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Abstract--Fast synaptic plasticity, used to associate topologically ordered features in an input image to those o f  
previously learned objects, has been previously proposed as a possible model for object recognition (vonder Malsburg 
& Bienenstock, 1987, Europhysics Letters, 3 (11), 1243-1249). In this paper, it is argued that in addition to rapid link 
dynamics, fast receptive field size dynamics are necessary to automatically escape from poor local matches and also 
allow for simultaneous recognition of  multiple objects. Furthermore, a feature locking mechanism with a properly 
designed hysteresis property is needed to handle complex, cluttered, and dynamic scenes. The multiple elastic modules 
(MEM) model, described in this paper, utilizes newly developed dynamics that locate and recognize a previously 
learned object based on expected spatial arrangement o f  local features. The M E M  model can be viewed as using a 
deformable template of  an object to search the input scene. Unlike many of  the current artificial neural network models, 
the proposed M E M  model attempts to capture many of  the functions available in the biological visual system by 
providing mechanisms for: multi-modal feature integration, generation and maintenance of  focus of  attention, multi- 
resolution hierarchical searching, and top-down expectation driven processing coupled with bottom-up feature 
activation processing. In addition, the M E M  dynamics, unlike similar template matching approaches (Konen et al., 
1994, Neural Networks, 7(6/7), 1019-1030; Yuille et al., 1992, International Journal of  Computer Vision, 8(2),  99- 
111), does not converge to false objects when there are no sufficiently familiar objects in the scene. The performance of  
the M E M  model in detection and recognition of  objects through a number of  computer simulations is demonstrated. 

Keywords---Self-organization, Labeled graph matching, Combinatorial optimization, Dynamic focus of 
attention, Automatic target recognition, Deformable templates. 

1. INTRODUCTION 

It has been shown that an ensemble of  simple 
processing elements can solve computationally 
difficult problems through collective computation 
(Hopfield, 1982; Durbin & Willshaw, 1987; Koho- 
nen, 1987). A number of models have been proposed 
for formulating visual object recognition using such 
collective computation (Fukushima, 1987; von der 
Malsburg & Bienenstock, 1987; Nasrabadi & Li, 
1991). In visual pattern recognition, objects can be 
defined as patterns of  local relationships between 

local multi-dimensional features. It is therefore 
possible to store a labeled graph representation of 
an object having each node label indicate the 
sensitivity to a particular feature and the links 
represent the expected relative arrangement of these 
features (see Figure 1). In order to achieve robustness 
with respect to small deformation, the links of  the 
graph are made elastic. These elastic links can 
accommodate a certain level of smooth local 
elongations and contractions to the model graph, 
the extent of  which is dependent on the elasticity of 
the link. Although I do not directly address the issue 
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Object Labeled Graph Representation 

FIGURE 1. A triangular object with a specific texture can be 
represented by three oriented edge neurons and a texture 
sensitive neuron. The expected spatial organization of the 
features are encoded In the interconnection links between the 
neurons. 
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of learning these model graphs in this paper, it seems 
rather plausible to construct these graphs using a 
Hebbian style learning procedure (Reiser, 1991). The 
process will involve forming links between labeled 
nodes which are consistently observed in a particular 
spatial arrangement. The variance in the spatial 
organization of linked features, over repeated 
observations, can automatically adjust the elasticity 
of the links connecting the features through the 
learning process. Features with very small variations 
in their spatial relationships, over many observations, 
will have a very rigid elastic connection, whereas 
those with relatively large variations in their spatial 
arrangement, will have looser elastic connections to 
accommodate for these variations. 

Having stored a number of learned objects as 
labeled graphs, the problem of object detection and 
recognition can be transformed into finding a "good" 
match between the stored graph labels and the visual 
scene, while preserving the topological arrangement 
of the graph nodes (vonder Malsburg, 1988). This 
type of graph matching problem has been termed the 
subgraph isomorphism problem in combinatorial 
optimization. Finding exact solutions to the sub- 
graph isomorphism problem has been shown to be 
NP-hard, and thus computationally impractical for 
graphs with a large number of nodes. Therefore, most 
approaches to solving this problem have been 
heuristics which attempt to find acceptable "close to 
optimal" solutions, albeit not the exact optimal 
solution. The self-organizing MEM model, which I 
describe here, has been successfully applied to a 
number of large combinatorial optimization pro- 
blems including labeled graph matching as well as a 
multi-sensor multi-target deghosting and tracking 
problem with a solution space of 1011 possibilities 
(Shams, 1994). One of the labeled graph matching 
problems, described later in this paper, involves the 
assignment of a 123 node labeled graph to a 13,000 
node labeled graph. In a conventional relaxation 
based optimization technique [e.g., Hopfield net 
(Hopfield & Tank, 1985)], an explicit 123 x 13,000 
assignment matrix would be needed. This translates 
into roughly 1.6 million neurons and ,,~ 1012 synapses. 
Neural networks of this scale would be practically 
ineffective for real-world applications. 

There are a number of novel features in the 
proposed MEM model that enables its application to 
such large scale optimization problems. The most 
fundamental of these is the explicit enforcement of a 
priori knowledge constraints on the search space. The 
significant improvement in performance of neural 
network optimization techniques, through the use of 
strongly enforced constraints, has been previously 
demonstrated through statistical physics techniques 
(Simic, 1990, 1991). In the MEM model, the explicit 
assignment matrix, used by relaxation networks, is 

eliminated, thus considerably decreasing the required 
memory size and significantly reducing the conver- 
gence time (Mjolsness, 1995). Also, the self-organiz- 
ing dynamics of the MEM model, continuously 
enforce specific constraints on the arrangement of 
viable assignments. The formulation of a dynamic 
and local receptive field for each neuron also strongly 
enforces constraints to limit the search area to a local 
neighborhood of likely solutions. The use of labeled 
graph nodes introduces further constraints which are 
fully exploited by the MEM model to limit the search 
space. In addition to the explicit enforcement of these 
problem constraints, the MEM model utilizes a 
number of other techniques to achieve its rapid 
convergence and high recognition accuracy. These 
include annealed stochastic search [similar to 
simulated annealing (Kirkpatrick et al., 1983)], 
simultaneous search for multiple objects, a new 
mechanism for adaptive focus-of-attention (through 
rapid synaptic modulation of receptive field location 
and size), and a new method of simultaneous top- 
down and bottom-up multi-resolution hierarchical 
matching. 

In Section 2 of this paper, I describe the details of 
the MEM model. The application of the MEM model 
to visual object recognition is presented in Section 3, 
with simulation results of single and multiple object 
recognition. Current work on the MEM model and 
future research directions are given along with the 
concluding remarks in Section 4. 

2. ELASTIC MODEL MATCHING 

The basic idea behind the multiple elastic modules 
(MEM) algorithm for object recognition is to find 
close to optimal matches between a number of 
previously learned disjoint elastic graphs (deform- 
able models) and the pattern of activity in the visual 
field. The system is organized into three layers as 
shown in Figure 2. The first layer, L0, functions 
similarly to the retina by receiving the input image. 
The next layer, L1, consists of position-sensitive 
feature-specific cells which are followed by the final 
object memory layer, L2, where the model graphs are 
stored. The stored graphs are constructed from a set 
of labeled nodes (neurons) i with feature labels f,-, 
where each feature J} indicates a level of sensitivity to 
a particular local feature (e.g., orientation, color, 
texture, etc.). The nodes of the model graphs, in layer 
L2, are interconnected through a set of connections 
g~j, where g~j = 1 if neurons i and j are connected, and 
g/j = 0 if they are not connected. A set Li is defined to 
represent all the neurons connected to neuron i. The 
relative spatial arrangement of neurons, as defined by 
the stored model graph, can be encoded in the links of 
the connected neurons by a vector 8,-j between each 
neuron i and neurons j E Li. It is important to note 
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FIGURE 2. Two objects are stored in memory (layer L2). They are represented as labeled graphs with spatial relationships enforced 
through 8~ I. The input image is placed on layer LO (retina). The ceils in layer L1 have fixed receptive field connections to cells of layer LO. 
The L1 cells are activated by the presence of specific features (e.g., a shorl horizontal line) at corresponding spatial locations in the 
image plane (LO). The model graphs in layer L2 can receive input from a dynamically changing local receptive field area of cells in layer 
L1. The receptive field of each ceil i in layer 1.2 is specified by the vector ml, indicating its center and rl indicating its radius. The 
dynamics of the MEM algorithm moves the receptive fields of a connected graph towards active celia in layer L1 with corresponding 
feature labels. When the receptive field centers of the model graph neurons ml are properly aligned with ceils in the L1 layer (i.e., having 
similar topological arrangement of feature labels), the receptive field sizes rl of these L2 neurons are reduced causing the network 
attention to focus more closely on the object. This is illustrated by the triangular object in this figure. 

that g# specifies whether or not two neurons are inter- 
relate, and 8 U specifies how they are related. For  
example, 8# = 0  and g# = 1 would indicate that the 
features associated with neurons i and j ,  j~ = "green" 
and J~ = "vertical edge" for instance, should be found 
at the same spatial location. 

There are three primary variables associated with 
each neuron of  layer L2 which are used for locating 
and recognizing objects in the input scene. These are, 
m i, the receptive field center of  neuron i projected 
onto layer L1, r~, the radius of  the receptive field, and 
hi, the level of  locking or binding between neuron i 
and the input. The neural dynamics associated with 
mi in the M E M  model is similar in concept to the 
topology preserving Kohonen's  self-organizing maps 
(Kohonen,1987). The algorithm randomly selects a 
single position sensitive neuron from layer L1 at 
location x with feature sensitivity ~-(x). In order for 
this selected L1 cell to have any effect on any L2 
neuron, it must fall within the receptive field of  at 
least one L2 neuron. To increase processing speed, in 
the simulation results reported in the following 
section, the L1 cell is randomly selected from the 
area encompassed by the largest receptive field ri of  
all L2 neurons. All neurons in L2 whose receptive 
fields encompass the selected L1 neuron, compete 

using a winner-take-all (WTA) mechanism based on 
the distance between their receptive field centers mj 
and the position of  the selected LI neuron x, as well 
as their respective feature similarity. This competition 
can be formally represented as 

In.in l -  : (ll , - xllRC (x>, J )L ( l )  

where m~ is the receptive field center of  the 
"winning" neuron, A is the set of  all competing 
neurons, and R(x,y) is a bounded monotonic  
nonlinear measure of  the similarity between two 
features x and y having a range (0,1), with small 
values of  R denoting close similarity. The multi- 
plicative combination of  the Euclidean distance value 
and feature similarity is one of  many possible 
combinations of  these two terms. This particular 
formulation was used because it offered good 
performarnce (i.e., fast and reliable detection and 
recognition) on simulation experiments. A more 
rigorous analytical evaluation of  the effects of  this 
competition function on network performance is 
planned for a later study. 

The dynamics of  mi is defined by the self- 
organizing rule 
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m ;  ,--  ,n ;  + ,:, Ix - m ; ] ,  (2) 

where a is the update rate of  the winning neuron. In 
the MEM model, the update rate c~ is scaled 
proportional  to the similarity of  the feature labels 
between the winning neuron and the selected L1 
neuron. The closer the similarity, the higher the 
update rate. This is accomplished formally by having 

= ao[1 - R ( ~ ( x ) ,  f~)],  where t~o < 1 is the max- 
imum update rate. In the simulations described in 
Section 3, a relatively large ao = 0.8 value was used to 
achieve rapid recognition. 

A fundamental principle of the MEM model is to 
implement topology preserving dynamics on the 
updating of  the receptive field centers mi of L2 
neurons. More specifically, when a receptive field 
center of  a neuron i is updated, the receptive field 
centers of all its connected neighboring neurons, mj 
with j c Li, should be updated such that the desired 
topological relationships between these neurons, 60, 
are preserved. A novel feature of  the MEM model is 
that unlike other topology preserving self-organizing 
models, such as Kohonen's  SOM (Kohonen, 1987), 
where only those neurons within a specific progres- 
sively shrinking range of  the winning neuron are 
updated, the MEM model updates all the neurons in 
the connected subgraph of  the winning neuron. As 
described earlier, a connected subgraph in the MEM 
model refers to a graph representation of  a single 
object, such as the triangle in Figure 2. The updating 
procedure propagates the change in the neuron 
receptive field center of  the winning neuron m~ 
[given by eqn (2)] throughout the connected portion 
of  the graph while attempting to preserve the 
expected spatial relationships 8ij between the 
neurons. The specific formulation is given by 

Inj(u+ 1) '('--- mj(u+ 1)'{-O';(u+ 1)[lnj(u) -~- I~J(u)j(u+ 1 ) -  n l j (u+ l)] , 

(3) 

where neuron j (u  ÷ 1) E Lu and 0 < u < K -  1 with 
K being the diameter of  the connected graph and u 
the depth of  the graph from the winning neuron, with 
mj(0) =m~.  In other words, after the winning 
neuron's receptive field center is updated according 
to eqn (2), all of  the neurons directly connected to the 
winning neuron (u = 1) are updated according to eqn 
(3) followed by all the neurons connected to these 
neurons (u = 2), and so on following a breadth-first 
propagation strategy. In computer simulations, it has 
been computationally advantageous not  to update 
those neurons which are changed by less than a 
specific threshold level without loss in the accuracy 
and speed of  the recognition process. In addition, by 
limiting the application of  eqn (3) only to those 
neuron receptive fields which are noticeably modified 

(more than 1 pixel for example), the amount  of 
computation used during the "fine-tuning" stages of 
the recognition is considerably reduced causing a 
faster convergence. The update rate of non-winning 

' is dynamically calculated as a mono- n e u r o n s  otj 
tonically increasing nonlinear function of the local 
deformation of  the graph around neuron j,  specified 
by pj. The local graph deformation about a neuron i 
is calculated as 

Y~ II(m, - mj) - ~,A 
j E L i  

Pi = ]Ljl (4) 

One of  the most important  aspects of the MEM 
algorithm is to associate a specific dynamically 
changing receptive field size ri ,  with each neuron in 
layer L2. The size of  the neuron receptive field 
controls and limits the effect of  various input stimuli 
on each neuron. Collectively, all the receptive fields of 
the neurons, associated with a particular model 
graph, determine its focus-of-attention. The larger 
the receptive field of  a neuron in L2, the less likely it 
has bound to a particular input feature. Therefore, 
during the initially random state of  the network, all 
the neurons have very large receptive fields (on the 
order of  the field of  view). As time progresses, the 
neural dynamics will reduce the receptive fields of  the 
neurons to focus in on the areas where correct 
matching is most likely. Recognition is established 
when the receptive field sizes of  all the neurons in the 
model graph are close to zero. If  no sufficiently good 
match is found between the stored models and the 
input scene, the network dynamics will keep the 
receptive fields in a rather large state and the network 
will continue indefinitely to search for a familiar 
object. The receptive field size dynamics associated 
with each neuron i is represented as: 

ri = a(t)pihi + ei + ei (5) 

where a ( t )  is a monotonically decreasing scaling 
parameter, similar to the annealing parameter K used 
in the elastic net algorithm (Durbin & Willshaw, 
1987), ei is an expectation variable which is described 
later in detail, and ei is a small constant specifying the 
minimum receptive field size. It should be noted that 
unlike commonly used annealing schedules which 
converge to zero, in the MEM model, a ( t )  starts at a 
high value and asymptotically approaches a value 
larger than one. In the simulations described in 
Section 3, a value of  a ( 0 ) = 8  and a(oo)=3 were 
selected. More detailed discussion on this parameter, 
as well as others used in the MEM model are given in 
the Appendix. Additionally, the value of  ei for a 
neuron i is set equal to the feature size of its 
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corresponding feature j~. For  example, ifj~ represents 
a small horizontal line being detected by an L1 
neuron, with a fixed receptive field size of  three pixels, 
ei is set equal to 3. 

It can be seen from eqn (5) that the receptive field 
size is a direct function of  the amount  of  local 
deformation pi, scaled by the locking variable hi 
(described in detail below) having a range (0,1). The 
rationale is that we expect a good match between a 
stored graph and the input image to cause only a 
moderate amount  of  deformation of  the elastic graph. 
I f  the local deformation is large, then the network 
probably has not found a good match and should 
have a wide search area. On the other hand, if Pi is 
small, it is likely that a good match is in the local 
spatial neighborhood and the receptive field size is 
therefore reduced dynamically according to eqn (5). 
The variable hi is used to implement a feature 
"locking" mechanism having a small value if neuron 
i is bound to a specific point in the image at spatial 
location mi. This variable reduces the receptive field 
size of  the neuron when the rate of  change in the 
neural dynamics associated with mi falls below a 
certain rate. The value of  hi can be calculated as 

hi : S('ylli) and h' i = S(721i), with 72 < 75, (6) 

where 

dli 
= --~-hh' i + 6h(1 -- hi), (7a) 

and 

d il* arm*. ~'+~(1 -h',). (7b) d--t-=-'c an i 

In eqn (6), S is the sigmoid squashing function of 
the fomi S(x) = 1/(1 + e-X), 71 and 72 are used to 
adjust the gain (steepness) of  the sigmoid functions, 
and li is the output of  a leaky integrator with a decay 
constant ~-h and a constant positive input 6h, as 
defined by eqn (7a). The rate of change in l~ for the 
winning neuron is calculated slightly different as 
defined by eqn (7b). The ratio between rh and 6h 
determines the resting value of hi. For  example, if 
"rh = 6h then hi has a tendency to converge to a value 
of  0.5. The magnitude of  these parameters (7-h and 6h 
determines the convergence rate to this resting value 
(more details on these parameters are given in the 
Appendix). If  a neuron i is never selected as a winning 
neuron, by eqn (1), its corresponding locking value hi 
will over time converge to the resting value 
determined by ~-h and 6h. Such a case will only occur 
if the feature represented by this neuron, ~,  a long 
vertical line associated with the left side of  a rectangle 
for instance, is not within the receptive field of  neuron 

i. This situation arises either by not having the model 
graph's focus-of-attention properly aligned with the 
object in the scene or occlusion of  the feature by a 
different object when proper  alignment of  the model 
graph's focus-of-attention has been established. In 
either case, the locking parameter will have a "non-  
committed" value (e.g., hi = 0.5). On the other hand, 
if neuron i is selected as the winning neuron by eqn 
(1), its locking value is updated according to eqn (7b) 
and (6). I f  the receptive field center mi is close to the 
selected L1 neuron's location x, causing a small 
change in the receptive field center (small dm*/dt) ,  
and the corresponding feature labels [J~ and ~ (x ) ]  
are similar, leading to a large update rate t~, then the 
focus of  attention of  neuron i will be tightened 
around the receptive field center m/. The change in 
receptive field center dm*/d t  is consecutively small, 
only if its locally connected neighbors, j 6 Li, have 
located corresponding matching feature labels in the 
appropriate topological arrangement. In other words, 
when a good local match of  the model graph and the 
input image is found, dmT/dt  will be small. If  the 
local arrangement of  features in the input does not 
match the model graph, large deformation of  the 
model graph will increase the receptive field of  the 
neurons, which in turn leads to a larger rate of  change 
in the receptive field centers dm*/dt.  This will cause 
an increase in the locking parameter values hi which 
further broadens the focus-of-attention of the model 
graph to search for more likely match sights. These 
dynamics are illustrated through a number of  
example simulations in the next section. The 
parameter r* in eqn (7b) is used to adjust the 
maximum amount  of  movement in m 7 tolerated while 
maintaining lock. 

The variable h~ in eqns (6) and (7) is introduced to 
limit the growth and decay of  li; in effect controlling 
the degree of  hysteresis of  the locking parameter hi. 
Since the activation of  L1 neurons (inputs to the L2 
neurons) is performed randomly, the hysteresis of  hi is 
used to keep a locked neuron focused until the next 
time the neuron is selected as the winner. Since we 
expect a neuron to be selected as the winning neuron 
roughly once every N iterations, where N is the 
number of  neurons in L2, the amount  of  hysteresis is 
set to compensate for the effects of  eqn (7a) such that a 
locked neuron will remain locked for at least N 
iterations without being selected by eqn (1), the details 
of  the parameter setting are given in the Appendix. In 
addition this hysteresis mechanism helps avoid 
locking to spurious features by accepting only a 
small movement of  m~. This feature is also helpful in 
the dynamic scene environment where the object 
which has been recognized is slowly moving in the field 
of  view. Small movements in the location of  input 
features, as represented by dm*/dt  will be tolerated 
without losing lock. Therefore, the focus of  attention 
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FIGURE 3. The magnitude of the locking value hn and its 
associated limiting value h; as a function of Ii. As neuron i locks 
to a particular point in the image hi -~ 0. The h; value limits the 
reduction of I~ according to eqn (7). The h; value in effect limits 
the extent of the Ii in either the positive or negative directions. 

for each object will gradually move with the object. 
The implementation of the hysteresis mechanism is 
depicted in Figure 3 and described in its caption. 

Whereas the scaling parameter a(t)  and the 
locking parameter hi are used to shrink the receptive 
field size, the variable ei in eqn (5) is used to expand 
it. This variable controls the "expectation" of neuron 
i in finding a desired feature fi  at location mi. If  the 
desired feature is within the receptive field of neuron 
i, then this neuron will be regularly successful at being 
selected for updates according to eqns (1) and (2). On 
the other hand, the dynamics of the system are 
designed such that if the desired feature is not found 
within the receptive field, its size r i will be gradually 
enlarged until the correct feature is found. This is 
accomplished through the expectation variable ei. 
This variable allows the model to escape from poor 
matches, where only a few neurons in the graph have 
been correctly matched to features in the input in 
search of better solutions. The dynamics of the 
expectation variable is given by 

e, = Q(k,), (8) 

where Q is a bell-shaped function and ki=O, if 
m * =  mi, otherwise (dk i /d t )=  1 (see Figure 4). In 
other words, ki is continuously being incremented, 
which causes the expectation value to grow. If  neuron 
i is selected by eqn (1), ki will be reset to its base value 
of zero and the expectation value will be correspond- 
ingly reduced. As previously stated, each neuron in 
layer L2 is expected to be selected about once every N 
iterations. Therefore, the expectation value remains 

A 

Q( k, ) 

~t¢ N ~k, 
FIGURE 4. The expectation value e~ as a function of Iteration 
counter ka. 

fairly small for about N iterations, where it begins to 
rapidly increase to a large value several times the 
minimum receptive field size e;. However, if the 
neuron is not selected after a relatively long period, 
on the order of several times N iterations, the 
expectation value will begin to decline since the 
expected feature is most likely either missing or 
occluded, hence the bell-shape form of the Q 
function. 

The various steps of the MEM model, along with 
their corresponding computational complexity, are 
summarized below. Note that N indicates the number 
of neurons in layer L2 (number of nodes in all model 
graphs) and M indicates the number of nodes used in 
a single model graph (M could be approximated as 
N/L,  with L being the number of model graphs in the 
memory). In addition, it is assumed that the model 
graphs are sparsely connected. This is a valid 
assumption since most graphs have only local 
interconnections. 

1. Assign random receptive field centers m/ to all 
neurons on layer L2. Note that these could all 
be the same value as demonstrated by one of 
the examples in the next section [complexity 
O(N)]. 

2. Initialize expectation counters ki to zero and 
locking counters li to a large positive value 
[complexity O(N)]. 

3. Initialize the annealing value a(t)  and calculate 
the deformation values pi, expectation values ei, 
locking values h i, and receptive field sizes ri of all 
L2 neurons according to eqns (4), (8), (6), and 
(5), respectively [complexity O(N)]. 

4. Select a random point x on layer L1 falling 
within the receptive field of the layer L2 neuron 
with the largest receptive field size [complexity 
O(1)]. 

5. Perform the WTA operation to select a winning 
neuron according to eqn (1) [complexity O(N)]. 

6. Modify the receptive field of the winning neuron 
m*, according to eqn (2) [complexity 0(1)]. 

7. Propagate the change in location of  mi* through 
the connected portion of the graph using eqn (3) 
to update other receptive field centers m i 
[complexity O(MlogM)].  

8. Increment expectation counters ki and calculate 
locking counter values li according to eqn (7) 
[complexity O(N)]. 

9. Reset the expectation counter of  the winning 
neuron k~ = 0 [complexity 0(1)].  

10. Lower the annealing term a(t)  and update the 
deformation values pi, expectation values ei, 
locking values hi, and receptive field sizes ri of 
all affected neurons according to eqns (4), (8), (6), 
and (5), respectively [complexity O(N)]. 

l l .  Go to step 4. 
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The total computational complexity of the 
MEM model is thus O[z(N+ MlogM)], where z is 
the number of iterations allotted to complete the 
recognition process. In general, z is bounded below 
by N, since each neuron needs to be selected at 
least once. Empirically, z seems to scale as a 
constant multiple of N, with the constant ranging 
from 5 to 20. This multiplicative constant can be 
reduced, by selecting very salient (i.e., informative) 
features in the construction of the model graph. 
This becomes intuitively apparent by considering 
an example where a red colored object is to be 
found in a scene. If the only red object in the input 
scene is the target object, and the model graph 
contains a specific L2 neuron with the label "red", 
then the recognition process will be extremely fast, 
since the red labeled L2 neuron will quickly 
localize the object allowing the other neurons to 
bind to their corresponding points in the image. 

If z can be assumed to be a constant multiple of N, 
as discussed above, and M be considered as a 
constant relative to N, the total computational 
complexity of the MEM model can be simplified to 
O(N2). This simplification specially holds when there 
are many objects in the memory (M << N). Parallel 
processing can be utilized to decrease the computa- 
tion time of the model. The compute intensive 
portion of the model is the calculation of distances 
between x and all N neurons in L2 and the WTA 
operation (step 4 above), in the main loop of the 
algorithm. These basic operations are inherently 
parallel and are commonly used by other neural 
networks [e.g., Kohonen's SOM (Kohonen, 1987)]. 
The distance calculations can be performed entirely 
in parallel, on an architecture with N processors. The 
WTA calculation can then be performed in constant 
time with certain parallel architectures (Shu et al., 
1991; Shams & Gaudiot, 1995). Thus, with an N 
processor machine, the computation can be per- 
formed in O(N) time, if all L objects in memory are 
to be recognized. If only a small subset of the known 
objects are present in the scene (a reasonable 
assumption for large scale systems) a much smaller, 
and relatively constant, computational time of O(M) 
might be possible with (z ~ O(M)). This scaling 
property seems to be in line with biological vision 
whose recognition rate does not slow down with 
learning of new objects. 

3. SIMULATION RESULTS 

The performance of the MEM algorithm was 
evaluated on the task of automatic identification of 
an object in a natural, cluttered scene. The input 
image captured a desktop scene containing a toy jeep 
along with a number of other partially occluded 
objects under poor lighting conditions. The model 

graph was generated from a simple line drawing of a 
jeep being viewed from a perspective similar to the 
input image. The line drawing representation of an 
object is at a fairly high level of abstraction. The basic 
features which can be obtained from such a 
representation are oriented edge information and 
their relative spatial distribution. Other target specific 
features, such as color and texture, can be incorpo- 
rated into the model graph if the a priori information 
is available. In order to keep the model as general as 
possible, I chose to limit the model graph to consist of 
only oriented edge features. This representation 
allows for recognition of "jeep-like" objects ranging 
from sketch drawing of a jeep, to toy jeeps, and even 
to "real" jeeps. 

Working at the line drawing level of abstraction 
does inherently introduce robustness to small shape 
variations. For example, the line drawing used to 
generate the model graph of Figure 5a, assumed that 
the jeep's windshield is composed of two distinct 
windows separated by some distance. It also further 
assumed certain proportions (length versus width of 
the hood for example) which were not in exact 
correspondence with the actual toy jeep in the input 
image. However, the network dynamics tolerated 
these local deformations through the available slack 
in the elastic connections between the feature nodes. 

As mentioned in the introductory section, pre- 
sently, model graphs are not learned; they are directly 
stored in model memory (layer L2). To carry out the 
present experiments, a heuristic procedure was used 
to construct a model graph from the line drawing 
based on the orientation and relative relationship of 
the line segments (see Figure 5a). The expected edge 
orientations are directly extracted from the line 
drawing without the use of any image processing 
(e.g., oriented edge filters). Two types of neurons 
were used in the construction of the model graph. The 
first, shown as small green asterisks, are sensitive to 
small oriented edges in the input, while the second, 
shown as large red asterisks, are sensitive to larger 
oriented edges. Neurons corresponding to the red 
asterisks have a large receptive field size and can 
therefore search the entire image. Since the red and 
green asterisks are connected by an elastic connec- 
tion, when a candidate coarse-grain feature is selected 
for match, the related fine-grain feature detecting 
neurons are also "dragged" to a close spatial 
neighborhood of the coarse-grain neuron. If the 
correct match is in this local neighborhood, the fine- 
grain neurons will converge to the appropriately 
labeled points in the image. Otherwise, the fine-grain 
neurons will move in a different direction, causing an 
increase in the local deformation of the graph and 
therefore halting the coarse-grain neuron from 
following a false trajectory. Use of this approach 
allows for a simultaneous multi-level hierarchical 
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search for large and small features by alternately 
selecting coarse-grain and fine-grain input L1 
neurons for presentation to the L2 neurons. 

Each L2 neuron at a specific layer of this hierarchy 
is connected to its small local neighborhood of  
neurons, with the coarser-grain cells having longer 
range connections. By employing many fine-grain 
features in the model graph, the robustness to scale, 
distortion, and perspective changes are increased 
since small, but smooth, deformations in many cells 
can lead to a large global deformation. This is similar 
in concept to linear approximation of  a curved line 
with a large number of  linear patches. In addition, by 
using multiple nodes on a single line, the system 
robustness to occlusion is enhanced considerably. 
For  the jeep example of  Figure 5, I found that by 
using only 30% of  the L2 neurons (maximum of  three 
nodes for any line segment), I can consistently 
produce correct recognition in the scene shown in 
Figures 5b-d. The more complex model graph is used 
in this paper to demonstrate the power of  the 
algorithm. 

A key feature of  the MEM approach to object 
recognition is that the entire model graph, at all levels 
of  the hierarchy, is used for the search. A more 
conventional approach might use coarse-grain 
features in the initial stage of  processing to localize 
on a likely match area and then proceed with more 
fine-grain matches. This approach can be readily 
implemented in the MEM model by only activating 
L1 neurons representing coarse-grain features until a 
certain confidence level has been reached, as indicated 
by the locking values. The fine-grain-feature detecting 
neurons of  L1 can then be activated to complete the 
match. I chose not to implement this scheme for a 
number of  reasons. One, a sequential coarse to fine 
grain search requires additional ad hoc parameters 
and thresholds to know when to transition from one 
level to the next. Two, an additional control 
mechanism (Grossberg, 1976; Olshausen et al., 
1993) would be required to exclude previously 
unsuccessful coarse-grain matches (those who failed 
to produce sufficient fine-grain correspondences) 
from being selected in the proceeding search 
iterations. The interleaved coarse-grain/fine-grain 
search used in the MEM allows for fast convergence 
onto the target since neurons of  both levels aid each 
other in moving towards a good match and they 
would disagree when the move is in a false direction. 

The input image was processed using oriented 
gabor filters with 12 different orientations (spaced at 
every 15 °) at two different scales (Buhmann et al., 
1989). This processing implements the feature- 
sensitive cells of layer L1 generating for every pixel 
in the input image a 12-dimensional vector encoding 
the presence or absence of  specific small-scale oriented 
edges, and similarly a 12-dimensional vector for 

alternating pixels detecting larger-scale features. The 
gabor kernel of  the small-scale feature detecting L1 
neurons represents an approximately three pixel wide 
receptive field, and the large-scale feature detecting 
neurons represent an approximately six pixel wide 
receptive fields. The large-scale features are sub- 
sampled, by using one fourth the number of  small- 
scale feature detecting cells. This subsampling is 
feasible since the large-scale features have larger 
receptive fields. In the example image shown in Figure 
5b-d, slightly over 10,000 fine-grain and over 3000 
coarse-grain feature cells were active (having outputs 
greater than a predefined threshold), representing a 
123 to 13,000 node subgraph isomorphism problem, 
as discussed earlier in Section 1. Figure 6 shows a 
sample of  the response values to 0 ° and 90 ° fine- and 
coarse-grain edge detecting gabor filters taken from 
the scene shown in Figure 5. Each pixel in these images 
corresponds to an active cell with the response 
magnitude proportional to the darkness of  the pixel. 

The use of  gabor filters was partially motivated by 
their biological plausibility in addition to their simple 
control over size and orientation specificity. These 
filters can also be used to detect specific textures, but 
this feature was not utilized in these experiments. It 
should be made clear that the gabor filter is used only 
once at the initial stage of  the algorithm to determine 
the pattern of  activity in the L1 layer. During the 
iterative portion of  the algorithm, the magnitude of  
the initially calculated responses is used to simulate 
the L1 layer neurons. In a real-time dynamic 
application, a fast parallel pre-processor can be used 
to continuously update the L1 layer neurons as 
objects move in the scene. 

The MEM algorithm starts by assigning random 
values to each neuron's receptive field center mi. Due 
to this random initial state, there is a great amount  of 
local deformation of the model graph, as defined by 
eqn (4), leading to large receptive fields for all 
neurons in the network. The MEM dynamics will 
quickly self-organize the neurons in L2 into a much 
less deformed version of  the model graph (see Figure 
5b). Random points in the feature plane (layer L1) 
are activated sequentially to attract appropriate 
points of the model graph (layer L2). The network 
will generally locate the object within a few hundred 
iterations, where one iteration is a single activation of  
a randomly selected L1 cell. The network will then 
start to fine-tune the connections to align all the fine- 
grain neurons with their corresponding points in the 
image plane. Cells in the L1 layer are selected in a 
manner which alternates between coarse-grain and 
fine-grain feature detectors. This procedure results in 
a simultaneous top-down and bottom-up search. This 
method was selected to improve system robustness in 
the presence of  both high and low frequency noise. 
The state of  the network after 4000 iterations is 
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FIGURE 6. Example responses o! L1 cells to the scene of Figure 5. (a) Output of cells sensitive to fine-grain horizontal edges. (b) Output 
of cells sensitive to fine-grain vertical edges. (c) Output of cells sensitive to coarse-grain horizontal edges. (d) Output of cells sensitive to 
coarse-grain verUcal edges. 

shown in Figure 5d. The time evolution of the system 
as represented by the sum of all the neuron locking 
values is shown in Figure 7. In these simulations, the 
resting value of the locking term h i w a s  set to 0.5 via 
the rh and ~h parameters, described in the previous 
section. A neuron was considered locked if its locking 
value hi reached below O. 1. An object was considered 
locked when the sum of all locking values, associated 
with the object, fell below O.1M, where M is the 
number of nodes in the object's model graph. It 
should be emphasized that in the MEM model, the 
locking effect is not binary (locked/unlocked), rather 
there is a continuous range of values between full lock 
and full unlock. Nevertheless, the gain parameter 71 
of the locking value's sigrnoid function [eqn (6)], can 
be adjusted to approximate a discrete valued locking 
function. 

It is a unique feature of the MEM algorithm to 
escape poor local matches in search of better 
solutions. A common technique used for escaping 
local minima is the simulated annealing algorithm 
(Kirkpatrick et al., 1983). With this approach, the 
global system temperature parameter is gradually 
reduced, based on a fixed cooling schedule. In the 
MEM algorithm, the receptive field size acts 
analogous to the temperature parameter of simu- 
lated annealing. In effect, the MEM approach 
implements a non-homogeneous temperature field 
where the neurons with "good" matches are at a 
much lower temperature, compared to those with 
"poor" matching. Due to the nature of the receptive 
field size calculation [eqn (5)], the temperature 
gradient is smooth and does not change abruptly 
between adjacent neurons, thus allowing for a 
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FIGURE 7. Sum of ell the locking values in the graph as a 
function of time. After roughly 500 iterations, the network has 
localized the Jeop at a coarse level. After 2000 iterations the 
network has locked to the input image and proceeds to further 
"fine-tune" the match. 

smooth traversal of the energy space through a self- 
annealing process. Consequently, the locking values 
modulate the local temperature level, as defined in 
eqn (5). Low locking values hold the local 
temperature down (even in the presence of local 
deformations), while high locking values allow the 
local temperature to increase. In the MEM model, 
the dynamics of the locking parameter do not follow 
a monotonically decreasing "cooling schedule" and 
therefore the system temperature can indeed increase 
if a good solution is not found. This effect is 
illustrated in the example shown in Figure 8. Here 
the jeep model graph of Figure 5a is used to locate 
a jeep in a scene with no jeep-like object. The 
resting level of the locking values where set to 0.33 
through parameters rh and 6h. This lower resting 
level, from the previous experiment, was used to 
emphasise the non-monotonicity of the locking 
values. As shown in Figure 9, the network never 
locks to any part of the scene since the expected 
arrangement of features, defined by the model 
graph, is not found in the input. The dynamics of 
this example are quite interesting. The network 
makes a hypothesis that the vertical edges generated 
by the propeller are to be associated with one side 
of the jeep (Figure 8a). However, since other 
neurons in L2 are not successfully bound to 
neurons in L1, the network will quickly abandon 
that hypothesis and try a different one, such as 
associating the airplane wing with the horizontal 
edge of the jeep's hood line (Figure 8b). This 
process continues indefinitely, since there are no 
jeeps in the image. 

It should be noted, however, that there is a 
tradeoff between robustness and "false" detection. 
As stated earlier, the interconnection links between 

features are elastic and their elasticity can be 
increased to allow for larger distortions in the input 
image, and thus improve robustness to changes in 
perspective and size. However, this same feature will 
allow the network to satisfactorily lock onto a "jeep- 
like" object that is not a jeep, a pick-up truck for 
example. In order to increase the certainty in the 
match, stiff interconnection links can be used. If these 
links are set to hard non-elastic connections, the 
network will implement a basic edge matching 
operation, similar to a direct correlation of the edges 
in the model with those in the input, with the 
exception that the search is performed stochastically 
by the MEM model instead of being scanned. 

As stated in Section 1, it is my intention to 
incorporate a hierarchical learning mechanism in the 
MEM model. With such a learning procedure, a 
model graph similar to Figure 5a will be learned 
through repeated observation of jeep-like objects, 
such as jeeps, pickup trucks, etc. The elasticity of 
interconencting links of this graph will be relatively 
large. Further training can generate specific nodes to 
differentiate between jeeps and pickup trucks. The 
interconnection links between jeep specific, as well as 
pickup truck specific, graph nodes will be stiffer, since 
more detailed a priori  knowledge is available. With an 
appropriate learning algorithm, the link elasticities 
can be automatically learned by the network 
depending on experience. 

Another unique feature of the MEM algorithm is 
its ability to simultaneously search for multiple 
objects. This feature has a number of important 
benefits over sequential matching of multiple objects. 
First, the computation associated with detection and 
recognition of multiple objects will be inherently 
parallel, greatly simplifying the task of implementa- 
tion on parallel processing hardware. More impor- 
tantly, simultaneous search speeds up the recognition 
process by dividing the search space into regions of 
most likely match between each object and the input 
scene. In other words, it should be easier to recognize 
a familiar object in a scene with other familiar 
objects, than a scene cluttered with unfamiliar 
objects. In order to demonstrate the simultaneous 
multiple object recognition characteristic of the 
MEM model, a new scene with multiple objects, 
including a toy jeep and a toy tank, was utilized. The 
jeep in the image was partially occluded by another 
object (see Figure 10). A new model graph for a tank 
was generated using a CAD line drawing, Figure 10a, 
and added to the model graph memory. These two 
disjoint graphs correspond to neurons of layer L2 in 
Figure 2. Multiple frames of the time evolution of the 
network are shown in Figure 10b--d. The initial 
configuration of all neuron receptive field centers mi 
were set equal to each other with all mrs pointing to 
the center of the image. It can be seen in Figure 10b 
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FIGURE 9. Sum of all the locking values as e function of time. The network repeatedly loses its attempt at locking to the input because of 
Insufficient correspondence between the expected arrangement of features, given by the model graph, and the input scene activation of 
L1 cells. 

that the L2 neurons quickly self-organize into a jeep- 
like and a tank-like arrangement, according to the 
stored 8ij values, and begin converging toward the 
appropriate points in the image (see Figure 10c). 
Note that the expected tank model is shorter in the 
x-direction and longer in the y-direction from the 
input image and the network dynamics appropri- 
ately deform the model graph to fit the data. 
However, the corresponding L2 layer neurons of 
the tank model were slower in converging due to 
this larger deformation. After 1000 iterations, the 
network has localized the objects and proceeds 
with "fine-tuning" of the match. By 4000 iterations, 
almost all L2 neurons have fully locked and the L2 
neuron receptive field centers are aligned properly 
with neurons in the L1 layer. The time evolution of 
the network, based on the sum of all locking values 
from both model graphs, is shown in Figure 11. 

The simulation results reported in this section were 
implemented on a Sun Sparc-10 workstation. The 
simulation code was written and executed using the 
MatLab development package. The implementation 
code had many inefficiencies and incorporated 
repeated time consuming graphic updates which 
were tolerated in order to quickly establish a proof 
of concept design. Under these conditions, the wall 
clock execution time of the algorithm was approxi- 
mately 5 ms per iteration per number of L2 neurons. 
Therefore, approximately 2 min were required to 
reach the 200 iterations point of the 123 node jeep 
graph shown in Figure 5b, and about 40 min to reach 
the 4000 iterations point shown in Figure 5d. A 

speedup factor of 10 seems quite plausible by simply 
optimizing and compiling the code on the same serial 
hardware. 

4. DISCUSSION 

The MEM model is a new method for rapid 
optimization in a large state space. In this paper I 
have demonstrated its use in visual object recognition 
through optimization of the spatial alignment 
between expected and input edge features. In this 
application, the dynamics of the MEM model are 
used to converge to solutions with the labeled nodes 
of the model graph being spatially aligned with 
similarly labeled features extracted from the input 
image, while tolerating a certain amount of local 
deformation of the model graph. Although the MEM 
model currently only deals with 2-D shapes, 
extensions to 3-D object recognition can be con- 
ceived by utilizing 3-D model graphs. In such an 
implementation, properly weighted lateral connec- 
tions between L2 neurons, for communication of the 
locking values, can aid in recognition and determina- 
tion of the perspective view of the object. The basic 
mechanism will remain similar except it will involve 
simultaneous searching in feature space as well as 
orientation and perspective rotation spaces. Since the 
basic optimization principle of the MEM model is 
regularization in different modalities, only a few 
perspective graphs will be needed to define a 3-D 
object, thus alleviating a need for a large number of 
redundent neurons to define a single model graph. 
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FIGURE 11. Sum of all the locking values, from both the Jeep and tank graphs, as a function of time. The network converges smoothly to a 
Ioc;-ed state by finding both objects In the scene. 

The MEM model can allow for moderate deforma- 
tion of this graph in perspective space to interpolate 
between the stored perspective views (Poggio & 
Edelmann, 1990). Similarly, the MEM model can be 
extended to allow for scale invariance by concur- 
rently searching scale space along with feature space. 
Recent experiments in combining simultaneous 
searches in feature and scale space have been very 
encouraging, allowing for translation, size, and 
distortion invariant object recognition, without 
significant addition in convergence time and compu- 
tational requirements. Further work in this area is 
anticipated to include the addition of orientation and 
3-D perspective invariances. It is also possible to 
extend these ideas further by searching abstract 
spaces [e.g., shape space (Cutzu & Edelman, 1995)], 
since there can be a smooth measurable space 
spanning various objects. This scheme will allow the 
system to recognize an unfamiliar object and know 
that it is "something between a pickup truck and a 
car", for example. 

One of the major contributions of the MEM 
algorithm is to incorporate a dynamic focus-of- 
attention mechanism. This mechanism is implemen- 
ted through appropriate dynamics of neuron recep- 
tive field location and size values which allow the 
network to quickly zero-in on good matches and 
escape poor ones. The performance of the MEM 
model is further enhanced by having feature node 
labels along with receptive field locations implement- 
ing a top-down expectation, which is recurrently 
coupled with the feature activation information being 
propagated from the input bottom-up. This can be 
viewed as generating hypotheses on the top-level and 

having low-level activations verify or reject the 
hypotheses (Arbib, 1989). In current experiments, 
explicit feedback connections are being tested to 
increase the probability of activation of L1 neurons 
according to the expectation level of L2 neurons 
(specified by their receptive field location and size). 
This type of processing is reminiscent of bi-level 
recurrent neural networks like adaptive resonance 
theory (ART) (Grossberg, 1976) and bidirectional 
associative memory (BAM) (Kosko, 1988). 

The reliance of the MEM model on local spatial 
relationships of features makes it especially suitable 
for tracking moving objects by requiring only 
minimal computation to modify the receptive field 
locations mi from frame to frame. This feature has 
already been verified on a target tracking problem 
(Shams, 1995). Integration of multiple sensory 
information, such as infrared and visible sensors, in 
advance automatic target recognition (ATR) applica- 
tions, can also be easily implemented in the MEM 
model by having appropriate node labels used in the 
construction of the model graphs. Their integration 
can be trivially implemented through the 8ij matrix. 
The current state of the MEM model is applicable to 
a wide range of ATR missions where the expected 
angle of approach, size, and orientation of the target 
is known to a certain degree. It is important for 
future advance mission management capabilities to 
allow for real-time changes in the approach trajectory 
where 3-D perspective and size invariance will be 
more demanding. 

There are a number of additional benefits inherent 
in the graph representation presented here which 
remain to be developed. Hierarchical organization of 
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(c) State of the network after 200 iterations (d) State of the network after 4000 iterations 

FIGURE 5. The MEM algorithm used to find a toy jeep in a cluttered scene. (a) The line drawing (dark blue), made by a CAD tool, was 
processed using a heuristic algorithm to generate fine-grain (small green asterisks) and coarse-grain (large red asterisks) oriented 
edge locations. The fine-grain nodes are interconnected to small local neighborhood (light blue lines) and the coarse-grain features are 
interconnected to a larger neighborhood (red broken lines) of nodes. (b) Spatial arrangement of L2 neuron receptive field centers ml 
overlaid on the input image after 60 iterations. (c) After 200 iterations the receptive field centers are distributed similar to the model 
graph seen in (a). (d) After 4000 iterations the majority of neurons have locking values below 0.1 indicated by the red inter-node links. 
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(a) Network state after 600 iterations (b) Network state after 3920 iterations 

FIGURE 8. Finding a Jeep in an image without a Jeep will never converge. Many hypotheses are tried, then abandoned having received 
insufficient supporting evidence from the L1 neurons. 
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(a) Model graph generated from line drawing (b) State of the network after 40 iterations 

(c) State of the network after 200 iterations (d) State of the network after 1000 iterations 

FIGURE 10. The MEM algorithm used to simultaneously find a toy jeep and a toy tank in a cluttered image. The jeep is partially occluded 
by a tape dispenser. (a) The CAD drawing of the tank (dark-blue lines) and associated feature nodes with their expected inter- 
relationships; green asterisks indicate fine-grain features and red asterisks indicate coarse-grain features. (b) Spatial arrangement of 
L2 neuron receptive field centers ml overlaid on the input image after 40 iterations. (c) After 200 iterations the receptive field centers 
from the jeep and tank model graphs are moving towards their respective objects in the image. (d) After 1000 iterations both objects 
have been found and most of the neurons associated with the jeep are locked to the image. 
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data can be easily implemented through the use of 
multi-layer graphs. High-level concepts or schema's 
(Arbib, 1989) can be activated through the propaga- 
tion of locking parameter values. This procedure will 
allow construction of graphs where a "jeep" neuron 
and a "car" neuron will both be active. The 
activation of these neurons will arise from the 
proper activation of the hood, tire, door, and 
windshield neurons having been activated in a 
specific spatial arrangement which have themselves 
been activated based on specific arrangement of 
finergrain features (from layer L1). In addition, 
more biologically plausible extensions to the MEM 
model are currently under investigation. 
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APPENDIX 

The MEM model utilizes a number of parameters to control its 
internal dynamics. Many of these parameters have physical 
meaning associated with them; others can be determined by 
specific application requirements. In this appendix a detailed 
description of these parameters and their effect on the network 
dynamics,are presented. 

1. Parameters controlling the receptive field size. The receptive 
field size of a neuron i is represented as r ,  is defined by eqn (5). All 
the terms in this equation, except for a(t) and e~, are dynamically 
calculated by other variables in the system. Therefore, the user only 
has to specify the minimum receptive field size c~ and the scaling 
value a(t). As discussed in the paper e~ is set equal to the receptive 
field size of the feature detecting LI neurons with similarly labeled 
features. The scaling parameter a(t) is set such that at t= O, the 
receptive field size of all neurons can cover the entire image. The 
magnitude of this variable is directly related to deformation 
measure p~. By redefining p~ to be normalized as 

Y ] l ( m ,  - ms )  - 8,sll  
jEL~ 

Pi = E 8ij 
jELt 

(A.l) 

we can ensure that a constant value for a(t) can be used for any 
arbitrary shaped model graph. In fact, I have used a constant 
a(t )=5 value for many simulations with good recognition 
performance. 

2. Parameters controlling the receptive field center updating. The 
update rate parameter a, as discussed in the paper, is directly 
calculated from the similarity function R(x, y) and the maximum 
update rate ao. The smilarity function was implemented as a 
normalized inner product of feature vectors x and y (indicating the 
cosine of the angle between the two feature vectors). The maximum 
update rate C~o can be set to any value less than 1. I found that 
values in the range 0.7-0.8 seem to work best for most of the 
simulations. 

The updating rate of neighboring neurons a~ are dynamically 
calculated based on a predefined elasticity value for the links and 
the amount of deformation in the graph. What is required is to 
have high tension when the graph is much deformed and little 
tension when its slightly deformed. This can be implemented as: 

, ap~ (A.2) 
P~ + ~/i 
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where r h is used to control the elasticity of  neuron i. A different 
approach was used for the simulations described in the paper by 
defining the update rate as: 

o'~ = aS[(l  - h,)(p, - r/,)] (A.3) 

where S is the sigmoid nonlinearity having the range (0,1). This 
formulation changes the elasticity o f  the links as a function of  the 
locking value. If  the neuron is locked, small movements < ,7, do not 
move the receptive field center of  neuron i. On the other hand if the 
neuron is not  locked at all (h, = 1), then a[  = 0.5 regardless of  the 
local deformation p~. The only parameter which needs to be 
manually adjus~e6 in both cases is r/~. In the simulations this value 
was set equal to 2e~. 

3. Parameters controlling the locking values. The control o f  the 
locking values is the most important,  and delicate part of  the M E M  
dynamics. However, in many applications, where the target o f  
interest can be easily discriminated from the background (having a 
novel feature) this variable can be completely removed (set all 
h~ = 1) with little effect on the recognition rate. The significance of  
this value is that it enables the system to have a measure of  
"confidence" in the recognition. There are five free parameters that 
must be specified by the user in eqn (6) and (7), namely ~,~, 72, ~h, 
r ' ,  and ~h. Other parameters, such as a,  h~, l~, and (dm~/dt) are 
dynamically calculated. There are a number of  constraints and 
interdependencies between the free parameters that can help 
simplify the parameter selection process. The first step in this 
process is to understand the effect o f  these parameters on the 

locking value h,. As discussed in the paper, the auxiliary variable h'~ 
is used to limit the growth and decay of  h~ and is itself a direct 
function of  the internal integrator value I,. In order to calculate the 
steady state value ofh~, we can set (d lddt )  = 0 in eqn (7a). Then we 
can define Ph = ( rh/ /~)  and a = (71/72), and with some algebra 
determine the steady state value of  hi based on Ph and a as 

/~i = S [oS- |  ( p h - ~ )  ] , (A.4) 

S -t is the inverse if the sigmoid function defined as 

A suitable value for/~i will be in the range 0.3-0.5. 
4. Pararaeters controlling the expectation values. The only user 

definable parameter for the expectation variable [(eqn. (8)] is the 
shape of  the function Q. The basic shape of  the function is given in 
Figure 4 of  the paper. A specific formulation of  this function, which 
was used in my simulations, is 

10~ 
Q(k,) = l + [(k~ - 3N)/N] 4" (A.5) 


