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Abstract- The standard k-e model and a second-order Reynolds stress model (RSM) are used to investigate 
variable density effects in axisymmetric turbulent jets. Without buoyancy, both models predict no effect of 
the varying density on the far field turbulence parameters and the classical effective diameter concept works 
tbr the decay rates. No conclusive disagreement with experimental data is observed. Effects of turbulence 
production due to buoyancy are found to be small compared to the effect of the mean buoyancy term in 
the momentum equation. However, this turbulence production has a large influence on the axial scalar 
flux, for which the experimental trend is predicted with the second-order model but not at all with the k ~: 

model. Copyright ,~" 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Variable density effects play an important  role in 
many applications, notably where mixing of  gases in 
combustion processes is involved. The present study 
concentrates on the behaviour of  variable density iso- 
thermal jets. The variable density effects considered 
here are therefore generated by the mixing of two 
gases of  different density. The strength of  these effects 
can be characterized by the initial density ratio 
o) = p~/p~ of the ambient density and the density of 
the jet fluid. Since vertical variable density jets usually 
are subject to gravitional acceleration, it is useful to 
know when buoyancy effects are important.  These 
effects can be quantified by the (densimetric) Froude 
number 

g D l p . - p i l  gDI 1 - (o l  

where LI, is the mean jet exit velocity. If Fr is very 
large, buoyancy effects will become important  only at 
very large axial distances. For  pure jets (either 09 = 1 
or g = 0), Fr is infinite. Three different regions can 
be observed in turbulent buoyant jets : a convection 
dominated region close to the nozzle (if the Froude 
number is sufficiently large), a buoyant intermediate 
region, and in the far field the flow becomes a buoyant 
plume. At very low Froude numbers the plume region 
begins already close to the nozzle, while at high 
Froude numbers it begins far downstream. Chen and 
Rodi [1] define a scaled distance .f = Fr ~2 

(pi/p~,)-14x/D. Based on experimental results, they 
find that buoyancy becomes important at .? ~ I).5, so 
at an axial distance Xb/D ~ Frl/2(&/p,)~42. 

Variable density effects can be classified in two main 
categories. The first is related to global effects on the 
mean velocity, mixture fraction or turbulence quan- 
tities, which can directly be explained by concepts 
like the conservation of  mass and momentum. For 
instance, the concept of  conservation of  momentum 
is the basis for the introduction of  an effective jet 
diameter by which the decay of  the centreline mean 
velocity and the mean mixture fraction for all ¢~) would 
'collapse' onto a single curve [1, 2] for pure jets, i.e. 
non-buoyant  jets. The second category of  variable 
density effects is related to more 'subtle'  effects that 
cannot be directly explained with these concepts and 
possibly involve additional mechanisms such as the 
role of  correlations between density fluctuations and 
velocity fluctuations [3, 4] or effects related to tur- 
bulence production due to buoyancy. There is no real 
consensus in the experimental literature regarding 
these effects. For  instance, changes in the velocity 
spreading rates as a function of  c,J are observed in 
several experimental studies [5 7]. However,  there is 
also experimental literature in which this is not 
observed [8-10], where the latter reference only con- 
siders the mixture fraction (scalar) spreading rate. 
Another  example of  a subtle effect is an increase with 
co of  second-order turbulence correlations involving 
the axial velocity fluctuation [7]. 

In the present study, the characteristics of  variable 
density axisymmetric isothermal vertical turbulent jets 
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NOMENCLATURE 

b~, anisotropy tensor 
C coefficients 
D nozzle diameter, diffusion term or 

coefficient 
,/~ mixture fraction 
.f,,2 scalar variance 
F mean mixture fraction 
Fr Froude number  
g~ gravitational acceleration in direction 

i 
G production term due to buoyancy 
k turbulent kinetic energy 
Ku, Kf velocity and scalar decay rates 
K'~, Kf normalized velocity and scalar decay 

rates 
L~, Lf velocity and scalar halfwidth 
p pressure 
P production term 
r radial distance 
Re Reynolds number  
R¢ turbulent Reynolds number  
Su, Sr spreading rates 
SG turbulent Schmidt number 
u axial velocity 
U mean axial velocity 
U~ mean velocity in direction i 
v radial velocity 
V mean radial velocity 
w tangential velocity 
x axial distance 

xb buoyant axial distance. 

Greek symbols 
c~ turbulence coefficient 
flo expansion coefficient 
6, Kronecker delta 
~: dissipation rate of turbulent energy 
~. scalar dissipation rate 
4~ generalized variable 
(~) density ratio (=fl:,/,oi) 
v molecular kinematic viscosity 
p density 
a turbulent Prandtl number 
0 azimuthal angle. 

Subscripts 
a ambient fluid 
c centreline 
coil coflow 
eft effective 
f scalar transport 
j jet fluid 
i,j ,  k directional index. 

Superscripts 
Favre average ot'4~ 
Conventional average of q~ 

" Favre fluctuation 
Conventional fluctuation. 

are predicted with a first- and a second-order tur- 
bulence model. Both pure jets and buoyant  jets are 
studied for density ratios of 0.25 < e) < 20. These pre- 
dictions are compared with each other and with avail- 
able experimental data. The goal of the study is to 
investigate the differences between the two turbulence 
models in the prediction of this type of flow and to 
investigate which effects, that are experimentally 
established, can and cannot be predicted by these 
models. 

2. GOVERNING EQUATIONS 

In the conservation equations, mass-weighted aver- 
aging is applied to avoid the appearance of many 
terms involving density fluctuations for which 
additional models are needed. A mass averaged quan- 
tity is defined as 

q~ = P~.  ( 2 )  

The mean tangential velocity W is zero in the present 
configuration. However, in the instantaneous momen- 
tum equations, quadratic terms of w are not sup- 

pressed because they lead to the normal stress w"w" 
(the overbar denotes the range of the tilde) which is 
not zero. This would be the case in two-dimensional 
turbulence, but here three-dimensional turbulence is 
considered. The axisymmetric approximation con- 
cerns only the derivative ~?/00, which is zero. For  the 
governing equations that will be solved numerically, 
the standard parabolic truncation is employed. The 
continuity equation is therefore given by 

@ U  1 ~')rp V 
; + - O. (3) 
U X  r ~F 

The equation for axial momentum, supposing that 
the positive axial direction is upwards and parallel 
with the gravitional field, is 

?f  UU 1 ?rp U V @ 
+ 

Ox r d.r ~x 

1 &#u'K' 
r ~)r 

- - - -  + p g , + M o l . D i f .  (4) 

where g,. is the gravitational acceleration and the 
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molecular diffusion term is designated by Mol.DiL 
When @ R x  ~, PJG, the buoyancy term is often writ- 
ten as - (p~,-p)g,. 

The equation for radial momentum is : 

##UI"  1 (?rpVV cqfi 1 8rfiv"v" 
dx  + - ~ ~ -  . . . . .  

I" (TF ( r t" ~,F 

I T S ' "  
+ p - - - -  + Mol.Dif. 

F 

3-0 describe mixing of  gases, the mixture fraction F, 
which signifies the mass fraction of  the nozzle fluid, is 
introduced. It obeys a convection~tiffusion equation 
of the form 

f'fi U F  1 ?rp VF 1 ?~rpv'~f '' 
+ - +Mol .Di f .  

~v r ~3r r ~?r 

The mean density can be obtained from the mean 
mixture fraction using the equation of  state. With 
constant pressure this leads to 

I F I - - F  
= -- + - -  (7) 

f i  Pj P~ 

where density fluctuations have been neglected. This 
is allowed in isothermal jets because the instantaneous 
density, for which equation (7) is exact, is approxi- 
mately a linear function of  the instantaneous mixture 
fraction. For  a flame this is not  true and a probability 
density function (pdl) of  the mixture fraction has to be 
used to calculate the mean thermochemical variables 
such as the mean density [11]. 

2.1. The  second-order  m o d e l  

It is noted that correlations of  the type u~'w" are 
zero when u~' # u ', due to axisymmetry. Thus, the 
important  Reynolds stress equations are those for 

t u ' ,  r"F' ,  w"w",  and The equations are written 
a s  

c = e , , + < ,  

~ . ~ / 5  2 + D , , + p ' l ~  + ~:)- ~a,:,p~ 

in which local isotropy on the smallest scale has been 
assumed. The first term on the right-hand side is the 
production term due to mean strain 

. . . .  + uTui' ~ - - 1  P ,  p~u,uk g.v k ~xk ) 

The volumetric expansion coefficient flo is defined as 

fi~ = - p \  ~ f  /p. (11) 

The diffusion term is modelled as 

(5) ~ f / k ~, ,  _ \Su','u;-'3 

where v is supposed to be constant. The pressure- 
strain correlation is 

(,3) 

(6) Modelling of this term is performed in the literature 
in two main ways. The first one is called the Launder -  
R e e c ~ R o d i  (LRR) model [12] and is used in the 
present study. The other important  model is due to 
Lumley [131, who introduced non-dimensional groups 
consisting of  the anisotropy tensor and its principal 
invariants and the turbulence Reynolds number 
Re, = k2/(sv). Then, the pressure strain correlation is 
modelled with these variables as parameters. 

The 'return to isotropy' term qSu,~ is expressed m the 
anisotropy tensor b u which is defined as 

G; l 
b,~-  2k 3 6u" (14) 

Here, k is the turbulent kinetic energy per unit mass 

k (is) 

using the summation convention. The return term 
thus becomes 

~,j.~ = C~pe2b , .  (16) 

The constant C~ is supposed to be independent of  Re  

and Re, when these are high enough. The mean strain, 
also called the 'rapid term', is modelled as 

0,/2 = - ~(P,i--~ 6,i P) (I 7) 

where the production P of  turbulent kinetic energy is 
(8) 

P = I~ Pkk. (18)  

The buoyancy term in the pressure-strain correlation 
is modelled as [14] 

~,j3 = -- C3 (Gii -- ~ 6ijG) (19) 

with G defined, analogously to P, as (9) 

while the second term is the production due to buoy- 
ancy effects 

o = '~ ok~ = - p /~og , , ; : f " .  (2o)  

The dissipation rate equation is exactly the same as in 
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the standard ~ e  model (see below), except for the 
diffusion term, which in the Reynolds stress model is 
the same as in equation (12) with a coefficient C~ 
instead of C,. 

The scalar turbulence equations are given by [15] 

~(fiUaul'f") = P,+G,+D,+p'(% (21) 

wi th  shear product ion defined as 

/ ~ U ,  ,-7777,, (~F~ 
Pi = --O~u,,,./ ~ +u,.u,, ~ )  (22) 

and buoyancy production as 

G, = --/~f leg,/ '2. 

The dif fusion term is modelled as 

term and the rapid term is given in the Appendix of 
the paper of Hytopoulos and Simpson [I 9]. 

Di=C~,~_va~Pcuku,~ ) (24) 

The pressure-scalar gradient correlation is defined by 

p, a C  = A ,  +0, .~  + ~,.~ (25) 
0x: 

in which the return term is modelled as [15] 

F, ~ g; 
0,•, = - C, rP ~ u;7"'" - C{ r :  k b:k u[.~". (26) 

The mean strain or rapid term is modelled as [15] 

,?',,g'U: "~ ~U~ 
d~,, = 0.8puiS f ' 7  -0.2pu'a: f "  =- 

• (:Xa,.. . & X  i 

and the buoyancy term as 

0,.~ = - C~,.G, = C7~,.:[~ g,f,,e. (28) 

From the foregoing we can deduce the parabolized 
set of equations in cylindrical coordinates where the 
generalized equation is 

? 
( o g q ~ +  r &  (,'pV0) = 7, | rOD :,'.. }+S,/, 

(3.v " r o r \  c , r )  

(29) 

with S o given in Table 1, P = - p u " r " g U / ( 3 r  and 
U'" '7  G = -pfi~ g,. j . The scalar dissipation rate c, is 

modelled assuming proportional scales for velocity 
and scalar turbulence with a time scale ratio of two 
[16], as 

~;r = 2 2 k " 

The model constants used in the present study are 
given in Table 2. 

A large collection of available models for the return 

2.2. The first-order (k-~:) model 
In the k e, model [20], the Reynolds stresses are 

expressed in terms of the local strain r a t e  

_r,, (c0, - p u : t :  = p(v, + v) ~ + ?.vU 

~6 ' / (  ~k+p(v~+ ?'\')?v) 

with 

(31) 

/£2 
v, = C, (32) 

(23) ~: 

The scalar flux in equation (6) is approximated with 
a gradient transport assumption 

~ittfvt Idt ~ "  = - ~ (33) 
0-1 (LV~ 

and the buoyancy production term G of equation (20) 
becomes, after using the transport hypothesis, 
G = g,.vti"p/i?fi~[7~x. 

In Table 3, p i t :  is 2p ~?F/(?r ~F:&" and the scalar 
dissipation rate is modelled with equation (30). The 
model constants used in the present study are given in 
Table 4 [20]. 

3. NUMERICAL METHOD 

The governing equations are solved using a par- 
(27) abolized marching algorithm which resembles the 

(elliptic) TEACH code [21]. The computations are 
performed by using the continuity equation to obtain 
the radial velocity V. Using the radial momentum 
equation for Vand solving a pressure correction equa- 
tion in the radial direction did not show any difference 
with the use of only the continuity equation. All vari- 
ables except the radial velocity, the shear stress and 
the radial scalar flux are located on the same grid- 
points which are distributed in an equidistant manner• 
The gridpoints for the radial velocity and the shear 
stress are located in between the gridpoints for the 
other variables. No transformation of the radial dis- 
tance is employed; this means that the grid expands 
in the radial direction to allow the jet to expand. Note 
that this formulation is different from the parabolic 
algorithm of Patankar and Spalding [22]. which is 
more often used in this type of parabolic compu- 
tations. 60 gridpoints in the radial direction and an 
axial forward step size of 0.01 times the local jet half 
width are used. This was sufficient to obtain a grid 

(30) independent numerical solution ; the 60 gridpoints are 
also considered sufficient to obtain an accurate solu- 
tion close to the nozzle. Note that the step size of 0.01 
is much smaller than the value of 0.05 reported in el 
Baz et al. [17], the smaller value in the present study 
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Table 1. Source terms for the second-order model in the generalized equation (29). The 

'turbulent diffusion' coefficient D is Cd,, k/e v"d'. For all Reynolds stresses, Cain- = C~, for the 
scalar fluxes and the scalar variance, Calm = C~t, and for the dissipation rate, Cam- = C .... 

Variable S+ 

b l¢ 'L i  ' '  

l,+'f?" 

W'W" 

b/'U" 

E 

~ U  2 ~: ~ ~ -2(1-~)[,u",/'~+-~i,~,-C,p~(u"u"-~k)+i~P 
4 , - , 7 " 7 .  

-- (2--~ 153)pfi~g,u f 

C~,~ ~7 (r"v"-~k) + ~ ~P - - r~ '  z: ~,C'w"(v"z:'- w"w") 

--~, C3,oflo g~u']'" 

--~ pc. - C,,O ~ (w"w" - ~ k) + ~ ~P + ~ pw"w"(v"~ " -  w"w") 

~ g U  ~ : ~  C k ~ - . ~  -(l-~)~m,"~-c,p~u"~/' ~]Tpw"w"."~." 
- ( 1 - C 3 ) i ) f l ~  g,z,".f" 

~(C,.I(P+G) C,.2~e,) 

-pv" . l "~r -eU"d '~ .  r C,,.7o~u".[" C { , ~  (b,,,u~"+b,,.v".~") 

~ U  
+ 0.8pc"f" ~ (I -C30pfl~g,.; 7': 

c r  

i~V _..~.,OF _kw"w" 7", ~: ,7",. 
- P v " f " ? r - P v l  t~r-C~tPc r: z f ' - C , r P k t  1" 

C~,,p k (b,,,u"l'" + b,,z:"~--f")-O.2pu"7"~i?~; 

~ F  
- 2pr"f"-~nT- pc~ 

was necessary due to the explicit evaluat ion (based on 
known ups t ream variables) of  the source terms, while 
el Baz et al. evaluate most  source terms implicitly. 

The bounda ry  condi t ions  at  the nozzle, often called 
initial condi t ions  in parabol ic  computa t ions ,  are those 
for fully developed pipe flow [23]. The radial  velocity 
and the scalar variance are zero at  the nozzle and in 
the ambient .  The mixture fract ion is one at  the nozzle 
and zero in the ambient .  At  the radial jet  boundary ,  
the values of  all quant i t ies  are equal  to those in the 
ambient .  For  the turbulence quant i t ies  this implies a 

value of  zero or a negligibly small value. The com- 
pu ta t ions  are performed up to an axial distance of  
approximate ly  300 D. Here, no  boundary  condi t ions  
are prescribed due to the parabol ic  nature  of  the flow. 
Full  elliptic calculat ions would require a prohibit ively 
large grid to simulate such a long flow domain.  

For  all calculations,  except in the s imulat ion of the 
experimental  da ta  of  the IMST [9] where the exper- 
imental  coflow velocity was used in the computa t ions ,  
a very small (numerical)  coflow velocity of  
Uco+~ = 0.01 m s i was used to stabilize the compu-  

Table 2. Model coefficients in the Reynolds stress models (RSM). "['he constants for the velocity 
turbulence in RSM I are from ref. [17] and the constants in the scalar turbulence in model RSM 

II are from ref. [18] (see ref. [15]) 

Model Cl c~ C~ C~ C,;., C,:.l (7 .... C,f C',, C3~- C~i 

RSM ! 1.8 0.6 0.5 0.22 1.44 1.92 0.18 4.7 -4 .4  0.33 (/.22 
RSM II 2.3 0.6 0.5 0.22 1 .45  1.90 0.18 5.7 -6 .1  (/.33 0.22 



828 J .P .H.  SANDERS et al. 

Table 3. Source terms in the generalized equation (29) for 
the k e model. The turbulent diffusion coefficient D is 

= vU% with v~ = C,, k2/~ 

Variable Se, 

k P + G - [ ) e  

8 

g: k(('.:.,(P + G) -- C,.:p~) 

.?2 P 7: -- D~:l 

Table 4. Model coefficients in the k e model. The constants 
in model l are standard [20] ; the constants in model 11 are 

adapted for the axisymmetric jet 

Model CI~ (',:,l C,.~ a~ a, ~l ~ i-' 

k ~: I 0.09 1 . 4 4  1.92 1 1.3 0.7 0.7 
k ;: 11 0.06 1 .44  1.92 I 1.3 0.7 0.7 

rations. With  zero coflow, a converged solution was 
difficult to obtain.  No turbulence was added to the 
coftow. Buoyancy terms are only present  in cal- 
culat ions where the influence of  these terms is inves- 
tigated. 

4. DISCUSSION OF RESULTS 

4.1.  C o n s t a n t  d e n s i t y . f l o w s  

Pro f i l e s  across  the ./et. In Fig. l (a)  the non-  
dimensional ized axial velocity across the jet  in the far 

field ( x / D  > 50), calculated with the k c and  the RSM, 
is compared  with the experimental  data  of  Pan- 
chapakesan  and Lumley (PLl )  [24] and  Hussein et  al. 

(HCG)  [25]. Both experimental  and numerical  data 
are independent  of  x / D  for these axial distances. The 
RSM predicts lower velocities near the centreline than 
the k - c  model,  while it predicts higher velocities at the 
jet edge. Especially near the edge, the RSM compares  
better  to the laser Doppler  measurements  of HCG,  
while the k ~: results are in between both  sets of  
measurements .  

The axial velocity f luctuation intensity across the 
jet  is shown in Fig. 1 (b). Here, again, the RSM results 
compare  most  favourably  with the measurements  of 
HCG,  while the k ~; results are in between the two sets 
of  measurements .  It is noted that  none of  the models 
predicts the weak local off-axis maxima in the exper- 
imental  curves. 

For  the radial velocity f luctuation intensity across 
the jet, which is shown in Fig. l(c), the RSM again 
compares  favourably  with the measurements  of HCG,  
while the k c results are now too high. The high values 
generated by the k c model are not very surprising 
since it is well known that  the k c model is not capable  
of  predicting the normal  stresses very accurately. 

In Fig. 1 (d), the profile of the non-dimensional ized 
)~ L 'rbf3 computed  with the two dissipation rate ~ c .... ~ <, 

models, is shown across the jet, together with the 
experimental  results. The dissipation rate of  HCG.  
based on the assumpt ion  of  axisymmetry in the smal- 
lest scales, comes closest to the RSM results. The k ~; 

O 
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Fig. 1. (a) Far field normalized axial velocity profiles across the jet vs the radial distance normalized by 
the local jet halfwidth, (b) far field axial velocity fluctuation intensity across the jet vs the radial distance 
normalized by the local jet halfwidth, (c) far field radial velocity fluctuation intensity across the jet vs the 
radial distance normalized by the local jet halfwidth, (d) far field normalized dissipation rate ~:Lu/U~ across 
the jet vs the radial distance normalized by the local jet halfwidth. Solid line--RSM, dashed line k ~; 
model, triangles--measurements of Panchapakesan and Lumley (PLI) [24], circles measurements of 

Hussein et al. (HCG) [251. 
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results are somewhat higher near the centreline, while 
near the edge all profiles show the same behaviour. 

The better performance of  the RSM regarding the 
differences between axial and radial velocity fluc- 
tuations (anisotropy) is shown in Figs. 2(a) and (b), 
where the predicted turbulence intensities on the 
centreline of  an air-~air jet are compared with the 
IMST data. The maxima occur at the location where 
the axial velocity has the largest gradient in the axial 
direction, i.e. at the end of  the core region. In the near 
field especially, the predicted difference between the 
two intensities is too small with the k-~; model (Fig. 
2(a)). Concerning the difference between the two fluc- 
tuating components,  the predictions with the RSM 
are better (Fig. 2(b)), although the values of  the max- 
ima are still too high. This near field behaviour is 
very much influenced by the initial conditions, but to 
obtain better agreement changing these conditions as 
a function of  ~o would be required [26]; also, part of  
the discrepancy might be due to the assumption of  
parabolicity of  the flow. 

Asymptotic behaviour. In free jets the spreading 
rates are defined as S~ = dL~/dx and Sr = dL,vdv, 
where L~ and Lrare the local halfwidths of the (excess) 
velocity and mixture fraction, respectively. It is noted 
that even in constant density flows the mixture frac- 
tion and related quantities such as Stand the turbulent 
Schmidt number can be computed, although measure- 
ments for these quantities are mostly performed for 
variable density flows only. With the second-order 
model, and employing a somewhat finer axial step- 
width of  0.005 times the local halfwidth instead of  the 
0.01 which is used in the rest of  the calculations, a 
spreading rate of  0.1270 is obtained, el Baz et al. 
[17], using exactly the same (second-order) turbulence 
model, obtained a spreading rate in the axisymmetric 
jet into stagnant surroundings of  0.1266. In the rest 
of  the paper an axial stepwidth of  0.01 is used. This 
gives a spreading rate of  0.128, which is a difference of 
less than I% with the finer grid and this is considered 
accurate enough. For the RSM calculations it is noted 
that the parabolic truncation gives a spreading rate 
12.5% larger than when the full elliptic equations are 
solved [17], the elliptic result (0.113, [17]) still being 
15% larger than the latest experimental values of  
0.096 [24] and 0.094 [25]. With the k c model we 
obtain a spreading rate of  0.120, which is the value 
mostly quoted in the numerical literature [27 29]. 

The rather large difference between the exper- 
imental and numerical spreading rates is not con- 
sidered to be very problematic since we are interested 
mainly in the influence of  density variations on the 
characteristic properties of  jets. The influence of  vary- 
ing density is not considered to be dependent on the 
precise value of  the spreading rate. Moreover,  since 
the characteristic values which are to be computed are 
mostly dimensionless quantities, non-dimensionalized 
by typical length and velocity scales such as the axial 
distance and the local centreline velocity, the exact 
values of, for instance, the centreline velocity is not 

material. For  the second objective of  the present 
study, i.e. a comparison of  the influence of  variable 
density between k r, and RSM predictions, the exact 
spreading rate is also of  minor importance. 

As an intermezzo, a suggestion is given for a change 
in the coefficients in both models (models !1 of  Tables 
2 and 4) to reproduce the experimental spreading 
rates. In the RSM ('~ has been increased from 1.8 to 
2.3 to increase the return to isotropy, and thus to 

decrease the value of u"t/' which mainly determines 
the spreading rate. Here, the scalar transport 
coeffÉcients have been adapted to those of ref. [18]. In 
the k e model only the turbulent viscosity has been 
diminished (Q~ = 0.06) ; the fixed turbulent Schmidt 
number keeps the ratio between S, and S, approxi- 
mately fixed. The characteristic parameters predicted 
with the models and the experimental data are given 
in Table 5. The parameters are the spreading rates and 
centreline quantities such as decay rates l\~r centrelinc 
velocity and mixture fraction. Ku and K,  defined as 
U,/L,'~ = &,.v/D and I/F~ = K,x/D, turbulence 
intensities 

\,,"b'U,,, x/'u"u"/U~, x/t,~ "oc, 

and unmixedness 

It is seen that these parameters are well predicted with 
the adapted RSM (RSM ll). The k-e models fail to 
predict the turbulence anisotropy. 

In the following, all computations are performed 
with the "classical' coefficients of  RSM I and k ~: l, in 
view of the earlier remarks on the importance of  the 
spreading rate for variable density effects. 

4.2. Variabk, densityJh)ws 
In the calculation of  variable density jets, only the 

jet density pj has been changed to vary (,): all other 
quantities were kept constant. The choice of  keeping 
the Reynolds number, the Froude number or the 
momentum flux constant would not change the 
results. This is because in the equations, there are 
no Reynolds number dependencies, so the solution is 
independent of  the Reynolds number. The Froude 
number changes if buoyant jets are considered, but no 
comparisons between computations at different (o are 
presented when buoyant jets are considered. Keeping 
the momentum flux constant in the calculations would 
not change the results from the present ones because 
variables normalized by appropriate powers of  the 
exit velocity U i are invariant with regard to Uj when 
buoyancy is unimportant.  In the computations the 
centreline velocity in the nozzle was 150 m s ~ and the 
nozzle diameter was 0.01 m. 

4.2.1. Near fieM behaviour. In the region near the 
nozzle exit the density gradients in the flow are the 
largest. Farther away from the nozzle, mixing with 
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Table 5. Predicted and experimental characteristic asymptotic values for axisymmetric jets without 
density effects. The experiments of ref. [10] (0.64 < co < 7.2) did not show any effect of co oi1 the 

characteristic parameters 

S,, 5'~ K. Kt 

Exp. [24] 0.096 - 0.165 
Exp. [25] 0.094 0.169 
Exp. [10] - 0,113 0.21 0,23 

RSM I 0.128 0.144 0.218 0,247 11.32 
RSM 11 0.096 0.114 0.165 0.197 0.28 
k-s: 1 0.121 0.146 0.205 0.249 0.34 
k c II 0.098 0.119 0.166 0.200 0.33 

U~ k~ U<. t '  

0.25 0.24 0.19 
0.29 0.28 /).22 

0.24 0.29 0.25 
0.23 0.25 0.22 
0.25 0.29 0.27 
0.24 0.28 0.27 
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ambient air leads to smaller and smaller density gradi- 
ents until, at even farther distances, the jet is essen- 
tially a constant density jet. This is in contrast with, 
for instance, a flame, in which the density differences 
are sustained by the chemical reactions and are large 
until far beyond the flame tip. 

In Fig. 3(a) and (b) the effect of the initial density 
ratio on the centreline turbulent kinetic energy is 
shown. The lower the jet density pj, the more the 
maximum turbulence energy shifts towards the nozzle, 
while the reverse is observed for heavy jets. This is 
because the maximum turbulence energy occurs 
approximately at the position where the mean axial 
centreline velocity begins to drop significantly, i.e. 

where the core region ends. The core region becomes 
shorter in light jets due to mixing with heavy ambient 
air which increases the mean cross-sectional density. 
Since the axial momentum flux at each jet cross- 
section is constant, the velocity should decrease faster 
than in a constant density jet. For heavy jets the reverse 
holds. From Fig. 3(a) and (b) it can also be observed 
that there is no qualitative difference between the pre- 
dictions with the k e model and the RSM. 

A comparison with the experimental data of IMST 
for a helium-air  jet (oJ ~ 7.2) [9] for the axial and 
radial velocity fluctuation intensities is provided in 
Fig. 4 for both models. Although both models over- 
predict the axial distance at which the maxima occur, 
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the RSM predicts the heights of  the curves fairly well. 
This is in contrast with the k-e, model, which predicts 
a too small difference between the maximum values 
of  the two intensities, as also observed in the constant 
density jet (Fig. 2). 

4.2.2. Far.field behaviour. Decay rates. The axial 
decrease of  the mean velocity and mixture fraction is 
influenced significantly by o). This is directly related 
to the mixing of  fluids of  different density in the early 
development of  the jet (near the nozzle exit). For  
instance, if a light jet (oJ > 1) issues into air, and 
buoyancy can be neglected, then the velocity will drop 
faster with axial distance than in a jet with o) = 1. This 

is due to the conservation of  momentum flux at each 
cross-section of  the jet. As heavy surrounding gas is 
mixed with the lighter jet fluid, the mean cross-section 
averaged density will become larger with axial 
distance. Consequently, the velocity must drop faster 
than in a jet with o) = l, if momentum is to be con- 
served; the inverse can be argued for heavy (co < 1) 
jets. To capture this influence of  entrainment on the 
axial development of  U and F, the decay laws are 
often written using an effective diameter D~, as 

L~ x 1 x 
= Kuw-v<,,r and F~ = Kr~--i (34~ U~ / )on  
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with Den-= Dx/pj/p a. Using this effective diameter, 
one hopes to find co-independent values forKu and Kf. 
The physical idea is that the actual (variable density) 
jet should have the same momentum flux as a constant 
density jet issuing from a nozzle with D = D~. The 
behaviour of  a jet with e) ¢ 1 in which D is replaced 
with D,~ will however be the same as a constant density 
jet only in the far field where the density across the jet 
is almost uniform. Indeed, effects of  a locally varying 
density, such as in the near field, will not  be captured 
by the effective diameter concept. In Fig. 5(a), the 
slope of  the inverse centreline velocity is shown to 
vary significantly using the normal diameter. When 

the effective diameter is used, all curves have approxi- 
mately the same slope for all values of  o) (Fig. 5(b)), 
The virtual origins of  the curves in Fig. 5(a), defined 
by the value of  xo/D where the function Ui/U ~ 
= a+bx /D  ( for x/D > 50) is zero, show a decreasing 
trend with 1/x/co. This was also found by Sautet [30]. 
However, his jet configuration is different from the 
present one regarding coflow and initial conditions, 
such that a detailed comparison cannot be made. 

In Table 6 the numerical values of  the decay rates, 
normalized by D~, are given relative to the values at 
co = 1. At  the light jet side (co > 1), a slight deviation 
from the co = 1 case begins to emerge, while at co = 20 
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Table 6. Predicted velocity and scalar decay rates for both 
models: K'~ = K,/K~(o) = 1) etc. Absolute values for co = I : 
k ~, model 0.205 0.249 and RSM 0.2184).247. The predicted 
values are determined from a linear curve-fit between 100 

and 300D 

k c RSM 
,,) K{,-K} K'o K~ 

I 1 .00 1.00 1.00 1.00 
2 0.993 0.990 0.995 0.999 
5 0.982 0.977 0.987 0.996 
10 0.97ff 0.986 0.978 0.982 
15 0.969 0.973 0.9724).978 
20 0.964-0.967 0967 1.03 
0.5 1.007 1.010 0.989.0.967 
0.25 1.0t4 1.017 0.983 0.9A1 

Table 7. Computed velocity and scalar spreading rates for 
both models. Spreading rates for e~ ¢ 1 are relative to the 
value at c9 = 1. Absolute values at vJ = 1: k e model 0.121 
0.146 and RSM 0.128 0.144. The predicted values are deter- 

mined from a linear curve-fit between 200 and 300D 

k c RSM 

1 1.000 1.000 1.000 1.000 
2 0.996-0.996 0.999 1.000 
5 0.9904).988 0.9894).999 
10 0.9834).980 0.982 O.981 
1 'i 0.9784).974 0.9774).976 
20 0.9744).969 0.9734).972 
0.5 1.002-1.003 1.003 1.003 
0.25 1.005 -1.005 1.006 1.006 

the difference for both models is less than 3.3% which 
is still considered very small, so no large influence of  
o) on the normalized decay rates is observed. For  Kt- 
this agrees very well with the experiments of  Richards 
and Pitts (RP) [10], while for Ku no conclusive 
measurements seem to exist. It must be noted that the 
decay rates in ref. [26] were not  completely inde- 
pendent of  ~o using the given definition of  the effective 
diameter. This could be due to the larger axial distance 
(100 < x, 'F < 300) used in the present study to deter- 
mine the decay rates : the larger x/D, the more uniform 
the density across the jet. Sarh and G6kalp [31] 
showed that the effective diameter used in the present 
study works less well for plane jets and that the ambi- 
ent air density in the expression for the effective diam- 
eter should be replaced by the cross-section averaged 
density. This may be due to the slower axial decay of  
the mixture fraction (F ~ x -  ~,,2 for plane jets) and the 
resulting slower approach of  the cross-section aver- 
aged density towards the ambient density. 

Experimental data for K, are 0.165 [24], 0.169 [25] 
and 0.17:2 [32] for air-air  jets. Pitts in his review on 
variable density jets [33] gives K r =  0.2_+ 10% (Kf 
defined using the effective diameter) and Richards and 
Pitts [10] give Kr = 0.21, independent of  ~,). 

It should be added that experimental data on Ku 
and Kr in jets with strong variable density effects are 

only useful when the Froude number (Fr) is 
sufficiently high, otherwise b~/Uc and 1//[ are not 
linear functions of  x/D. In light jets with buoyancy 
effects, the velocity decay is slower and the mixture 
fraction decay is larger than when Fr is very high (see 
below). 

Spreading rates. Calculated values of  S,, and &. with 
the two models are shown in Table 7 for density ratios 
0.25 < co < 20. The primary remark to be made is that 
there is no significant influence of  ~) on the spreading 
rates in both models. At least for the scalar spreading 
rate this agrees very well with the experimental study 
of Richards and Pitts [10] who investigated free non- 
buoyant jets with 0,64 < co < 7.2. In the experimental 
literature on Su, it is often reported that the spreading 
rate increases with ~o, i.e. light jets (~ > 1 ) have larger 
spreading rates. Panchapakesan and Lumley (PL2) 
[7] found a spreading rate (Su = 0.116) in a helium 
air .jet which is 21% larger than in their air air jet 
(S~ = 0.096), also Wittmer [5] and Streb [6] ['ound 
larger spreading rates (SO in methane and natural gas 
into air jets (c9 ~ 1.5). The differences found numeri- 
cally for both models (without buoyancy) at these 
values of  c~) are less than 2%. On the other hand, 
Gouldin et al. [8] conclude from a review of exper- 
imental data that the spreading rates are not influ- 
enced by {o, this is also what has been found by Sarh 
[33] and Sautet [30]. It must be noted that the relative 
difference between experimental values and pre- 
dictions for Su and & are the same as those for the 
spreading rates K~ and Kr, this is due to the intimate 
linkage between halfwidths and centreline decay in 
the absence of buoyancy. 

It should be noted that the experiments on variable 
density jets are usually performed in configurations 
such that buoyancy effects are not negligible when the 
Froude number is not high enough. The influence of 
including buoyancy in the present calculations with 
(~ > I is, however, not to increase but to decrease the 
spreading rates, even when buoyancy induced tur- 
bulence production is included (see below). 

Turbulence intensity. The centreline lurbulence 
intensity v'k~/b~ becomes constant after a certain 
axial distance, see Fig. 6(a) and (b) for the k c and 
RSM, respectively. The distance required to attain the 
asymptotic value varies with (~). Eight jets reach their 
asymptotic value earlier than heavy jets. This is con- 
firmed by experiments [8, 9] and other numerical com- 
putations [26]. There is again little difference between 
the behaviour of the first- and second-order models. 
Some experimental studies indicate higher turbulence 
intensities in light jets [7, 34, 35] which are attributed 
to the initial development of  the jets in [7, 35]. This is 
not found in the computations since the models ~for- 
get" the initial development. 

Unmixedness. The centreline unmixedness, defined 
as 

"II3 i F 
C- / (2 
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also becomes independent of  axial distance and the 
asymptotic value is independent of  ~ as well [see Fig. 
6(c) and (d)]. These conclusions agree with exper- 
imental data [10] and a review of experimental data 
by Pitts [33]. The RSM predicts a slight peak in the 
near field before the unmixedness reaches its final 
value. This behaviour can also be observed in the 
numerical results of  ref. [26]. Again there is very little 
difference between the first- and second-order models. 

Influence o f  buoyancy. The gravity force in the mean 
momentum equation increases the cross-section aver- 

aged axial momentum flux while there are also buoy- 
ancy production terms in the Reynolds stress equa- 
tions that modify the turbulence structure. 

It must be noted that the axial decay laws in jets 
and plumes are different, e.g. in axisymmetric jets the 
velocity and mixture fraction decay as x ~, while in 
plumes the velocity decays more slowly (x ~'~) due to 
the increased momentum flux and the mixture fraction 
decays faster (x -5'3) [1] because of  the larger radial 
velocity gradient and therefore larger turbulent 
viscosity. Similarity laws are still applicable in plumes. 
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Further, it is important to note that the centreline 
turbulence intensities 

x/u"u" ,'Uc and 

the unmixedness and the normalized axial scalar flux 

u"f"/(/.~[~) at large x/D are constant, just as in non- 
buoyant turbulent jets, see for instance ref. [36]. 

Computations in this section are performed with 
the RSM, since buoyancy turbulence production can- 
not be adequately simulated with the k e model. How- 
ever, both models show the same behaviour regarding 
the mean and turbulence quantities when only the 

buoyancy term is in the axial momentum equation, 
but no buoyancy turbulence production is taken into 
account. 

In Fig. 7, the inverse normalized centreline velocity 
and the inverse mixture fraction are shown for the 
case of the helium-air jet of PL2 [7] (Ft-= 14× 10 3, 
xu/D ~ 37). The slower velocity decay and the faster 
mixture fraction decay with respect to the situation 
without buoyancy in the far field can be observed. The 
difference between the computations with and without 
buoyancy becomes apparent for x/D > 50. 

The measurements of PL2, conducted from 50 to 
100 D, showed that the Reynolds stresses involving the 
axial velocity fluctuation are higher than in a constant 
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density jet; this feature is not  predicted by the model, 
see Fig. 8(a). The decreasing t rend of  the centreline 
axial turbulence intensity with axial distance, 
observed by PL2, is correctly predicted. The centreline 
radial turbulence intensity is measured by PL2 to be 

of  the same order of  magni tude  as in the cons tant  
density jet  and  this is also what  the predict ions show 
(not  shown here). Since in the pure jet  and  pure plume 
regions the turbulence intensities are independent  of  
axial distance, the decreasing behaviour  of  these quan-  
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Fig. 8. (a) The influence of buoyancy on the axial turbulence intensity predicted with the RSM, (b) the 

influence of buoyancy on the centreline axial normalized scalar flux u"f"/(U~Fc) with the RSM, and 
predictions with the k-e model (dashed-dotted line), (c) the influence of buoyancy on the centreline 

unmixedness x/j~Z/Fc predicted with the RSM, crosses are experimental data of RP [10], including all 
buoyancy terms (solid line), including only the buoyancy term in the momentum equation (long dashes) 

and without buoyancy (short dashes). Symbols are experimental data for the helium jet of PL2. 
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tities with axial distance indicates that the region of 
measurement of PL2 is in the intermediate region 
between the pure jet and pure plume. 

PL2 also show that the normalized scalar flux 
~l i ,  r t /  involving the axial velocity fluctuation u j I(UoF~) 

increases with axial distance. This trend is well pre- 
dicted by the model, although the predicted rate of 
increase of this normalized flux is lower than in the 
experiment. The k e, model does not show any influ- 
ence of turbulence production due to buoyancy on 
this flux as can be seen in Fig. 8(b). However, the 
value of this flux, even in the second-order model, 
does not exert a large influence on the predictions of 
all other quantities. According to the measurements 

of PL2, the normalized radial scalar flux profiles v"f"/ 
(UcFc) show a similar behaviour; this is also repro- 
duced by the predictions (not shown here). 

Regarding the influence of buoyancy on the 
unmixedness, in Fig. 8(c) it can be observed that the 
gravity term in the axial momentum equation alone 
already leads to an increasing behaviour in axial direc- 
tion, while the turbulence production terms lead to an 
additional slight increase. The experimental data of 
PL2 for the unmixedness show a constant value (0.21 
0.22) between 50 and 100 D which in fact is the same 
as the value in the predictions without buoyancy. This 
behaviour is not easily explainable, since the asymp- 
totic unmixedness is 0.23 in a jet and 0.4 in a plume 
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Table 8. Asymptotic centreline values of  turbulence intensities, unmixedness and spread- 
ing rates 

Experimental RSM k ~ 
Quantity Jet Plume Jet Plume Jet Plume 

~/u"u'/Uc 0.28 [25] 0.32 [36] 0.29 0.24 0.29 0.20 

# ~ / U ~  0.22[25] 0.19136] 0.25 0.18 0.27 0.19 

x/)~7;'2,/Fc 0.23 [10] 0.40 [36] 0.24 0.40 0.25 0.42 

So 0.094[25] 0.11 [1] 0.127 0.093 0.12 0.091 
Sf 0.113110] 0.10[1] 0.144 0.092 0.14 0.088 
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Fig. 9. The influence of the buoyancy term in the momen tum equation on (a) the velocity halfwidth Lo and 
(b) on the scalar halfwidth Lr, predicted with the RSM. Note that, without buoyancy effects (~o = 1), a 

straight line would be obtained. 
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[36], see Table 8. The measurement range of PL2 is in 
the intermediate region between jet and plume, so at 
least an increase of unmixedness with axial distance 
would be expected. 

With respect to the predictions it must be noted that 
the k ~ model gives the same behaviour as described 
above for the RSM, the only difference is that the 
turbulence production terms due to buoyancy have 
no influence at all. The reason for the increasing values 
of unmixedness with x is a larger mixture fraction 
variance and a smaller mixture fraction on the axis 
with respect to the case without buoyancy. The smaller 
mixture fraction is due to the different scaling law in 
a plume, which has been discussed above. 

The decrease of the halfwidths due to buoyancy is 
illustrated in Fig. 9(a) and (b) where L, is shown for 
several values of to. Here the same boundary con- 
ditions have been used as in Table 7 but  including 
the buoyancy term in the momentum equation. The 
Froude numbers for the cases shown in Fig. 9 are: 
(to = 2, Fr = 153 x 103, Xb/D = 164), (to = 5, 
Fr - 3 8 ×  103, Xb/D = 65.4), (co = 10, Fr = 17x 103, 

xu/D = 36.8), (to = 20, Fr = 8.1 x 103,  Xb/D = 21.2). 
It must be remarked that the effect of the buoyancy 
turbulence production terms is to augment somewhat 
the halfwidths at large values of to. The decreasing 
trend of the halfwidths with decreasing Fr and thus 
increasing influence of gravity can be explained by 
noting that the gravity force is present most at the 
interior of the jet where the density in general is lowest 
for to > 1. So, the gravitational acceleration in the 
interior is largest, leading to a narrower velocity pro- 
file and thus a smaller spreading rate. 

The asymptotic centreline values and spreading 
rates measured and predicted in the limiting cases of 
a pure jet and a pure plume are listed in Table 8. Both 
models give a decrease of the velocity spreading rate 
from jet to plume, while the experimental data show 
the opposite behaviour. This indicates a problem with 
respect to modelling of the buoyancy related tur- 
bulence production. For the scalar spreading rate, 
however, the correct trend is predicted. The exper- 
imental data suggest an increase of anisotropy 

in the plume with respect to the jet. This trend is 
reproduced by the RSM while the ~ e  model, as 
expected, does not  show this behaviour. The values of 
the unmixedness are remarkably well predicted by 
both the RSM and the k-e, model. 

5. CONCLUSIONS 

Numerical predictions of variable density axi- 
symmetric turbulent  jets have been performed with 
first- and second-order turbulence models. The RSM 
results for constant density jets compare well with the 
numerical study of el Baz et al. [17]. The (far field) 

similarity profiles across the jet predicted with the 
RSM compare somewhat better with experimental 
data although the differences with the k-e model are 
not very large. The k-e model fails, especially in the 
near field, to predict the experimentally observed tur- 
bulence anisotropies. For  constant  density jets, tur- 
bulence constants in both models have been adjusted 
to predict the experimental spreading rates. In particu- 
lar, the RSM is able to predict all characteristic 
asymptotic parameters very well. 

Without  buoyancy, the first- and second-order 
models show no significant effects of the density ratio 
(0.25 < co < 20) on the far field characteristic par- 
ameters such as spreading rates, decay rates, tur- 
bulence intensity and unmixedness. This is in good 
agreement with most experimental studies on scalar 
variables, but regarding velocity spreading rates and 
the turbulence intensity no real consensus in the exper- 
imental literature exists. 

Decay rates of velocity and mixture fraction vary 
with varying to, but the values are shown to be 
invariant when the classical effective diameter is used 
for normalization. In the latter case only differences 
up to 3% have been observed. 

Regarding buoyancy and the effect of turbulence 
production due to buoyancy, there are large differ- 
ences between the two models. The buoyancy induced 
turbulence production terms in the second-order 
model are essential to reproduce the experimental 
increase [7] with axial distance of the centreline nor- 
malized axial scalar flux in a hel ium-air  jet. The k ~: 
model does not contain turbulence production terms 
in the scalar transport equations and consequently 
fails to predict the trend observed for the axial scalar 
flux. Finally, a comparison between computations of 
jets and plumes shows that the trend regarding the 
velocity spreading rate is wrong in both models, while 
the trend for the scalar spreading rate is predicted 
in accordance with measurements. The comparison 
between asymptotic values of the unmixedness m jets 
and plumes show that both models predict the correct 
trend but only the RSM predicts the correct trend for 
the anisotropy of the turbulence intensities. 
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