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Two models are introduced to predict mechanical properties of two-component 
isotropic systems: (i) the cross orthogonal skeleton (COS) with co-continuous com- 
ponents and (ii) the cubic orthogonal skeleton (three perpendicular plates-3PP) 
with one component continuous and one discontinuous. Simultaneous prediction 
of the modulus and yield (or tensile) strength is based on phase continuity param- 
eters (calculated for the two models) which serve a s  input data in an  equivalent box 
model. At yielding (or breaking), the upper and lower bounds are distinguished 
which are related, respectively, to interfacial adhesion sufficient and insufficient for 
the transmission of stress inducing plastic deformation. The moduli and the upper 
bound of yield (or tensile) strength of the COS model, which is applied to polymer 
blends, are monotonic functions of composition. If partial or complete debonding 
occurs before yielding (or breaking), the corresponding strength passes through a 
minimum as  a function of composition. The 3PP model renders a n  approximate 
prediction of the modulus and yield strength of closed-cell foams and particulate 
composites. Predicted dependences reasonably agree with those of other models 
and/  or with experimental data from literature. 

INTRODUCTION dispensable for calculating elastic properties of the 

reparation of polymer blends and composites P ranks among the most cost-effective ways of up- 
grading existing polymers. It is thus desirable to an- 
ticipate the values or limits of their mechanical prop- 
erties, e.g., modulus E,, yield strength s,,, or tensile 
strength Sub (subscript b stands for binary systems). 
When looking for an  appropriate model, one should 
take care that the selected model meets all require- 
ments concerning phase continuity, geometry of 
phases, symmetry of properties, etc., of the material 
under consideration. The available models are not ver- 
satile, but usually are suitable only for one or two of 
the three main categories of polymeric materials, i.e., 
fiber composites, particulate composites, and hetero- 
geneous blends. 

As for theory, it has achieved its highest level (1-1 1) 
for composites with continuous fibers. Mechanical 
properties of orthotropic laminae with uniaxially ori- 
ented fibers are usually calculated by the linear mix- 
ing rule (along the fibers) and the Halpin-Tsai equa- 
tions (1, 5, 12-15) (across the fibers). The latter 
equations are only formally analogous to those of 
Kerner and Nielsen (7) or McGee and McCullough ( 16) 
for isotropic particulate composites. They are also in- 

composites with uniaxially oriented short fibers or 
other non-isometric reinforcing elements. To calculate 
properties of composites with short fibers randomly 
oriented in a plane, a procedure called laminate anal- 
ogy (1) gives satisfactory results. The strength of com- 
posites with continuous fibers is routinely evaluated 
by using criteria of maximum stress or maximum 
strain or maximum work (5), while the Halpin-Kardos 
equations (12-14) are used for short-fiber composites. 
Linear mixing rules, valid for parallel or series cou- 
pling of components, e.g. in laminae, are sometimes 
used a s  first approximations of the upper or lower 
bound of physical properties of isotropic heteroge- 
neous blends, e.g., of modulus (16-201, yield strength 
(17, 20-22), tensile strength (7, 20). and permeability 
(23, 24). Obviously, these bounds lie far apart (251, 
and their application cannot be justified (26) from the 
viewpoint of the phase structure of blends. 

Theoretical apparatus developed for particulate 
polymer composites consisting of a continuous matrix 
and a discontinuous filler (isometric reinforcement) is 
frequently modified for polymer blends, because both 
types of materials rank among heterogeneous isotro- 
pic materials. The modulus of particulate composites 
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can be calculated by means of several models (7, 16, 
25, 27-31) which usually take into account the max- 
imum achievable volume fraction of the dispersed 
phase. s,b is frequently of primary importance be- 
cause it represents the limit of allowable (tensile) 
stress. Several simple equations have been proposed 
(7, 17, 32-37) for S,, of the particulate systems with 
poor interfacial adhesion where the discontinuous 
component merely reduces the cross section of the 
matrix transmitting the external load. If the term ex- 
pressing the matrix cross section reduction is com- 
bined (37, 38) with an  empirical exponential term, it is 
possible to fit (but not to predict) the experimental 
data on yield and tensile strength of both particulate 
composites and polymer blends. For particulate com- 
posites with interfacial adhesion strong enough to 
transmit acting stress up  to fracture, the shear-lag 
analysis (originally used to predict tensile strength of 
short-fiber composites) was modified (39) for Sub of 
composites with spherical particles. We have shown 
(40) that the derived formula also fits the dependence 
of yield strength of composites consisting of function- 
alized polypropylene and calcium carbonate. How- 
ever, this approach is not applicable for ordinary poly- 
mer blends. 

Polymer blends that are typical heterogeneous iso- 
tropic materials differ from particulate composites in 
two aspects: (i) their components are co-continuous 
over a wide interval of compositions; (ii) respective 
mechanical properties of polymer constituents are 
much closer to each other than properties of matrices 
and reinforcements in composites. The equations for 
the modulus or for the yield (or tensile) strength de- 
rived for particulate systems can be used also for 
blends, but only in the marginal composition intervals 
where the minority polymer is discontinuous. Thus, it 
is quite evident that models of mechanical properties 
intended for polymer blends have to allow for (i) re- 
spective properties of all components, (ii) a wide inter- 
val of co-continuity (phase duality) of constituents 
(41-43), and (iii) strength of interfacial adhesion. Re- 
cently, we have proposed (44) a new scheme for simul- 
taneous prediction of the modulus and yield (or ten- 
sile) strength of binary blends that meets all these 
requirements. Our predictive scheme employs a two- 
parameter equivalent box model (EBM) and the data 
on the continuity of constituents acquired from gen- 
eral equations based on the percolation theory of two- 
component systems (45, 46). The predictive scheme 
was also successfully used for the prediction of per- 
meability of binary polymer blends (47). The concept 
of phase continuity was used with regard to the fact 
that there is a lot of experimental evidence (7, 18, 
48-51) that elastic, yield, and ultimate properties of 
blends are profoundly affected by the degree of conti- 
nuity of constituents, though these properties are re- 
lated to the phase structure in diverse ways. Let us 
point out that earlier the EBMs were viewed only as  a 
convenient framework for systematic phenomenolog- 
ical description of elastic behavior Of Various systems 
(19, 52-56); the parameters (volume fractions) of the 

E B M s  were not predicted, but adjusted aposteriori by 
fitting experimental data. 

The objective of this paper is to introduce two types 
of single-parameter models for binary isotropic sys- 
tems with (1) both components co-continuous or (ii) 
one component continuous and the other discontinu- 
ous (throughout the whole composition range). The 
models assume the maximum achievable degree of 
phase continuity in three dimensions for (i) two or (ii) 
one component. Thus, they make possible the predic- 
tion of the modulus and yield (or tensile) strength for 
idealized structures approximating polymer blends 
with two co-continuous components, polymer foams 
with discontinuous pores or particulate composites. 
An important feature of the predictive scheme is that 
the simultaneously predicted mechanical properties 
are related to the same phase structure. 

MODEL CONSIDERATIONS 

The prediction of mechanical properties will be im- 
plemented in two steps: 1) the equations will be de- 
rived for properties under consideration in terms of 
the EBM (Fig. 1); 2) the volume fractions uU occurring 
in the EBM will be calculated for the cross orthogonal 
skeleton (COS) (Fig. 2a) and the cubic orthogonal skel- 
eton, i.e., the model consisting of three perpendicular 
plates (3PP) (Fig. 2%). The COS and 3PP models are 
fully defined by the volume fractions of complemen- 
tary components. To predict modulus or yield (or ten- 
sile) strength, both models require only respective val- 

t 

r-l 
I 

v2P 

1 
V, /v2 = 6 0 / 4 0  

Flg. 1. Equivalent box model for  a binary blend 60140. 
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(b) 

Fig. 2. [a) Cross orthogonal skeleton model and [b) three per- 
pendicular plates model (cubic orthogonal skeleton). 

ues characterizing the components; other data, e.g., 
Poisson’s ratio v and bulk modulus, are not needed. 

Equivalent Box Model: Equations for Modulus 
and Yield (or Tensile) Strength 

The concept of the phase continuity (or connectivity) 
used in this paper is related to the well-known parallel 
and series box (or block) models (7, 15, 19, 28, 29). 
The parallel coupling of components implies that the 
strain of all constituents is equal (the isostrain model) 
and that the contribution of each component to the 
final value of a mechanical property is given by the 
(linear) rule of mixing. As all constituents (phases) are 
continuous in the direction of the acting force, the 
phase continuity degree, C,, of each component can be 
considered equal to unity in this direction. The lines of 
force do not cross any interface so that the resulting 
mechanical properties of the composite system are 
independent of the interfacial adhesion. In the series 
coupling, all components are discontinuous in the 
direction of the acting force (the isostress model); 
thus, their continuity can be regarded as zero. Con- 
tributions of constituents to a system property are 

expressed by the inverted rule of mixing. As all stress 
is transmitted through the present interfaces, interfa- 
cial adhesion between constituents is of primary im- 
portance. 

Mechanical properties of isotropic heterogeneous 
materials cannot be accurately represented by a sim- 
ple parallel or series model, but more complex models 
are required (44, 56). The EBM in Fig. 1 is a two- 
parameter model as of four volume fractions uij only 
two are independent. The dimensions of blocks indi- 
cate which volume fractions of each constituent can 
be regarded as coupled in parallel or in series relative 
to the acting force so that the EBM response to loading 
may be equivalent to that of the modeled system. The 
fractions of either component coupled in parallel (sub- 
script p )  or in series (subscript s)  are interrelated as 
follows: 

where C, and C, are the phase continuity parameters. 
(It should be noted that “phase continuity” or “phase 
connectivity” may have different meaning in other pa- 
pers, e.g., in ref. 41, 42,46, 57). Besides, the following 
relations hold: 

up = U I P  + u z p ;  us = 01, + 0 2 , ;  

u ,  = U I P  + u,,; u2 = uzp + u2,; 

u ,  + u2 = up + us = 1. (2) 

The effective moduli of the parallel and series 
branches of the EBM are expressed by following equa- 
tions (44): 

Ep = (EiUip + Ezuzp)/up; (3a) 

Es us/[(uis/Ei) + (uzslEz)I. (3bl 

The modulus of a binary system consisting of two 
immiscible components is then given as the sum 
(Epup + Esus): 

Eb = (EiUip + Ez~zp) + (u:/[(ui,/Ei) + ( ~ z ~ / E z ) I l .  
(4) 

“Perfect” adhesion between constituents and a lin- 
ear stress-strain relationship indispensable for mod- 
ulus measurements can be granted only at low 
strains, typically < 1 %, where almost all polymer sys- 
tems show interfacial adhesion sufficient for the 
transmission of the acting (very low) stress. At higher 
strains, tensile stress exceeds the linearity limit and 
attains (usually at 4%-6%) the value of yield strength, 
thus inducing plastic deformation. If the material does 
not show any yielding, the stress-strain curve pro- 
ceeds monotonically until the tensile strength is 
achieved. We have shown (44, 58-60) that the EBM 
can be also used for the calculation of S,, (or Sub). 
Obviously, the EBM cannot be employed for the pre- 
diction of mechanical properties if the mixing process 
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produces a significant change in the structure of a 
constituent (e.g., crystallinity) or a new mechanism 
(e.g., enhancement of toughness due to the matrix 
multiple crazing induced by elastomer inclusions). 

In our previous papers (44, 58-60) we have derived 
the following equation for S,, (or Sub) of the EBM visu- 
alized in Fig. 1 : 

S y b  = ( sy iv ip  + S y z ~ z p )  + ASyiV,, (5) 

where Sy, and S,, characterize parent polymers and A 
the extent of interfacial debonding. Two limiting val- 
ues of S,,, identified with the lower or upper bound, 
can be distinguished by means of Eq 5: (i) Interfacial 
adhesion is so weak that complete debonding (dewet- 
ting) occurs a t  the yield stress between the fractions of 
constituents coupled in series ( A  = 0). Consequently, 
the series branch does not contribute to the resulting 
S,, and the lower bound is therefore equal to the con- 
tribution of the parallel branch. (ii) Interfacial adhe- 
sion is strong enough to transmit the yield stress be- 
tween constituents so that no debonding appears ( A  = 
1); then the contribution of the series branch is added 
to that of the parallel branch (the effect of slightly 
different strain rates in the two branches on S,, and 
S,, is neglected). However, if two components differing 
in the yield strength are coupled in series, the branch 
will yield at  S,, or S,,, whichever is lower (Sy1 < S,, is 
assumed in Eq 5). Replacing S,, and S,, by the tensile 
strengths S,, and S,,, respectively, we obtain the 
bounds of S,, of binary systems. 

Cross Orthogonal Skeleton Model (COS) 

The COS model (Fig. 2a) consists of three orthogo- 
nal bars (cross section a’) of component 2 (“reinforce- 
ment”) embedded in a unit cube (volume b3) where the 
remaining volume is occupied by component 1 (“ma- 
trix”). Iff = a /b ,  then the volume fractions coupled in 
parallel and in series to the acting force are: 

u Z p  = a2b /b3  = f ’, 

vZs = (2a2b - 2a3)/b3 = 2f2(1 -f) .  

(6a)  

(6b) 

Volume fraction of component 2 is 

v, = (3a2b - 2a3) /b3  =f2(3 - 2f). (6c) 

Analogously, for component 1 holds: 

u l p  = 4b(b/  2 - a /  2)’/b3 = ( 1  -f)’, 

vls  = 8a(b/ 2 - a /  2)’/b3 = 2f( 1 -f)”, 

(7a) 

(7b)  

v1 = (1  -f)2(1 + 2f). (7c) 

Figure 3a shows that the dependences of v,, and v,, 
or vls  and vZs on composition are symmetrical, which 
means that the components 1 and 2 are interchange- 
able. Thus the COS model can be viewed as an  ap- 
proximation of polymer blends with co-continuous 
(“interpenetrating”) components. By differentiating 
Eqs 6 and 7 we can easily show that vp or v, passes 

0-5 

0 
0 0.5 1 

1 

0-5 

0 
0 0.5 1 

“2 
(b) 

Ftg. 3. Effect of composition on volume fraction of components 
(subscript 1.2) coupled in parallel (subscript p )  or in series 
(subscript s) defined by Eqs 2: (a) the orthogonal skeleton 
model [Eqs 6 and 7); (b) the three perpendicular plates model 
(Eqs 1 1 and 12). Phase continuity parameters C ,  for the 3PP 
model and C ;  for the COS model are deflned by Eq 1 .  

through a minimum or a maximum atf = 0.5, i.e., a t  
v, = u, = 0.5. On the other hand, vls and vZs show 
maxima atf = 1 / 3  and f = 2/3,  respectively, assum- 
ing a value of 8/27;  the maxima are located at  v, = 

7/27  and 20/27, respectively. For the sake of compar- 
ison of the COS and 3PP models, C; characterizing the 
COS model is given in Fig. 3b. For v, approaching 1, C; 
assumes a limiting value 113.  The dependence Ch for 
the second phase of the COS would be symmetrical to 
C;. 
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Inserting uy from E q s  6 and 7 to E q  4 we obtain a 
formula for the modulus of the COS: 

Analogously, combining E q s  6, 7, and 5 we receive an 
equation for the yield strength of the COS: 

where S, ,  < S,, is assumed. The effect of composition 
on modulus, upper bound Syb+ (A = 1) and lower 
bound S,,- (A = 0) of yield strength is schematically 
visualized for the COS model in Fig. 4a. While Eb and 
S,,+ are monotonic functions of composition, Syb- passes 
through a deep minimum, which is located closer to 
the component of lower S,. 

3 t  A 
GPa 

2 

1 

20 

MPa 

10 

0 
50150 5 

O/O 

(bl 

fig. 4 .  Young's modulus E,, upper bound of yield strength 
Syb+ and lower bound of yield strength S,,- predicted by (a) 
the COS model (Eqs 8 and 9) and (b) the 3PP model (Eqs 13 
and 14). 

Differentiating Eq 9 according to f we can show that 
yield strength exhibits a minimum at 

fmln = S,,l(l -A)/[S,z - Sy1(2A - 111. (10) 

Obviously, S,, passes through a minimum (as a func- 
tion of composition) for A < 1, while a monotonic 
dependence occurs only if A = 1; for A = 0 we obtain 
f,, = Syl /(S,, + Syl). In our previous paper (601, eval- 
uating the extent of interfacial debonding in binary 
polymer blends by means of the EBM combined with 
the percolation approach, we illustrated the effect of A 
on the S,, vs. u, dependences in a graphical manner 
(analytical solution of the obtained equations is hardly 
viable). Thus we can conclude that a minimum on the 
S,, vs. composition dependence is a reliable symptom 
of (at least partial) interfacial debonding at stresses 
corresponding to the yield (or tensile) strength of a 
system. 

Three Perpendicular Plates Model (QPP) 

If the modulus E, of discontinuous component is 
comparable or higher than El of the continuous phase 
(matrix), the 3PP model imitates blends or particulate 
composites; if E ,  = 0, it may represent an idealized 
foam with segregated cells. Volume fractions of the 
component 1 (matrix) are the following: 

u l p  = (2ab2 - a2b) /b3  = f (2  - j ) ,  ( l l a )  

~ 1 , = 4 a ( b / 2  - a / 2 ) ' / b 3 = f ( 1  -f)', (1  l b )  

(1  l c )  u ,  = [3ab(b - a) + a"]/ b" = 3f( 1 -f) +f3. 

Analogously, for the dispersed component 2: 

uZp  = O(for u, < 1). ( 1 2 4  

(1  2b) 

The dependences of ulp,  ul,, u,,, and us = uls  + uZs of 
the 3PP model on blend composition are given in Fig. 
3b. u,, passes through a maximum at u, = 8/27  as- 
suming a value of u,, = 4/27. For u, rising in interval 
0 < u, < 1, the phase continuity parameter C, de- 
creases in the interval 1 < C, < 2/3.  On the other 
hand, C, = 0 at u, < 1 and C, = 1 at u, = 1. 

The modulus of the 3PP model is given by E q s  4 ,  1 1 ,  
and 12: 

u, = uZs = 8 ( b /  2 - a /213/b3  = (1  -f!". 

Eb = E J ( 2  -f) + ( 1  -f)'/U/E, + ( 1  - f ) / E z ] .  
(13) 

Similarly enough, for S,, < S,,, E q s  5, 1 1 ,  and 12 
provide 

S y b  = sylf(2 -f) + AS,,( 1 -f)'. (14)  

The modulus, upper bound S,,, = S,, ( A  = 1) and 
lower bound S,,- (A = 0) of yield strength simulta- 
neously predicted by the 3PP model are given in Fig. 
4b. As can be seen, the 3PP model displays a mono- 
tonic dependence of E,  on composition. In the case of 
poor interfacial adhesion, Syb- is proportional ulp. 
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For plastics / elastomer blends (with discontinuous 
elastomer phase) we have to consider S,, > Sy2: 

s:, = SyLf(2 - f )  4- ASgz(1 -f)’. (15) 

For A = 0, Syb- from Eq 14 and S;,- from Eq 15 are 
identical, which means that at “zero” interfacial adhe- 
sion the yield strength of the dispersed component is 
irrelevant. Similarly enough, if S,, >> S,,, then S$+ 
equals to S;,- or S,,- derived from Eq 14. 

RESULTS AND DISCUSSION 

Prediction of modulus and yield (or tensile) strength 
rendered by the presented models will be compared 
with experimental data and/or with the prediction of 
some other models so far used in the fields of (i) poly- 
mer blends, (ii) polymer foams, and (iii) particulate 
composites. 

Polymer Blends 

Experimental data for binary blends given in Figs. 
5a and b were selected from the available literature in 
order to illustrate various combinations of the E, and 
S,, (or S,) patterns. In addition to the prediction 
based on the COS model, also the curves are given 
that were calculated with the aid of ut, obtained from 
equations derived (44, 59, 60) on the basis of the 
percolation model (45, 46): 

u lp  = [(ul - U l c r ) / ( l  - ulcr) l t l  9 

u2p = [ ( u ,  - UZcr) / ( 1 - uZcr)ltz 9 

( 16a) 

(16b) 

where u,, is the critical volume fraction (the percola- 
tion threshold) and t is the critical universal exponent. 
“Universal” values (41, 42) of these parameters are 
ucr = 0.16 and t = 1.8, but ulcr and t, frequently differ 
from uZcr and t, in binary blends, mainly because of 
different viscosities of components in the blended 
melt. Obviously, ulcr < u,  < ( 1  - uZcr) is the interval of 
the co-continuity of constituents in which the phase 
inversion takes place. In the marginal zone 0 < u, < 
ulcr (or 0 < u, < uZcr). where only component 2 (or 1) is 
continuous, it holds for the minority component that 
ulp = 0, ul, = u,  (or u p  = 0, u,, = u,). 

In either series of blends in Figs. 5a and 5b, the 
modulus vs. composition dependences of blends are 
well described by means of ujr from Eqs 16. However, in 
both series uZcr = 0.30 was to be adjusted, which 
differs from the “universal” theoretical value. The 
dashed curves corresponding to the COS model are 
necessarily somewhat higher because phase continu- 
ity parameters in real blends cannot attain those of 
the COS model. Whenever experimental data on S,, or 
Sub follow the upper bound corresponding to Eq 5 for 
A = 1 (Fig. 5a), we can deduce that the interfacial 
adhesion is strong enough to transmit the stress 
achieved at tensile yielding or breaking. In this respect 
the COS-based prediction of S,, Eq 9 is distinctly 
higher than the experimental data in the interval 90 > 
% PE > 30, which is mainly attributable to a high 

4 

GPa 

3 

2 

1 

I I J 
PE 50/50 PP 

Y o  
(a) 

2.5 - 

PP 50/50 PVC 

[b) 
O/O 

Fq. 5. Effect of composition on [a) tensile modulus (0) and 
tensile strength (0) of polyethylenelpolypropylene blends (61 ) 
and on (b) tensile modulus (0) and yield strength (0) of 
polypropylenelpoly(viny1 chloride) blends (62). Full lines cal- 
culated simultaneously from Eqs 4 and 5 by using volume 
fractions vg from the Eqs 16 derived for the percolation model. 
The input parameters are the following in both fgures: vlcr = 
0.16: vZcr = 0.30; t ,  = tz = 1.8. Dashed lines: Eq 8 for moduli: 
(a) Eq 9 with A = 1 for tensile strength: (b) Eq 9 with A = 0 for 
yield strength. 

critical volume fraction of the PP component. In con- 
trast, Fig. 5b brings data for blends whose yield 
strength passes through a minimum as a function of 
the blend composition. The experimental data corre- 
spond fairly well to the lower bounds ensuing from 
both the COS and percolation models. PVC is known 
to be immiscible with PP or PE (491, which is reflected 
in “zero” adhesion ( A  = 0) at yielding throughout the 
whole composition range. Figure 5b documents that 
while modulus indicates sufficient interfacial adhe- 
sion at small deformations, yield strength evidences 
poor adhesion insufficient to transmit stress inducing 
plastic deformation. 

The experimental finding that Eq 5 predicts both 
yield and tensile strengths can be linked to previous 
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experience that also the equations based on the re- 
duction of load-bearing cross section have been suc- 
cessfully used for the evaluation of yield as well as 
tensile strength of particulate systems (7, 34-37). The 
well-evidenced applicability of the EBM to the esti- 
mate of S, implies that fracture mechanisms of indi- 
vidual components in blends are the same as in par- 
ent polymers and that they do not perceptibly affect 
each other. 

Interestingly enough, also the 3PP model is appro- 
priate for polymer blends. It follows from Eq 12b that 

f =  1 - u; ' " ;  ( 17a1 

consequently, 

fc2 -f) = (1 - 4/3)( 1 + u ; / 3 )  = 1 - 4 1 3 .  

( 17b) 

Inserting these relations into Eq 15 and assuming A = 
1, we obtain the following equation 

Sllb = SYl( 1 - u ; / 3 )  + s,,u;'3, (181 

which is identical with the equation proposed earlier 
(7, 22) for polymer blends with a strong interfacial 
adhesion. Obviously, as the phase structure of real 
blends cannot coincide with the 3PP model, Eq 18 can 
be only approximative. With regard to our previous 
papers (44, 59, 601, we believe that S,, as a function of 
blend composition is plausibly described by Eq 5 and 
uy from Eqs 16. 

Polymer Clomed-Cell Foams 

The equations derived for the 3PP model can be 
modified for idealized closed-cell polymer foams (sub- 
scriptf) by considering E, = 0 and s,, = 0. Then Eqs 
13 and 14 for E, and S,, are formally identical, i.e., 

EfIEi =f(2 -f), (19a) 

s,1s,, =f(2 -f). (19b) 

Introducing the relative density of a foam 

dfld, = ~1 = 1 - U, (20) 

into Eq 19a, we obtain a relationship between modu- 
lus and density of foams: 

EfIEI = 1 - u:'~ = 1 - (1 - df/d1)2/3. (21) 

Note that Eq 21 is identical with the relationship de- 
rived earlier (63) for the modified "cube in cube" model 
imitating polymer foams. With regard to the analogous 
form of Eqs 19a and 19b, E, and S ,  are likely to follow 
similar patterns as functions of foam composition. 

Many other equations can be found (22, 63) ex- 
pressing the foam modulus as a function of the 
volume fraction of pores in foams. A square-power 
relationship between modulus and density for high- 
density foamed thermoplastics was derived earlier (30) 
and confirmed experimentally (63): 

EfIE1 = (1 - ~ 2 ) ' .  (221 

Another model used for predicting the modulus of 
foams is that of Kerner (27) in its original form, which 
does not account for the maximum packing volume of 
the dispersed component. The Kerner equation was 
modified (22) to the following form: 

EfIE, = (1 + [15(1 - v, )u , ] / [ (~  - 5~1)~1]}- '  (23) 

Predictions of the modulus as a function of foam 
composition provided by Eqs 21, 22, and 23 are com- 
pared with experimental data in Fig. 6. While the de- 
pendences predicted by Eqs 21 and 23 almost coin- 
cide, Eq 22 predicts perceptibly lower values in the 
interval 0.3 < u, < 1. However, available experimental 
data (64) located between the curves are not sufficient 
for unequivocal testing of the models. 

Particulate Composites 

The 3PP model can predict modulus E, and yield 
strength S,, of particulate composites where the max- 
imum volume fraction of the dispersed component 
(filler) V,, can approach unity, which would be excep- 
tional in real systems. Nevertheless, it is useful to 
confront the 3PP with other models disregarding Vma. 
The curves plotted in Fig. 7 are predicted by Eqs 24- 
26, which were obtained by modifying the original 
equations for G modulus under the assumption that 
component 1 (a glassy polymer matrix) and compo- 
nent 2 (a filler) have the same Poisson's ratio v (22). 

(i) Hashin-Shtrinkman lowest upper bound (25) 

0 0.5 1 
"2 

Q. 6. Effect of volume fraction u2 of cells on the relative 
modulus of polymer foams. Full line: Eq 19a; dashed line: Eq 
23; dash and dot line: Eq 22; experimental data points from 
Gent and Thomas (664). 
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Q. 7. Egect of volume fraction v, of dispersed component on 
the relative modulus of particulate composites. Full line: pre- 
diction of the 3PP model, Eq 13: dashed lines: highest lower 
bound [HLBJ, Eq 25, coinciding with the prediction of Eq 26: 
lowest upper bound [LUB), Eq 24. 

where D = 6(K, + 2G,)/5(3K2 + 4GJ. Modulus K, 
can be eliminated from D by using the following 
general relationship: 

K = ( 2 / 3 ) G ( l  + ~ ) / ( l  - 2 ~ ) .  

In our calculations we have assumed v 1  = u, = 
0.35. 

(ii) Hashin-Shtrinkman highest lower bound (25) 

E,- /El  = 1 + UZ/[El/(Ez - El) + D U i ]  (25) 

where D = 6(K1 + 2G1)/5(3K, + 4G,). 

form (65): 
(iii) Kerner equation (27) simplified to the following 

E, /E ,  = [ ( l  - u,)  + B ( A  + ~ z ) ] / [ ( l  + A u ~ )  

+ AB(1 - u,)] ( 2 6 )  

where A = (8 - 10u1)/(7 - 5u1) and B = E,/E,. 

Figure 7 shows that the relative Young’s modulus 
predicted by the 3PP model is slightly higher than the 
highest lower bound (25) (at u2 < 0.3, the differences 
are not discernible in the scale of the figure): the latter 
bound coincides with the curve predicted by Eq 26, 
which is in conformity with previous analyses (65-67). 
Thus it is obvious that the 3PP model provides rea- 
sonable prediction very close to that of other well- 
established models. 

As for the yield strength of particulate composites 
with strong interfacial adhesion, the 3PP model pre- 
dicts, by Eq 14, a constant value S,, equal to Syl of the 
matrix as the only component undergoing plastic de- 
formation in the system. For instance, the yield 
strength of functionalized polypropylene filled with 

calcium carbonate was found to pass through a shal- 
low maximum as a function of filler volume fraction, 
which was in conformity with the finite element sim- 
ulation (68). The observed increase in S,, with filler 
content is a likely manifestation of the immobilized 
layer of the matrix adhering to the filler surface. 

As far as composites with “zero” adhesion (A = 0) 
are concerned, Eqs 14 and 1 7b predict 

Syc- = S,4(2 -f) = SY1( 1 - U U ; ’ ~ )  ( 2 7 )  

with a = 1. This is so because V,, is presumed to 
achieve values a s  high as unity; however, if V,,, < 1, 
then a > 1. Nielsen (7) proposed a = ( 1 / Vmax)2’3, which 
allows Eq 27 to plausibly fit experimental data for 
various particulate composites with poor adhesion be- 
tween the components. 

CONCLUSIONS 

Two models are introduced for simultaneous pre- 
diction of the modulus and yield (or tensile) strength of 
two-component isotropic systems: (i) the cross orthog- 
onal skeleton (COS) with co-continuous components 
and (ii) the cubic orthogonal skeleton (three perpen- 
dicular plates -3PP) with one component continuous 
and one component discontinuous. The predictive 
scheme consists of two steps: 1) the COS or 3PP model 
renders phase continuity parameters used as input 
data for 2) the equivalent box model (EBM), for which 
the equations were derived expressing the modulus 
and yield (or tensile) strength as functions of system 
composition. There is no adhesion term in the equa- 
tion for Young’s modulus, since it is presumed that 
the adhesion is sufficient to transmit small stresses in 
the linear stress-strain region. However, at yielding (or 
breaking), the upper and lower bounds have to be 
distinguished. They are related, respectively, to inter- 
facial adhesion sufficient and insufficient for the 
transmission of the stress inducing plastic deforma- 
tion. The moduli of the COS and 3PP and the upper 
bound of yield (or tensile) strength of the COS are 
monotonic functions of composition. If partial or com- 
plete interfacial debonding occurs a t  yielding (or 
breaking), the COS model predicts that the yield (or 
tensile) strength passes through a minimum as a 
function of composition, which is in conformity with 
earlier model calculations (based on the percolation 
approach) and experimental findings for polymer 
blends. The 3PP model approximates fairly well exper- 
imental data on the modulus of closed-cell polymer 
foams and also proposes a formally analogous formula 
for their yield strength. Furthermore, the 3PP model is 
applicable to particulate composites: (i) the equation 
for modulus virtually coincides with the Hashin- 
Shtrinkman highest lower bound and the Kemer 
equation; (ii) the anticipated yield strength of particu- 
late composites with good adhesion is independent of 
composition (being equal to that of the matrix as the 
only yielding component in the system); in the case of 
poor adhesion, the ensuing relationship is identical 
with that proposed earlier (22). The outlined predictive 
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scheme is advantageous in two aspects: (i) all pre- 
dicted properties are related to the same phase struc- 
ture; (ii) the prediction of modulus or yield (or tensile) 
strength requires only the respective values charac- 
terizing the components; no other data, e.g., Poisson’s 
ratio and bulk moduli, are needed. 
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