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ABSTRACT 
In this study, simple models are provided to determine the heat transfer parameters 
in terms of the thermal diffusivities and heat transfer coefficients during heating of 
spherically shaped particles. A center temperature distribution of a spherical brick 
particle was measured and employed. The lag factor and heating coefficient are 
obtained and incorporated into the present models. The dimensionless theoretical 
center temperature distribution was computed using the obtained heat transfer 
parameters and compared with the experimental measurements. In the comparison, 
a very good agreement was found. As a result, we presented an approach and hence 
developed simple and accurate models. In this respect, we believe that these models 
will be beneficial to people and industry involved in practical heating applications. 

Introduction 

Transient heat transfer takes place in many engineering applications ranging from hot 

processing of metals to food-cooling. An exact analysis of transient heat transfer during cooling 

or heating of solid objects is required to improve the processing conditions, and to save the energy, 

leading to high quality products. In this regard, the ultimate objective is to develop simple and 

accurate, as well as practical heat transfer parameter models and techniques over the complex 

techniques and methods. 

In the analysis of the transient heat transfer, three important criteria are considered, 

namely, Bi<0.1,0. l<Bi< 100, and Bi> 100. Within these criteria, the case of 0. l<Bi< 100 is the most 

realistic and practical. 
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The main purpose of this paper is to obtain simple and accurate models for the heat transfer 

parameters during heating of spherical metals, and to estimate the theoretical center temperature 

distribution by using the heat transfer parameters determined here. 

Model l in~  

Consider that a spherical particle is heated by the air stream. Heat is transferred by 

convection and radiation from the surroundings to its surface and by conduction within the metal 

object from the surface to the interior of the object. Under the following assumptions, for example, 

constant thermal and physical properties of the homogeneous and isotropie object and the heating 

medium, no internal heat generation, and constant object initial temperature and medium 

temperature, the governing time-dependent heat conduction for a spherical particle in terms of the 

excess temperature (i.e., ~)=T-Ti) can be written as 

[(8~/0r 2) + (2/r)(OO/3r)] = (1/a)(3q~/3t) (1) 

and the boundary conditions can be taken, respectively, as 

q)(r,0) = 0i = (T,- Ti); Q(0,t) = finite or (3¢(0,t)/Or) = 0; and k[3¢(R,t) /3r]  + h¢(R,t) = 0. 

The general solution to this problem by the laplace transform technique or the separation of 

variables is available [1-3]. Therefore, the center transient temperature distribution in the 

dimensionless form results as follows: 

o o  

0 = Z AnBn (2) 
n=l 

where 

An = [(-l)n+t(2Bi)((Bi - 1) 2 + gn2)lP-]/[gn 2 + Bi 2 - Bi] and Bn = exp(-gnWO). 

It is possible to simplify Eq.(2), we can consider that the values of the Fourier number 

higher than 0.2 reflect the entire heating process, (i.e., other remaining terms are negligible) and 

take n=l .  Eq.(2) then becomes 

0 = A~Bj (3) 

where 

A1 = [(2Bi)((Bi - 1) 2 + gj2)l/2]/[g12 + Bi 2 - Bi] and Bl = exp(-BlZFo). 

The following dimensionless quantities are introduced: 

Bi = (hR/k) (4) 

Fo = (at/R 2) (5) 
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0 = (T - Ta)/(Ti - T~) (6) 

The dimensionless center temperature distribution of a spherical object subject to heating, 

as being in a cooling process, in terms of the lag factor and heating coefficient (in the heating case), 

is written as follows [4]: 

0 = Lexp(-Ht) (7) 

The value of AI is simplified to [5]: 

A~ = L = e x p [ ( O . 7 5 9 9 B i ) / ( 2 . l  + Bi)] (8) 

The characteristic equation for Eq.(2) is pnCotg~n = (1 - Bi), this equation is simplified to 

the following correlations developed earlier [6]: 

P~l = [(1.12)ln(4.9Bi + 1)] 1/I.4 for 0.1<Bi<10 (9) 

P t  = [ ( 1 . 6 6 ) l n ( 2 . 2 B i  + 152.4)] l/l.2 for 10<Bi<100 (10) 

Under the consideration of AI=L, after equating Eqs.(3) and (7), (llflFo)=(Ht) is found. 

After substituting the Fourier number into this equation, the following thermal diffusivity model in 

terms of the heating coefficient is obtained: 

a -- (HR2/BI 2) (11) 

After inserting the Biot number equation into Eq.(8), the following heat transfer coefficient 

model in terms of the lag factor is obtained: 

h = (k/R)[(2.11nL)/(0.7599 - lnL) (12) 

Experimental 

The experimental apparatus and procedure used for the present investigation is similar to 

that explained earlier by Kilic et al. [7]. But for this investigation, five spherically shaped brick 

particles at an average diameter of 0.03 m were formed by grinding from larger pieces of the fire 

brick, and used as test samples. The particles, fixed on a handle, had a tiny hole of 0.5 mm diameter 

into which the thermocouples of 0.1 mm diameter were well-inserted at the centers of the samples 

and heated up to 860°C in a fluidized bed combustor at the medium temperature of 860°C. During 

the heating process, their center temperatures were measured and recorded, and then averaged for 

data analysis. This center temperature distribution was used to verify the present heat transfer 

parameter models. 

Results and Discussion 

The temperature measurements during heating of the spherical brick particles (D=0,03+ 
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0.0005 m) in a fluidized bed combustor at Ta=860-+5°C and ua=0.85 m/s were carried out. The 

measured temperature distribution at the center of an individual particle was non-dimensionalized 

using Eq.(6). Then, this dimensionless center temperature distribution was regressed in the form of 

Eq.(7) by means of the least squares method (Fig. 1). The lag factor and heating coefficient were 

determined as: L=1.44 and H=0.061 1/s with a high correlation coefficient of 0.958. The thermal 

conductivity of the particle was measured to be 1.1 W/mK. After extracting the Biot number from 

Eq.(8), the Biot number was calculated to be 1.92. The characteristic value was calculated from 

Eq.(9), due to the value of the Biot number between 0.1 and 10, i.e., g1=1.99. Then, the thermal 

diffusivity and heat transfer coefficient were determined by using the present models, i.e., Eqs.(l 1) 

and (12), as a=3.47x10 -6 m2/s, and h=140.8 W/m2K. As evident, the Biot number is 1.92 and this 

shows that there are the minor internal and major external resistances to the heat transfer from the 

air-flow to the particle. This also supports the criterion considered in the modelling. We introduce 

an application of the models. The dimensionless theoretical center temperature distribution is 

computed from Eq.(13). This is the same as Eq.(3), but only here 0=1 - (T - Ta)/(Ti - Ta) due to the 

common use, and the dimensionless experimental temperatures were obtained from this equation 

using the center temperature measurements. In the form of Eq.(3), the temperature profile decreases 

with the Fourier number, in the form of Eq.(13), and this profile increases with the Fo. 

e = 1 - AIBI (13) 

The measured and computed dimensionless center temperature profiles are shown in Fig.2. 

As can be seen, in this case, the measured and computed temperature curves increase with an 

increment in the Fourier number. The computed temperature values were not accurate for the 

Fourier numbers between 0 and 0.1, due to the negligence made in the modelling by taking the 

Fourier number values higher than 0.2. But in this problem, 0.1 is enough to make the first term 

approximation. In light of this result, we can say this period (Fo=0-0.1) took 6.4 seconds and is 

5.8% of the total heating period. After Fo=0.3, the maximum difference between the measured 

and computed temperature values is within the error line of +2.0%. This shows a remarkably good 

agreement for this comparison. The results indicated that the present models are the simple tools to 

determine the thermal diffusivities and heat transfer coefficients for the spherical particles subject 

to heating in any medium. On the other hand, it is possible to extend this method for regular and 

irregular shaped particles. But there is a need to calculate some geometric indexes. 
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FIG. 1 
Measured and regressed dimensionless center temperature distributions 

for a spherical brick particle being heated 
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FIG. 2 
Measured and computed dimensionless center temperature distributions 

for a spherical brick particle being heated 
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Conclusions 

An analysis of  transient heat transfer during heating of  an individual spherical particle was 

carried out. An experimental  investigation was conducted to measure the center temperature 

distribution of  the individual spherical brick particles exposed to heating in the fluidized bed in 

the air f low at the temperature of  860°C and the flow velocity of  0.85 m/s. The models were 

developed to determine the heat transfer parameters in terms of  the thermal diffusivity and heat 

transfer coefficient  for the spherical solid particles subject to heating. The theoretical center 

temperature distribution was computed by using the present results (a=3.47x 10 -6 m2/s, and h= 140.8 

W/mZK) and compared with the experimental  measurements. A great majority of  these data were 

within +_2%. This shows that a remarkably good agreement was found. We can conclude that the 

present models  are capable of  determining the heat transfer parameters in a simple and accurate 

manner for practical applications. 

Nomenclature 

Subscripts 

a = medium 

i = initial 

n = nth number 

1 = 1st number  

a = thermal diffusivity, m2/s 

A,B = constants 

Bi = Biot  number 

D = diameter,  m 

Fo = Fourier  number 

h = heat transfer coefficient,  W/mZK 

H = heating coefficient,  1/s 

k = thermal conductivity,  W/InK 

L = lag factor 

r = radial coordinate 

R = radius, m 

t = time, s 

T = temperature, °C or K 

u = average air-flow velocity,  m/s 

Greek Letters 

= temperature difference, °C or K 

0 = dimensionless temperature 

g = root of  transcendental equation 
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