude of the 
difference between the wall and core temperature. On this basis 
the present computations for the two walls essentially form a 
single set of results, shown by the solid line in Figure 10. The 
sudden steepening of the curve for Rar~  3 x 107 corresponds 
to a height where turbulent transport coefficients augment 
significantly. Now, the experimental data on the cold side of the 
cavity align rather pleasingly with the predictions, while those 
on the hot side lie about 30% higher than the computations, 
at least for Ra up to 2 × 109. One contributor to this discrepancy 
seems to be that the heat loss through the side walls of the 
cavity induces a greater heat inflow through the hot wall than 
in the computations, giving a somewhat higher level of Nu. 

The overall performance of the present procedure in com- 
puting cavity heat transfer can be assessed from Figure 11. The 
dependence of the mean Nusselt number Nu has been investi- 
gated by Cowan et al. 22 and by McGregor and Emery. 23 Their 
experimental study suggested, perhaps surprisingly, that there 
was no significant effect of aspect ratio, their data being well 
correlated by an equation of the form 

Nu = c Ra 1/3 (10) 
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where, according to McGregor and Emery, 23 the constant c 
was 0.046 while Cowan et al. 22 proposed the value of 0.043. 
In the above, Nu and Ra are based on cavity width and 
temperature difference between the vertical plates. Figure 11 
shows computations obtained in the present study: several runs 
have been made for the infinitely tall cavity and one each with 
uniform wall temperatures for aspect ratios of 10:1, 5:1, and 
1:1. These suggest that Nu does indeed increase as Ra x/a and 
that the effects of aspect ratio are small. All our finite-cavity 
computations are well represented by Equation 10, the optimum 
choice of c being approximately 0.047. The same value of the 
coefficient also gives very close agreement with our computations 
for a 30:1 cavity. We recall that, in this case, to match the 
experiment the heated wall had a uniform heat flux applied to 
it. The correlation therefore needs to be converted to one based 
on Ra~, the Rayleigh number based on wall heat flux rather 
than on temperature difference. Since R%--Nu  Ra, Equation 
l0 with c=0.047 now becomes 

Nu=0.1  ~ 1 / 4  (11) 

a form which agrees with our computed result within 2%. The 
infinite-cavity computations give levels of Nu a little higher 
than the finite-cavity results, for R a >  3 x l07 the implied value 
of the coefficent c being 0.050. 

The final topic considered is the appropriateness of the 
buoyant flow wall laws for velocity and temperature recom- 
mended in Ref. 1. Over a more than twofold variation of 
Rayleigh number, George and Capp showed that measured 
temperature profiles in natural convection boundary layers on 
a vertical plate were very well described by 

A O =  1_0.1 ( x ' ] ,  0~< x <  1.7 (12a) 
A®w \ % }  % 

/ x ~  -~ /3  x 
= 1 . 4 5 / - 1  , 1.7 ~<- ( 1 2 b )  

\q0/  % 

where % =  1-220 AOw] 1/3 and A® is the local temperature above 
the surroundings. The corresponding profile recommended for 
the velocity was 

V 
( ) -9 .3 ,  1.7~<x (13) V* =-- (gAOw'~/O) 1 /3-  12.3 x 1/3 
\q0 /  qo 

Here 2 denotes the thermal diffusivity x/pcp and the values of 
the coefficients in Equations 12 and 13 are those appropriate 
to a Prandtl number of about 0.7. 

For  the one-dimensional infinite buoyant cavity test reported 
earlier, a number of solutions were obtained for different 
distances between the vertical walls or, effectively, for different 
Rayleigh numbers. The results are plotted in Figure 12 using 
the normalized velocity, temperature, and distance scales of 
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Equations 12 and 13, with A® now indicating the temperature 
excess over that at the midplane. It is clear that our numerical 
solutions of the temperature do indeed collapse onto a single 
curve consistent with the proposed thermal relations but that 
the velocity profiles do not: in the chosen coordinates, for each 
Rayleigh number, a quite distinct velocity distribution is traced. 
A possible reason for this failure to align with the near-wall 
profile reported for turbulent natural convection on a vertical 
plate is that in the present flow the outer regions are far more 
energetic and are thus more likely to affect the near-wall 
structure. A second, and probably more important, factor is 
that the Rayleigh numbers of this study are not high enough 
for viscous stresses to be negligible in the near-wall region. For  
example, at the position of maximum velocity the turbulent 
viscosity is less than five times the molecular value, even at the 
highest value of Rayleigh number. It is true that for ~ > 10 s 

the near-wall velocity profile does seem to be approaching 
an asymptotic form in George-Capp coordinates, but that 
asymptote lies well above Equation 13. In fact, To and 
Humphrey's 2 ASM computations of natural convection on a 
vertical fiat plate accord closely with the present results as far 
as the near-wall velocity and temperature profiles are concerned. 
These workers also showed that their computations agreed 
closely with the experiments of Miyamoto et al. 24 and Cheese- 
wright and Ierokipiotis. 25 Indeed, the present computations, 
like those of Ref. 2 and the cited experiments, all support an 
asymptotic velocity law of the form 

V*= 16.5(x/rio) ~ /3 -  11.3 (14) 

proposed by To and Humphrey. 2 

Conclus ions  

The following principal conclusions have emerged from this 
computational study of buoyantly driven flow in closed cavities: 

• In confirmation of finite-element results of Betts and 
Dafa'Alla, 6 the usual forms of the low-Reynolds-number 
k-~ turbulence model (e.g., Refs. 12 and 13) do not succeed 
in predicting the correct flow rate and heat transfer for the 
infinite cavity. 

• However, by introducing an additional source term to the 
energy dissipation (~) equation, as proposed recently by 
Yap~ s from his study of forced convection in separated flows, 
agreement with experiment is achieved within the uncertainty 
associated with lack of two-dimensionality of the data and 
ignorance about precise thermal boundary conditions. The 
validity of this modification is demonstrated for both the 
30:1 and the 5:1 cavities, though its effect is only important 
in the former case. 

• The predictions of flow in an infinite cavity strongly support 
the proposals of George and Capp I for the near-wall 
temperature profile. The corresponding proposal for the 
near-wall velocity profile is, however, not in accord with the 
present computations, partly because of the relatively low 
Rayleigh numbers here considered. While our work is not 
in conflict with the idea of a universal velocity profile at high 
Rayleigh numbers, our results tend to support the modified 
formula of To and Humphrey. 
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