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Abstract-Aerosol measurement frequently requires that an aerosol sample be withdrawn from its 
environment. The sampled mass is not strictly proportional to the sampled volume because mass is 
present in discrete entities. This introduces a fundamental variability in the estimated particle mass 
concentration, particularly important for small particle samples. The total amount of any particle 
measure, W, including mass, of the sampled particles is described by its coefficient of variation, CV. 
The results also apply for sampling a volume of liquid in which particles are dispersed, and can 
under some conditions be used for, e.g. analysis of weight per cent of asbestos in bulk powder, and 
microscopical analysis of total particle mass or projected area in a specimen. The fundamental 
coefficient of variation CV is also given for the special case of individual particle diameters having 
a log-normal distribution. Exact knowledge of the size distribution at the upper tail is critical in 
determining CV, as illustrated by calculating CV for a range of right truncated log-normal 
distributions. A mass variability equivalent diameter, MVED, is defined, by which the mass 
variability of a polydisperse aerosol can be described in terms of number variability (Poisson) of 
a monodisperse aerosol with diameter MVED. A population of airborne particles, sized by 
microscopy is used to show that in order to obtain CV < 10% for particle mass, a sample of this 
particular aerosol must contain an expected mass of 0.01 mg, and an expected number of particles, 
N>6500, while only 100 particles would bc needed if the measure was particle number. The 
variability is termed fundamental because it is the lowest achievable variability for given sample size 
and size distribution. This must be recognized, when determining overall uncertainty budgets for 
analytical procedures, including use of direct reading particle mass monitors for which a simple 
equation is given for calculating CV. 
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NOTATION 

count geometric mean diameter 
geometric standard deviation 
coefficient of variation of total sampled particle measure, and particle mass, respectively 
coefficient of variation of sampled volume 
volume or mass equivalent particle diameter 
mass variability equivalent diameter 
geometric mean of mass weighted diameter, and of aerodynamic diameter, respectively 
number of particles in sample 
number of particles in any unit volume 
volume of sampled matrix 
individual particle measure, and particle mass 
total measure, and total particle mass of particles in the sample 

In (GSD) 
expected number of particles in a unit volume of the matrix 
In (CMD) 
dynamic shape factor 
particle density 

INTRODUCTION 

Aerosol measurement frequently requires that an aerosol sample be withdrawn from its 
environment. If the withdrawn volume of air is known, and the total amount of aerosol 
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in the withdrawn sample is analyzed, the aerosol concentration in the environment or 
the concentration of an analyzed species can be calculated. Since the air is a continuum, 
the sampled air volume can, in principle, be determined with any accuracy. However, the 
sampled mass is not strictly proportional to the sampled volume because mass is present in 
discrete entities. This introduces a variability in the estimated particle mass concentration, 
an effect which can be particularly important for small particle samples. 

Mass is only one particle measure. Total surface is another. To generalize, the total 
amount of any measure, w, of the particles in the matrix sampled will be characterized. W is 
a random variable, and will be described by its expectation value, E, and variance, Var, as 
well as the resulting coefficient of variation, CV,,. 

The results apply for many other situations. One is sampling a volume of liquid in which 
particles are dispersed. Another is analysis of, e.g. weight per cent of asbestos in a bulk 
powder, provided the powder in which the asbestos is distributed, can be treated as 
a continuum. A third example is microscopical analysis of particles of a given type in 
a specimen. The parent population is then all particles of this type in the specimen. The 
sample is the area delineated by the chosen number of fields. 

SAMPLING 

The matrix from which the sample is drawn, and the sampling procedure for which the 
model is derived has to be specified in general terms. The following assumptions are made: 

(1) The matrix will be treated as a continuum. 
(2) The total volume of the particles in any unit volume of matrix is only a very small 

fraction of the unit volume. 
(3) A particle is said to belong to a part of a matrix if its center of gravity is within that 

part. 
(4) The distribution of particles in the matrix is uniform. The distribution of number, No, 

of particles in any unit amount of matrix is then approximately a Poisson distribution, P(x). 
The expected value of number of particles in a unit amount will be denoted %. 

(5) A certain amount of the matrix is sampled. The amount is measured as matrix 
volume, matrix mass, or matrix area. 

(6) Sampling of an amount of matrix is random, i.e. any part of the matrix is.sampled 
with equal probability. 

(7) All particles in the sampled part of the matrix belong to the sample. That is, there is 
no change in their number during the sampling process. 

In the following, a unit volume of matrix is considered, unless indicated otherwise. It is 
however straightforward to generalize to any measure of a matrix. From the assumptions it 
follows that the number of particles, No, in any unit volume is 

N,eP(A). (1) 

For a given volume, u, of matrix sampled, the number, N,, of particles in the sample has 
a Poisson distribution with expectation value E(N,) = o& due to assumptions 2 and 4, i.e. 

(NJV=U)=N,EP(UI). (2) 

Notice that upper-case letters will be used to denote the stochastic variable, lower case for 
its realization. 

COEFFICIENT OF VARIATION OF TOTAL PARTICLE MEASURE 

Let w denote a measure defined for an individual particle, and let there be N particles in 
a sample consisting of the random volume I/ of the matrix. The total w-measure, W,, of 
particles in the volume I/ is 

Ws= 5 Wi, 
i=l 

(3) 
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where Wi denotes the w-measure of particle No. i in the sample (i = 1,2, ..., N). V, N, and 
W, in equations (2) and (3), are stochastic variables. Due to the assumptions (2) and (4), 
V and N are statistically independent, and the Wi are independent, identically distributed 
random variables, i.e. E( Wi) = E(W) (i = 1,2, . . . , N). The following relations can be used for 
calculating expectation and variance: 

E(X)=E(E(XIY)), Var(X)=Var(E(XIY))+E(Var(XIY)). (4) 

Equation (4) is derived from a more general expression (see e.g. Wilks, 1962). It does not 
assume independence between X and Y. In order to calculate the expectation E( W,), it is 
first noted that for given volume V 

(W,lV=u)= w,,= z wj, 
i=l 

where N, is a random variable with distribution given by equation (2). The expectation 
E( W,,) is thus 

E(W,,)=E(E(W,,)N,))=E(N,E(W))=ulE(W). 

Using equations (4) and (6) one obtains for E( W,) 

E(W,)=E(E(W,(V))=E(VaqW))=AE(V) E(W). 

The variance of W,, is calculated using equations (2) and (4) 

(6) 

(7) 

Var( WV,)= VarM W,,IN,))+ Wart W,,IN,)) 
= Var(N,E( W)) + E(N, Var( W)) 

=~l(E(W))~fulVar(W)=uM(W~). 

Equations (4) and (8) give 

Var( W,)=Var(E( W,IV))+E(Var( W,l V)) 

=Var(VAE(W))+E(VIE(W’)) 

=A2(E(W))ZVar(V)+AE(W2) E(V). 

(8) 

(9) 

The coefficient of variation of total sample measure, CV,,, is then 

cv2 =Var(Ws) Var(V) EW2) 1 E(W2) 
wS E( W,)2 --=y+AE(V) E(W)2=Cvz+IE(V)E(W)a’ 

W’) 
(10) 

CV, is the coefficient of variation of the sampled volume of the matrix and can, in principle, 
be made arbitrarily small, since the matrix is assumed to be a continuum. The coefficient of 
variation is for CV, = 0 

(32 = l E(W2) 

ws EpjE(W)Z’ 
(11) 

Equation (11) represents the minimum obtainable coefficient of variation for given sample 
volume and size distribution, and is thus termed the fundamental coefficient of variation. It 
can only be decreased by increasing the sample size. The parameter E( W2) /E( W)2 is given 
by the size distribution of the particle population in the matrix. When CV,=O, E(V)= V; 
but the notation E(V) will be used throughout to indicate, that the equations can be used in 
case CV, > 0, by adding the volume variability according to equation (10). 

In case the w-measure is the mass of the individual particle, then W= M, and the expected 
total mass, E(M,), of the particles in the sample is 

E(M,)=IE(V) E(M) (12) 

AS 26-1-I 
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from which I is obtained as 

(13) 

The expected amount of sample in equation (11) is given in terms of particle number. The 
corresponding equation, if the expected amount of sample is given in terms of mass, can be 
found by substituting equation (12) in equation (11). This gives 

cv2 = l E(M2) 
ms E(M,) E(M) . (14) 

PARTICLES WITH LOG-NORMAL DIAMETER DISTRIBUTION 

In this section, the fundamental coefficient of variation will be calculated for the case 
where the particle population has a log-normal size distribution. The diameter probability 
density functionf(d) is then 

__- j.(4=>p~ew - ( (W) - A* 
2p2 1 

or in short 

where 

D E LNk P2) or ln(W E N(P, 8*), 

y=ln (CMD); CMD =count geometric mean, 

/I = In (GSD); GSD = geometric standard deviation. 

D is the mass equivalent diameter, defined as 

(15) 

(16) 

(17) 

where p is particle density. 
In order to apply equations (11) and (14) for the log-normal case, some relations for the 

log-normal distribution will be summarized (see e.g. Aitchison and Brown, 1969) : 
The expectation value E(D) of D is obtained as 

E(D)= exp(p++)P2). (18) 

The distribution of individual particle mass, M = (7r/6)p03 is also log-normal with para- 
meters 

M E LN@,, Pi), where pL, (19) 

From equation (19) one obtains the expected individual particle mass 

(20) 

Similarly for the expectation of M* 

E(M’)= T 2exp(6~+18fi2). 
0 

(21) 

The mass (or volume) weighted diameter distribution is also log-normal with parameters 
given by equation (22) : 

D,ELN(P+ 3p2, P*). (22) 
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1 J I 
1 10 100 

MMD, pm 

Fig. 1. Lines of equal coefficient of variation of a sample taken from a given volume of air, with expected particle 
mass 0.1 mg. Log-normal and right truncated (at d= 1OOOpm) log-normal size distribution. MMD and GSD 

describe the distribution prior to truncation. 

Thus the mass weighted geometric mean diameter, MMD, is 

MMD =exp (p + 302). (23) 

By combining equations (ll), (20) and (21) one gets 

cv;, = 1 
-exp(9P2). 
WV) 

Notice that this expression depends on 2 and 8, but not on p. Expressed in terms of expected 
total mass of particle sample and mass weighted median diameter, the fundamental 
coefficient of variation of total particle mass is (using equations (14), (20), (21), and (23)) 

cv;,=E p -MMD3 exp($/?‘). 
6 -wfs) (25) 

The MMD can be substituted by the mass median aerodynamic diameter MMAD by the 
relation (particles in the Stokes region, neglecting Cunninghams slip correction) : 

MMAD= 
J 

EMMD, (26) K 

where K is the dynamic shape factor. 
Equation (25) shows that the fundamental coefficient of variation, CV,,, depends strong- 

ly on the size distribution. This is illustrated in Fig. 1, which shows lines of equal CV,,. The 
particle population size distribution is given in terms of MMD and GSD. It has been 
assumed that the expected total mass of aerosol in the sample is 0.1 mg. A mass of 0.1 mg is 
well above the detection limit of 0.015 mg, which is quoted for occupational hygiene 
sampling of airborne dusts, using suitable filters (Vaughan et al., 1989). In Fig. 1, MMD 
ranges from 1 to 50 pm, and GSD ranges from 1 to 6. If equation (26) applies, and if 
p = 1 gcmm3, and K= 1, MMD = MMAD. Then these ranges correspond to those used by 
Soderholm (1993) for assessing aerosol sampler efficiencies, except that the lower diameter 
was 0. 

DEVIATIONS FROM LOG-NORMALITY 

The value of the population parameter E(W2) /E(W)2, and thus the coefficient of 
variation will depend on the shape of the size distribution at the extreme upper tail. This is 
illustrated for W=M, by right truncating a log-normal size distribution. Let the non- 
truncated probability density function for mass be g(m) with parameters given by equation 
(19). Let the truncation be at 5=(7r/6) pd;,,. The probability density function for the 
truncated distribution g*(m) and thejth moment of the truncated distribution is then given 
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1000 lE4 
Truncation diameter, pm 

lE5 

Fig. 2. Fundamental coefficient of variation for some right truncated, log-normal size distributions, as a function 
of upper diameter truncation. MMD and GSD describe the distribution prior to truncation: MMD = 4, 20, and 

50. GSD = 3, 4, and 5. 

by the expression: 

s*(m) = s:, $z)dm; E(mj) =Ji mjg*(m) dm = 
J; m’s(m) din 

s:, s(m) dm . (27) 

Equations (14) and (27) were used to calculate numerically, the values of CV, for various 
log-normal size distributions and truncation diameters d,,,. The result is shown in Fig. 2, 
for an expected total sample mass of 0.1 mg. Notice that the total sample mass only is 
a scaling factor, and does not affect the shape of the curves. Figure 2 shows that truncation 
can have a significant effect, even for particle diameters that are very large compared to the 
median diameter. MMD and GSD are the size parameters for the log-normal distribution 
prior to truncation. 

In most real situations, very large particles are not part of the airborne particle popula- 
tion, One reason is that their residence time in air is very short so that they cannot be part of 
the air volume, from which the sample is drawn. If the dust source is a powder there is often 
an upper particle size limit given by the product specifications. To illustrate the effect of an 
upper diameter truncation in the particle population from which the sample is drawn, the 
calculations in Fig. 1 have been repeated using a somewhat arbitrary upper diameter 
truncation at 1000 pm. This truncation has a considerable effect for large GSD or MMD. 
Again, MMD and GSD are the size parameters for the log-normal distribution prior to 
truncation. 

To illustrate the effect of deviations from log-normality, as they occur in real aerosols, 
a real population of particles has also been analyzed. The population consisted of 4321 
airborne, man-made mineral fibers, sized by scanning electron microscopy. They were 
pooled from data available to the authors. The volume equivalent diameter distribution was 
determined by first calculating volume and then volume equivalent diameters, d, from joint 
length and diameter measurements, assuming cylindrical shape, then calculating geometric 
mean and standard deviation of d, see Table 1. The volume distribution is shown in Fig. 3, 
plotted on a log-probit scale. Suppose first that the diameter distribution is exactly 
log-normal and has parameters equal to the estimated values CMD = exp (1~~) = 3.67 pm 
and GSD =exp (Pd)= 2.58. Assume also that p =2.5 gem-3. The parameters MMD, 
GM(M), E(M), and E(M’) can then be calculated, using equations (19)-(21) and (23). The 
result is given in Table 1. Similar calculations, but now estimating all parameters directly 
from the study population, give results also shown in Table 1. They show that deviations 
from log-normality, which could be judged as minor upon inspecting Fig. 1, have a large 
influence on these key parameters. As an example the population parameter I!Z(A~~)/E(M)~ 
differs by a factor of almost 50. 

It has to be noted that the calculated value of MMD (Table 1) of the true distribution may 
be underestimated. This problem has been studied by Mercer (1969/70). Mercer found that 
the most probable value of median mass weighted diameter, estimated from the diameters of 
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Table 1. Count median diameter (CMD), geometric standard 
deviation (GSD), median mass weighted diameter (MMD), mass 
variability equivalent diameter (MVED), expected mass E(M) of 
particle, and E(A42)/E(A4)2, calculated for an actual and the 

fitted log-normal distribution 

Log-normality 
assumed 

Estimated directly 
from database 

CMD @m) 
GSD 
MMD (pm) 
MVED (pm) 
GM(M) (ng) 
GSD(M) 
E(M) 0%) 
E(M’)/E(M)* 

3.67 (*) 
2.58 (*) 

5.4E + 1 
2.1E + 2 
6.5E - 2 
1.7E + 1 

3.6 
3.1E + 3 

3.67 
2.58 

2.4E + 1 
4.2E + 1 
6.5E - 2 
1.7E + 1 

1.5 
6.5E + 1 

p = 2.5 gem-s. 
(*) From which the other parameters in this column have been 

calculated. 

1 

Individual particle volume, pmA3 ! 
Fig. 3. Cumulatj ve man-made mineral fiber volume distribution on log-probability scale. 

N particles drawn at random from a log-normal distribution was less than the true value. 
For GSD=2.6, the most probable value was as low as 0.3 times the true value, if N= 100 
particles had been sized. The most probable measured value was still only 0.7 times the true 
value for N = 5000. This type of bias will also exist for other right skewed distributions. 
Published size distributions measured with impactors may also be biased due to entry losses 
in the impactor. Vaughan (1989) has given correction curves for the measured MMD and 
GSD, assuming a sharp cut-off at 20 pm. Both GSD and in particular MMD will be 
significantly underestimated, unless corrected for entry losses. 

DISCUSSION 

The equations for fundamental coefficient of variation can be generalized to other 
measures than mass. As an example (Appendix), the variability of surface soiling, expressed 
as percentage of surface area covered by particles is calculated for the log-normal case. 

The fundamental coefficient of variation of mass for samples taken from the study 
population specified in Table 1 is shown in Fig. 4. It is seen that the coefficient of variation is 
approximately 10% at 0.01 mg. The corresponding expected total number of particles in the 
sample is 6500. This is a large number, compared with the 100 particles needed for a count 
coefficient of variation of 10%. If the actual size distribution has the same CMD and GSD 
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Fig. 4. Expected total particle mass and particle number for given fundamental coefficient of variation of mass. 
Particle population corresponding to Fig. 3. see also Table 1. 

Table 2. Required minimum expected number of particles in a sample to obtain CV,s for total mass 
less than 25% 

cv,, = 25% GSD = 1.8 GSD = 2 GSD = 2.2 GSD = 2.5 
Expected number 360 1210 4300 30600 

and was truly log-normal, the required expected total mass would have to be multiplied by 
10.7 and the required expected total particle number by a factor 6.9 (as can be calculated 
using proper parameter values in Table 1). 

Table 2 shows the minimum required expected number of particles (IE( V)) in a sample if 
the fundamental coefficient of variation has to be less than 25%. The size distribution is 
assumed to be log-normal, and thus equation (24) can be used. Table 2 has some implica- 
tions for, e.g. sizing particles by transmission electron microscopy for total mass determina- 
tion. It is seen that the time would be poorly spent if all particles of the relevant type were 
identified and sized, since a very large number would be required to obtain a CV = 25%. 
Rather one should stratify counting, and “hunt” the few big particles at low magnification. 
The simpler case, where the stochastic variation of particle number in a drawn sample was 
neglected, has been studied by Schneider (1993). Numerical simulations were used, and the 
particle population was assumed to have a trivariate log-normal size distribution. The 
results were given as percentiles of the distribution of the volume estimator. From the 
results, the ratio, R, between the 95 and 5% confidence level could be estimated. In one of 
the given examples, GSD = 2.2 for the volume equivalent diameter distribution. In this case 
one would have to size 1280 particles, in order to obtain R < 2. 

Figure 1 shows that experiments involving mass determination of coarse, polydisperse 
aerosols must be designed carefully. As an example, if differences between aerosol sampling 
inlets have to be studied by parallel sampling, sufficient mass must be collected to ensure 
that the experiment has sufficient power to detect a stated difference. The log-normal 
approximation can serve as a first, conservative estimate. Then the fundamental coefficient 
of variation of total particle mass may reach 100% for an expected 0.1 mg total particle 
mass (Fig. 1). For particle size distributions of a more realistic shape at the upper extreme 
tail, the coefficient may only reach about 30%. Fig. 2, Table 1, and Table 2 demonstrate that 
one has to assess very carefully how well the modeled size distribution fits the actual size 
distribution, when calculating CV. 

For a monodisperse aerosol, E( W2) /E( v2 = 1. The fundamental coefficient of variation 
CV;, is then the same as for the Poisson distribution 

CV&=+ with &,,=AE(V), (28) 
tot 

;Ifot is the expected total particle number in the sample. 
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For a polydisperse aerosol a similar expression for the coefficient of variation of mass, 
CV,,, can be obtained. By introducing a mass variability equivalent diameter, MVED, the 
actual sample of particles can be modeled regarding variability of sampled mass, by 
replacing the actual aerosol by a monodisperse aerosol with diameters equal to the MVED. 
The MVED can be calculated in the following way: 

The total number of particles with diameter MVED is 

;1 = ww 
tot 

Z~MVED~. 

According to the definition of MVED 

1 1 E(W) 
cv~s=~=E(M.) E(M). 

(29) 

(30) 

By combining equations (29) and (30), one obtains 

(31) 

For the log-normal case, MVED is 

MVED = MMD exp (+ /?‘) = CMD exp (8 0’). (32) 

The mass variability equivalent diameter gives a “feel” for the coarseness of the aerosol in 
relation to total mass variability. Some examples are given in Table 3. 

Equation (31) can also be used for assessing the coefficient of variation of total deter- 
mined mass by, e.g. the direct reading instrument for mass, TEOM 1200 Ambient Partic- 
ulate Monitor (Rupprecht and Patashnick Co., Inc.). This instrument samples at default 
flow rates, Q, of 3 lmin-r. If a 5 s read out interval, T, is chosen at a concentration, C, of 
10 mgme3, an expected mass, M,, of 0.004 mg would accumulate over each measuring 
interval. The expected number of equivalent particles, &,,, accumulated during interval T is 
given by the relation 

A = QCT 
tot (33) 

E~MVED’ 

from which 

CVL= QCT ’ (34) 

Assume that the study population (Fig 3, Table 1) is sampled, using these sampling para- 
meters, and that there are no internal losses. Then MVED = 42 pm, giving A,,,, = 26, and 

Table 3. Mass variability equivalent diameter (MVED) in pm, for various 
log-normal and right truncated at 1000 pm log-normal size distributions 

GSD 
MMD Truncation 3 4 5 6 

41tm co 24 72 192 491 
IOOO~m 24 54 84 110 

20 
pm 1OGprn 

122 357 974 2470 
103 161 197 221 

50 firn co 306 893 2430 6170 
1OOOw 201 255 282 297 
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CV,, = 20%. The mass variability equivalent diameter thus is a useful concept for illustra- 
ting the sampled mass variability, using the analogy to the simpler case of sampling particle 
numbers. 

In summary, the variability introduced by the discrete nature of particles must be 
included when determining overall uncertainty budgets for analytical procedures such as 
determining aerosol concentrations by the membrane filter method or estimating mass 
percentage of a particle phase in a bulk sample by microscopy or by chemical analysis. The 
same has to be done when using direct reading particle mass monitors. The mass variability 
equivalent diameter is a useful population parameter, since variability can be thought of in 
terms of number (Poisson) statistics of such equivalent particles. 
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APPENDIX 

The equations for the log-normal case can be generalized to include any measure of form W = aD’. The 
distribution of Win terms of the diameter distribution parameters p and fi (see e.g. Aitchison and Brown, 1969) is 
log-normal, with 

J+‘ELN&, B;)> (35) 

where 

p,=In(n)+rp; /3,=rfi. 

One then gets for the fundamental coefficient of variation 

(36) 

1 
CV& = __ exp (r’j’) 

i&E(V) 

or 

cv;, = a 
1 

pMMD’exp(( - E + r2) b2). 
F(Ms) 

To illustrate the use of equation (37) the fundamental coefficient of variation of surface soiling is calculated. Let the 
measure of surface soiling be the fraction, F,, of surface covered by particles. Since the model assumes that the 
fraction is small, particle overlap can be neglected. Let the considered sample of the matrix be a delineated area 
A of the surface, placed at random. Then 

1 
cq = -expW) 

LE(A) 

from which 


