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Application of statistical mechanics to NP-complete problems 
in combinatorial optimisation 

Yaotian Fut and P W Anderson 
Department of Physics, Princeton University, Princeton, NJ 08544, USA 

Received 4 September 1985 

Abstract. Recently developed techniques of the statistical mechanics of random systems 
are applied to the graph partitioning problem. The averaged cost function is calculated 
and agrees well with numerical results. The problem bears close resemblance to that of 
spin glasses. We find a spin glass transition in the system, and the low temperature phase 
space has an ultrametric structure. This sheds light on the nature of hard computation 
problems. 

1. Introduction 

Recent developments in the theory of spin glasses have profound consequences in 
many branches of science. The application of the replica method [ l ]  enables one to 
study random systems effectively. The idea of replica symmetry breaking and its 
interpretation [2] reveals the fascinating phase space structure of spin glasses. This 
method has far-reaching significance since it enables one to apply statistical mechanics 
to a system which, technically speaking, does not obey statistical mechanics at all 
because ergodicity is broken and, worse still, because no a priori knowledge about the 
pattern of this breaking down is available. In order to apply conventional equilibrium 
statistical mechanics to systems in which ergodicity is absent due to symmetry breaking, 
one has to know something about the order parameter of the system. A conjugate 
field is then applied and the partition function calculated. Equilibrium statistical 
mechanics becomes inadequate without such information. A hidden order parameter 
is always a headache. The power of the replica symmetry breaking formalism lies in 
that no such information is needed. The spin glass transition represents symmetry 
breaking on a higher level, one which has complexity and depth. As one of us 
anticipated many years ago [3], ‘At some point we have to stop talking about decreasing 
symmetry and start calling it increasing complication’. In the studies of these problems 
the replica formalism has great promise to become a tool which can be routinely used 
in the same way that partition functions have been used, and perhaps beyond that. 

One area in which this new development of statistical mechanics may have important 
applications is combinatorial optimisation. Several authors have already discussed the 
use of the spin glass analogy in this context [4]. In particular, the simulated annealing 
technique has been successfully applied to solve a number of hard optimisation 
problems. The performance of this and other techniques as heuristic algorithms has 
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been systematically evaluated. Here we wish to discuss the problem from a different 
angle. Instead of using the spin glass analogy as a practical aid in solving specific 
optimisation problems, we propose to study the general properties of such problems 
in the light of recent developments of statistical mechanics. This will include a 
discussion of the average solution of the problem when it is defined, the structure of 
solution space, the existence and the nature of phase transitions, and the effective use 
of local optimisation techniques. 

Our work is motivated by the following consideration. Many computational prob- 
lems, the so-called NP-complete problems [ 51, have proved difficult to solve. Despite 
great efforts no effective algorithm has been found for these problems, and there is 
good reason to believe that such algorithms do not exist. It is therefore highly desirable 
to seek alternatives. Practical strategies in attacking these problems go under three 
categories. The first consists of improved exhaustive searching. While it takes exponen- 
tial time to go through all choices, it is sometimes possible to make decisions early in 
the process to terminate certain tree searches that are unlikely to be fruitful. This kind 
of branch and bound technique can benefit from the knowledge of the solution space 
structure. The second type of algorithm routinely used includes various kinds of 
heuristics which aim at producing almost optimised solutions at a faster rate. It will 
be very helpful if one can know something about the expected outcome of the cost 
function. The third group of techniques is quite unconventional. Anticipating future 
development of computer designing strategies these techniques may however become 
very useful. In particular, as observed by Hopfield and co-workers [6], two important 
features of computing in biological systems are parallelism and analog operation. 
Phase space structure information will facilitate the effective use of analog techniques 
and parallel computation becomes easier when local optimisation is possible. If we 
accept not only the best solution, but also the ones very close to it, a local optimisation 
may give us good results. In all these cases, analysing the problem using new techniques 
of statistical mechanics may provide us with valuable information. 

Not every NP-complete problem can be analysed in this way. Some problems do 
not permit a discussion based on the most probable case. A randomly chosen satisfiabil- 
ity problem, for example, is almost always easy to solve, because a random sequence 
of symbols almost always does not make sense. Even in problems which are not 
intrinsically decision problems, such as the travelling salesman problem, an answer 
based on the most probable case, while not useless, is not very interesting, because by 
its very nature it does not provide a specific answer to a specific problem. Here we 
encounter one important difference between statistical mechanical problems and 
optimisation problems. In statistical mechanics we do not have complete information 
about the system, nor do we demand an answer complete to the minute detail. A 
prediction in terms of certain macroscopic variables will be quite appropriate. In 
optimisation problems we do know everything about the specific instance of the 
problem, and usually we are not content with a ‘macroscopic’ answer. An answer 
based on the most probable case, therefore, can only be regarded as a step towards a 
qualitative understanding of the problem. It may also be a useful aid in designing 
heuristic algorithms such as simulated annealing. In particular, the possible existence 
of phase transitions will affect the actual implementation and performance of such 
algorithms. Such transitions and the accompanying knowledge of the structure of 
solution space may also play an important role in complexity theory. 

In this paper we will apply statistical mechanics to the graph partitioning problem. 
Apart from its theoretical interests the graph partitioning problem has been studied 



NP-complete problems 1607 

for a number of practical purposes, ranging from IC chip wiring to memory structure 
management. This problem is chosen because of its close resemblance to the spin 
glass problem, and also because many aspects of its solution are known, either 
theoretically or experimentally. We hope, however, that similar techniques can be 
applied to other problems as well. 

The rest of this paper is organised in the following way. In 0 2 we introduce the 
graph partition problem and define a Hamiltonian formalism for it. We also derive 
certain aspects of the solution that can be obtained exactly. In 0 3 we study the model 
Hamiltonian by two independent methods, heavily using the results from spin glass 
theory. An estimation of the cost function is obtained and compared with the numerical 
results of explicit optimisation. Section 4 contains a study of the phase space structure, 
again using ideas developed in spin glass theory as a guide. In § 5 we discuss some 
general problems encountered in applying statistical mechanics to optimisation 
problems. 

2. The model 

The graph partitioning problem is specified by a set of vertices V = { ul, U,, . . . v N }  and 
a set of edges E = {( ui, u j ) }  with N even. In general some pairs of vertices are connected 
by edges while others are not. We are now asked to partition the N vertices into two 
sets VI and V, of equal size such that the number of edges joining VI and V, is 
minimised. This number is defined to be our cost function C. 

The graph partition problem is an NP-complete problem [7]. The best algorithm 
known is due to Kemighan and Lin [8]. Here we study a modified version of the 
problem. We assume each pair of vertices are connected with probability p independent 
of whether other pairs are connected (model A in graph theory, see [9]). For large 
values of N, a = Np is the expectation value of the valence for each vertex. The 
random graph defined in this way was studied by Erdos and RCnyi in their classic 
work on random networks [lo]. One important result is that for large values of N 
and a 5 1,  the largest cluster in the graph has G( a )  N vertices where 

1 00 n n - l  

a n=l n !  
G ( a )  = 1 -- - ( a  

One can verify that G( 1) = 0. Hence a = 1 is the percolation threshold. Also G(co) = 1, 
showing that the graph becomes completely connected, in which case we expect the 
cost function to be equal to N2/4, the number of edges joining two sets of size N / 2  
each. Finally if the largest cluster has number of vertices s N / 2  the cost function per 
vertex number will be zero?. Notice that (this follows from the Lagrange expansion 
formula, see e.g. [l l])  

we can solve G(a,) =f to get 
a,  = 2 In 2 = 1.3863 . . 

tStrictly speaking, the cost function is not necessarily zero, since the complement of the largest cluster does 
not consist of isolated vertices, and the partition may have to go through one of the small clusters in order 
to maintain the balance of the two subsets. However, the small clusters are expected to have sizes of the 
order of log N only and in the large N limit C / N  will be zero. 
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We will be interested in calculating the averaged cost function C( a). C (  a ) /  N = 0 for 
a s  a,. For a > a, we expect 

C(a)=(pN2/4 ) -A(a)  (2.3) 
where the first term is the expected value for a randomly chosen partition scheme 
which separates all vertices into two sets of N / 2  each and among the N2/4 edges that 
might be present only pN2/4 are there. The second term shows improvements due to 
the optimisation. 

A number of authors have tried to estimate C. Bui [ 121, in particular, has reviewed 
and improved many of these results. All previous results are in the form of upper and 
lower bounds. Some of them will be compared with our result in 9 3. Here we wish 
to point out that in this paper an actual optimisation is attempted, that is, we try to 
look for the cost function of the optimised configuration rather than that of an arbitrary 
configuration used in ‘typical case’ or ‘worst case’ studies which have led to various 
bounds. 

Using the spin glass analogy we can define a Hamiltonian for the system. With 
each vertex ui we associate an Ising spin Si. Si = +1 when vi belongs to the set VI and 
Si = -1 if vi is in V2. Since the two sets have the same size the total spin must be zero 

N 

si = 0. (2.4) 
i = l  

Each spin configuration then corresponds to a partition scheme. For each pair of 
vertices (v i ,  uj) we define a coupling constant Jij. JV = J  if ( v i ,  uj)e E and Jli = O  
otherwise. Hence .IV = J with independent probability p = a /  N and zero otherwise. 
The Hamiltonian 

is then equal to 

H = -1  2( c + c + c + c ) J i j + (  c + c ) J i j  

is V l , j s  VI ie V2,je V, ie V l , j e  V2 i c V 2 , j e  VI i e  V l , j e  V2 ie V2,je  V, 

= - J [ 2 N ( N -  l)p/2]+2CJ 
2 

or 

H N ( N - 1 ) p  
25 4 .  

C = - +  

Therefore to solve the graph partitioning problem is to minimise the Hamiltonian (2.5) 
under the constraint (2.4). Physically, this is a dilute infinite range ferromagnetic Ising 
system with a strong antiferromagnetic constraint (2.4). The conflict between these 
two types of interactions leads to frustration and gives rise to all the interesting 
properties of this problem. 

3. The cost function 

In order to calculate the averaged optimised cost function C, we will first calculate 
the averaged free energy F of the system. The zero temperature free energy should 
give us C. 
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We will first study C for very large a - N so that p - O ( l )  (model 1) .  This 
corresponds to highly connected systems. Systems with small a - O( 1)  (model 2) need 
special treatment and will be discussed elsewhere. In the following we use C (  p )  and 
C ( a )  to denote the cost functions of these two functions of these two models respec- 
tively. Clearly the two models are distinct only in the infinite N limit. To compare 
with experimental results on finite samples we will take the ratio of the experimental 
value to the theoretical estimation and extrapolate it to large N. We will evaluate the 
quality of solutions on the basis of such extrapolations. 

3.1. Model 1 : p independent of N 

We use the replica method to compute F :  

(3 .1)  

where /3 is the inverse temperature, a is a replica index which runs from 1 to n, and 
Tr' denotes the trace over all spin configurations which satisfy the constraints 

N 

sp=o a = 1 , 2  ,..., n. (3.2) 
i = l  

F is a self-averaging quantity and in a large N limit it will'not depend on the specific 
choice of Jv.  Averaging over the randomness in Jv we obtain 

(3.3) 

where we have introduced p o = p / ( l  - p ) .  The square bracket in (3.3) can be written as 

n 

1 + p o  exp PJ SSS; 
i<j 0 = l  

where we have expanded the logarithm and the exponential functions in Taylor series, 
changed the order of summation and rearranged the terms to separate the zeroth-, 
first- and higher-order terms in the expansion of the exponential. We have also used 
the constraints (3.2) to set the terms 

(3.5) 

to zero. In (3 .4)  
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and are of order one for p - O( 1 ) .  In particular, 

Hence 

C( p )  = a N2p + (2J)-’ Fl( p + 00) 

and 

(3.7) 

While in this problem J is for bookkeeping purposes only and can take any value, 
only J = gives us a sensible thermodynamic limit. Keeping the lowest term in 
1/ N (the 1 = 2 term), we see this is formally identical to the expression for the free 
energy of the Sherrington-Kirkpatrick spin glass. The only difference is that here the 
trace is taken over a subset of spin configurations as determined by the constraints 
(3.2). These constraints can be replaced by a convenient global soft constraint term 

in the Hamiltonian. The model can now be solved using standard techniques. Introduc- 
ing Lagrange multipliers to decouple the quadratic terms we find that the constraint 
is irrelevant at T = 0, and the equivalence with the SK spin glass becomes exact in this 
limit, as shown in appendix 1. Alternatively we can argue that, since the ground states 
of the SK spin glass do not have finite magnetisation per spin, lifting the constraint at 
this stage will not affect C/ N for large N. The largest contribution to the free energy 
due to ferromagnetic fluctuations has already been eliminated as in (3.5). Using the 
known value of the zero temperature energy of the SK spin glass U, [2] we have 

C(p)=fN2p+~UoN3/2[~(1-~)]1/2=~N2~ -0.38N3/2[p(l-p]1/2.  (3.9) 

Let us compare this with the known results. The narrowest bounds of C as given 
in Bui [12] are the following: 

$N2p-0.17N3/2[p(l  -p)]’”> C >fN2p-0.42N3/2[p(1 -p)I1”. (3.10) 

Our result is certainly consistent with this. Bui has also performed optimisation on 
random graphs generated on a computer. Figure 1 is taken from his work. We see 
the agreement is very good. Even for p = 0.01 and N = 500 the agreement is satisfactory 
[ 131 (experiments give C = 207 while (3.9) gives C = 203). 

We have repeated the experiment for systems with N 4 200. For each combination 
of N and p we randomly generate 10 graphs. The Kernighan-Lin algorithm is applied 
to each one of them. Usually the best result can be found in 20-40 passes. The longest 
run takes about 20 min CPU time on a VAX 11/750. The results for the 10 graphs are 
averaged to give C( p ) .  As can be seen from table 1, for p 3 0.1 our estimation is good 
to within about 10%. There are, however, increasingly large deviations from (3.9) for 
small p .  In particular, (3.9) becomes zero at (Y = 2.31 . . . which is very far from the 
threshold (2.2). We also observe large fluctuations from sample to sample for small p .  
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N 

Figure 1. A = N2p/4  - C is the improvement due to optimisation, plotted against N3’2. 
p = f. From bottom: the upper bound, results of the block algorithm, results of Kernighan- 
Lin algorithm, and the lower bound (from Bui [12]). The upper and lower bounds are 
given in equation (3.10). Closed circles: predictions of (3.9). 

Table 1. C , / C , .  C,: average result of 10 different graphs (Kernighan-Lin algorithm). C2: 
N2p/4-0.38N3’Z[p(l -p)]’”. 

N 

P 50 100 150 200 

0.05 5.5 1.5 1.19 1 .13  
0.1 1.24 1.12 1 . 1 1  1.10 
0.25 1.03 1.04 1.05 1.02 
0.5 1.07 1.03 1.03 1.02 

We can estimate C in a different way. Define the density of states 

p(  E )  = Tr’ 6 ( E  - H) (3.11) 

and the averaged density of states 

The ground state energy can be estimated by solving 

pav( E )  d E  = 1.  (3.13) 

Notice that in principle one should calculate Eo using the density of states (3.11) and 
then do the average. Here we use the mathematically more tractable (3.13) in the hope 
that the density of states near Eo is not too low, in which case (3 .13)  should not be a 
bad approximation. In the language of spin glass theory we are taking the annealed 
average. In general this will produce a lower free energy as we can see from the Peierls 
inequality: 

(3.14) (e-PF) 3 e-P(F)  
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It is straightforward to calculate 

where 
A = In( 1 + p i +  2p0 cos x)”’ 

B = A + i  tan-‘ i1:;::J 

and 

No= N!/[(N/2)!]*. 

The equation for Eo 
( N ~ -  N )  

In[ 1 + p (  1 - p ) (  -1 +cos x)] 
l = N o [ E o d E  -m [+m*eixEexp[ -a 27F 4 

1 +po cos x 
(3.16) 

can be solved using saddle point expansion. Substituting into (2.6) we find the cost 
function 
C ( p )  z$N2p- f ( ln  2 ) 1 / 2 ~ 3 / 2  [ p ( l  -p)]1/2=$N2p -0.42N3l2[p(1 -P) ] ”~.  (3.17) 

Since this result is not restricted to model 1, 

C ( a )  3 ($a -0.42a1/*)N. (3.18) 

This is precisely Bui’s lower bound. 

3.2. Model 2: p = a /  N, (Y = constant 

Many practical random graphs belong to this category. The treatment of the previous 
model has to be modified for such graphs, for two independent reasons. A graph with 
finite valence (Y is equvalent to a spin system with finite interaction range (the 
antiferromagnetic interaction responsible for maintaining the balance of the two subsets 
still has infinite interaction range). Therefore the mean-field theory solution may not 
be applicable. In addition, one can no longer choose J = J o N - ’ / 2  to simplify (3.7). 
Instead one should choose J independent of N, so that the free energy is extensive, 
and keep all the terms in (3.7). One can see this in a different way. If we use the 
antiferromagnetic term (3.8) to represent the constraints (3.2), the Hamiltonian is 

(3.19) 

where K ,  takes two values J1 and J ,  - J  with probability 1 - p  and p respectively. If 
p is independent of N and remains finite when N + w ,  one can approximate the 
distribution of K ,  by a Gaussian distribution centred at J , .  This is precisely what we 
did in keeping the 1 = 2 term in (3.7) while ignoring the rest. As a result, the asymmetry 
in the distribution of K ,  is no longer visible. Indeed the free energy (and the optimised 
cost function thus obtained) depends on p only through the combination p(1 - p ) .  
This approximation clearly breaks down for small p .  So far, the spin glass problem 
for finite-range interactions has proved remarkably intractable in all cases, and ours 
is no exception. 
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4. Phase space structure and phase transitions 

In addition to providing estimations for the most probable outcome of the cost function, 
the spin glass analogy is useful in analysing the solution space structure. In this section 
we will discuss this aspect of the problem. 

The phase transition in the pure Ising model is associated with the existence of 
two disconnected minima of the free energy at low temperature. These two minima 
are related by a global symmetry. To go from one minimum to another one has to 
flip all N spins in the system. On the other hand, the low temperature phase of a spin 
glass has many local free energy minima, not related to each other by any symmetry, 
and the transition between two local minima usually involves flipping many fewer than 
N spins. It is precisely this property that makes the spin glass analogy relevant in 
optimisation. If there are too many local minima, sitting very close to each other, the 
transition between neighbouring minima would involve 0 (1 )  spins, there will be no 
rigidity of the low temperature phases and hence no phase transition (e.g. the infinite- 
range antiferromagnetic model), and the optimisation will be easy. Computationally 
non-trivial cases arise when local minima are numerous but not excessively numerous, 
the distances between them large but not of the order of N. These are features shared 
by the SK spin glass, and we expect the existence of a spin-glass-like transition in these 
systems to reflect the difficulty involved in optimisation. 

From the viewpoint of heuristics designing the information of phase space structure 
is also important (for a good discussion of heuristic algorithms, see [14]). The so-called 
A-opt solution is an iterative local optimal solution within a distance A from a given 
starting point. The starting points are randomly generated and the optimal solutions 
in their neighbourhood are compared to give the result of optimisation. If, however, 
one knows something about the distances between local optimal solutions, we can 
imagine generating the new random starting point by keeping an appropriate distance 
from the previous one and thus having a good chance to be in the neighbourhood of 
a different optimal solution. The common features of these solutions, such as the 
clustering of certain spins, could be used as guidelines in generating new starting 
points. In such a way we quickly scan the solution space while always trying to adapt 
the good features of different local optimal solutions. These kinds of intelligent 
algorithms will be expected to substantially speed up the computation process. 

The spin glass theory provides a convenient formalism for this kind of discussion. 
In this section we will demonstrate the existence of a phase transition in model 1. 
Throughout the section we work in the neighbourhood of the critical point. The 
approximation used is not valid for ground state energy calculations. 

Keeping the 1 = 2 term in (3.7), we have 

2 N  a c b  

(4.1) 
where U’ = J ip (1  -p),  and the restricted trace equals 

In the high temperature phase the replica symmetry is expected to be unbroken; the 
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integral is dominated by the saddle point 
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Qab = 9 

and (4.2) then equals 

2"N e-"Nq'2 Io 2rr dx, (1 Dz fI cosh(ix, +fi z) 
, = I  

where 

(4.3) 

(4.4) 

The large bracket in (4.4) is 

Dz n (cos x, cosh 4 z + i sin x, sinh 4 z )  J a 1 1  

I = fi cos xa( 5 Dz c o s h " 4  z +  (-1)'TS Dz cosh"& z t a n h Z S 4  z 
, = l  r = 1  

T, = tan xb, tan xs . . . tan x4,. 
b l#  b2# ... # b,, 

The sth term in (4.6) is of the order of q'. Near the critical point q is small. We will 
need f ( q )  up to the q3 term only. Writing 

A = Dz cosh"& z =  1 + n Dz In c o s h 4  z I I 
and 

q'Bs = (-1)' J Dz c o s h " 4  z tanh2sfi z 

(4.8) 

(4.9) 

the integral in (4.4) is approximately 

dx, N(N-1) 
ANw2(qBIT1 +q2B2T2)'+O(q4) .  (1 2 cosNxa)"A" + I fil C O S ~ - ~ X ,  2 

(4.10) 
Since 

TI T2 n COS~- 'X ,  = O 5 
there is no q3 contribution from the second term. Because 

n - C O S ~ - ~ X  sin' x - -- 
cos~-*x ,=  n(n-1)( Jo2rdXEos~-~x)n-2(  21r jo2=;: ) 2  e2N2 

(4.1 1) 

the q2  contribution is not extensive. We conclude that (4.4) equals 

(4.12) e?ipnN(-i+[ D z l n c o s h 4 z + K - - + l n 2 )  q2 
2e' N 
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where 

Therefore 

P F  q2  '+ Dzlncosh f i z .  
N 4P2u2 2 I --=--- 

The value of the saddle point q is given by the familiar equation 

= I Dz tanh'fi z. 
P 2 U 2  

The system undergoes a second-order phase transition at 

T,=JO[p(l -p)]'". 

1615 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

Above T,, the cost function is equal to N2p/ r. No effect of optimisation will be seen 
until T <  T,. This behaviour was observed in simulated annealing 1131. 

It is well known [15] that the replica symmetric solution, (4.3) and (4.15), becomes 
unstable below T, in the SK spin glass model. The same instability exists in this 
problem. We can demonstrate this by showing that the Hessian associated with the 
saddle point has negative eigenvalues. After some tedious but straightforward algebra 
similar to that of (4.6)-(4.12) (see appendix 2) we obtain results identical to those of 
de Almeida and Thouless [ 151 (see also Bray and Moore [ 161). It is therefore necessary 
to break replica symmetry. 

In fact, (4.2) can be calculated for any small but arbitrary matrix Qa6 and large N. 
Details of the derivation can be found in appendix 2. It is clear from this calculation 
that near the transition point the constraints (3.2) are irrelevant; their corrections are 
all of order 1 / N  compared with the main part. For large N, 

nf(Q)=aTr Q*-;Tr Q3+iTr  Q 4 - a  Q$,Qzc+h Q:,+ln2+O(N-') (4.17) 

which is the same as that of an SK spin glass. Parisi's solution applies and the ultrametric 
structure of the solution space follows immediately [2]. 

We have been unable to establish the irrelevance of the constraints (3.2) at all 
temperatures. However, in the absence of a second transition the topological structure 
of solution space should not change drastically. While the quantitative behaviour of 
the order parameter q ( x )  in our problem may differ from that of a spin glass at a lower 
temperature, the qualitative features are the same. 

b # c  a, b 

5. Discussion 

In this section we discuss some general problems encountered in applying statistical 
mechanics to optimisation problems. 

Statistical mechanics is valid only in the thermodynamic limit. The meaning of 
such a limit is not clear in an optimisation problem. Intuitively, the system must be 
sufficiently large, but it is difficult to be more specific. While empirically in every 
problem there is always one quantity which measures the size of the system most 
naturally, the choice is by no means unique. Although the thermodynamic functions 
of physical systems are extensive, the entropy and cost function of an optimisation 
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problem can in principle have quite arbitrary dependence on this equally arbitrarily 
chosen measure of size. 

In general, the free energy of the system can be decomposed into the energy part 
and the entropy part. At high temperature the entropy is determined by the number 
of states 0: 

S - In 0cc g ( N )  (5.1) 

and hence has a well defined N dependence (although not necessarily a linear 
dependence). On the other hand, the energy part will depend on certain ‘counting 
variables’ (the J in (2.5); the characteristic step length in the travelling salesman 
problem). These variables are arbitrary, and can be chosen to have the appropritate 
dependence on N so that the energy part will scale with N in a similar way as that 
of the entropy part. A generalised thermodynamic limit can then be defined. The free 
energy is extensive in the sense that the limit 

lim F / g ( N )  
N - w  

(5 .2)  

exists. The ground state energy can then be calculated. Eliminating the counting 
variables we recover the cost function with the correct N dependence. This procedure 
also guarantees that the phase transition temperature is N independent and finite. 

Another common feature of optimisation problems is the existence of certain 
constraints. It is customary to replace the constraints by some additive penalty functions 
in the Hamiltonian (see, for example, the discussion of the travelling salesman problem 
[ 6 ] ) .  This is a convenient device for the practical implementation of optimisations by 
simulated annealing or other techniques. As a tool for theoretical discussion, however, 
it has obvious drawbacks. In principle one should tune these penalty functions so that 
no illegal solution is included. This is achieved by taking the coupling constants in 
front of the penalty functions to large values, preferably infinity. But this leads to 
serious problems of exchanging limits. To recover information from a Hamiltonian 
with too many penalty terms is very difficult. Since the penalty function and the cost 
function are usually additive in the Hamiltonian, there may be trade-offs between these 
two terms. For multiple constraints this is a particularly serious problem. Ideally one 
should use the elements of the appropriate permutation group as the variable. The 
constraints can be strictly enforced; the permissible solutions form a subgroup. The 
partition function could then be calculated by a sum over this subgroup. Future 
development in the relevant mathematical techniques will be welcome. 

While our discussion has focused on the theoretical side of the problem, spin glass 
theory can also help us to deal with specific instances [ 171. In particular, the coupling 
constants of model 2 form a sparse matrix, which can be easily diagonalised. The 
localised eigenmodes corresponding to high eigenvalues can be first satisfied, producing 
local clusters. These clusters represent good features of the solution and can be 
preserved when one proceeds to deal with eigenmodes of lower eigenvalues. Because 
of frustration, it is impossible to satisfy all modes, and the Ising nature of the spins 
introduces strong interactions between the modes, making it impossible to carry this 
program to the end. As the Kernighan-Lin algorithm runs in time of order N 2  In N, 
it is also unlikely that one can gain much by this procedure. Nevertheless, since most 
of the localised modes can be treated locally, it opens new roads to parallel processing. 
It will be interesting to test these ideas by direct implementation. Some heuristic 
algorithms actually use ideas of block spin transformation [ 181 (see also [ 113). 
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Appendix 1 

In this appendix we show that the constraints (3.2) are irrelevant at T = 0. Introducing 
the antiferromagnetic term (3.8), we have 

[Z"  1," = exp(P J, n/ 2) exp( - n ' P  Ji /4)  exp( n Np2 J2/ 4) 

(Al.l)  

The two quadratic terms can be decoupled by two independent Gaussian transforma- 
tions with auxiliary variables xa and Qab The trace part is 

where 

(A1.2) 

(A1.3) 

For simplicity we assume that the replica symmetry is unbroken. (A1.2) can be 
calculated using saddle point expansion. Standard manipulation leads to 

42  PzJ'+4-ln 2- Dz In cosh(ix+fi  z) I [Z"1,,-1 x2 -= PF- f = -1im - 
N n*O n 2PJl 4p2J; 4 2 

Dz = (dz/&) 
(A1.4) 

The saddle points are given by 

af/ax = 0 af/aq = 0 (A1.5) 

or 

X sin 2x 
-= -1 Dz 
PJ1 cos 2x + cosh 2 4  

- = I D z  4 P'Ji 
sinh' 2J7j z - sin'2.x 

(cosh 2 f i  z +cos 2x)" 

(A1.6) 

(A1.7) 
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x = 0 is the only solution if 4 = 0. In general there will be many solutions. We are 
interested in the local maxima of J: The second derivative 

1 +cosh 2J;f z cos 2x 
d2x pJ1 (cosh 2 4  z +cos 2 ~ ) ~  

D z  
a2f 1 

(A1.8) 

is periodic in x with periodicity IT, and diverges at 2x = (2n + l ) ~ ,  where the right-hand 
side of (A1.6) jumps from r / q  to - ~ / q .  In the limit p goes to infinity, the local 
maximal solutions are given by 

2xm = 2 m 1 ~  l m l s  I (A1.9) 

where I - p J l / q  since the right-hand side of (A1.6) is bounded by T / q .  We should 
sum up all their contributions to J: They are 

T 2  ' - m2 
2pJ1 m = l  

and 

neither of which contributes to the 
irrelevant. 

( A l . l l )  

cost function. The constraints are therefore 

Appendix 2 

In this appendix we derive (4.17). From (4.2),  

e x p [ n ~ f ( ~ ) ]  = Dx[Tr e x p ( f ~ , b ~ " ~ ~ + i X , ~ " ) ] ~  I 
I N  = 2 n N  I 

where 

(A1.lO) 

Qaa = 0 a = 1 , 2 , .  . . , n ('42.3) 
and summation over repeated indices is assumed. 

We will need f( 0) up to Q4 order. Defining a set of operators L: 

and the function 
n 

R = n COS x,  
a = l  
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we have 

1619 

R+(QL)R+- (QL)2  R + .  . . 
2 

(QL)' (QL)3 (QL)4 R + .  . . R+- R+- 
3! 4! 

+ ( y )  R N - 3 (  (QL)  R + -j- (QL)2  R)' + ( y )  R "-'[( QL)RI4 + O( Q)5.  

Qo order: 

Q' order: 

Q' order: 

N DxRN-' - (QL)2 R + ( y ) I DxR N - 2 [  ( Q L )  RI2 I 2 

The integral in the second t4erm: 

1 
4 c , t c 2 , d , # d 2  a = l  b#c ,d  

Here and below we use 

Io2= C O S ~ - ~ ' X  sin2' d x / 2 ~  =m ( I  - : ) I  e-'"'2 (2/N)'+1'2. 

Therefore the second term in (A2.9) is not extensive and can be neglected. Similarly 
every term except those in the first square bracket can be neglected. The only extensive 
contributions are those coming from terms containing 

j' DXRN. (A2.12) 

The rest of the calculation is straightforward. One notices that the operators (QL)' 
must act in such a way as to leave R invariant. This is not possible for the 1 = 1 term 
since the two derivatives must act on different xa. The rest of the expression can be 
evaluated using graphical rules similar to those of the linked graph expansion for Ising 
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systems [19], with a common factor 

w = 1 + n ln [2(e / . r r~) ' '~ ]  - 1 

from which we obtain (4.17). 

(A2.13) 
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