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The Annals of Statistics 
1982, Vol. 10, No. 2, 357-385 

DIFFERENTIAL GEOMETRY OF CURVED EXPONENTIAL 
FAMILIES-CURVATURES AND INFORMATION LOSS 

SHUN-ICHI AMARI 

University of Tokyo 
The differential-geometrical framework is given for analyzing statistical 

problems related to multi-parameter families of distributions. The dualistic 
structures of the exponential families and curved exponential families are 
elucidated from the geometrical viewpoint. The duality connected by the 
Legendre transformation is thus extended to include two kinds of affine 
connections and two kinds of curvatures. 

The second-order information loss is calculated for Fisher-efficient esti- 
mators, and is decomposed into the sum of two non-negative terms. One is 
related to the exponential curvature of the statistical model and the other is 
related to the mixture curvature of the estimator. Only the latter term depends 
on the estimator, and vanishes for the maximum-likelihood estimator. A set 
of statistics which recover the second-order information loss are given. The 
second-order efficiency also is obtained. The differential geometry of the 
function space of distributions is discussed. 

1. Introduction. A statistical model specifies a family of distributions which are 
usually described by a set of parameters, thus constituting a parameter space. A 
parameter space has some natural geometrical structures due to the properties of the 
distributions. It is not only important but useful to take these structures into account 
when one treats statistical problems. Rao (1945) is one of the first who made differential- 
geometrical considerations on parameter spaces by introducing a Riemannian metric in 
terms of the Fisher information matrix. 

Since then many researchers have tried to construct a geometrical theory in statistics. 
The author of the present paper remarked in 1959 that the two-dimensional parameter 
space of the family of one-dimensional normal distributions is a space of negative 
constant curvature. Although this work remains unpublished, it was followed and 
extended by Yoshizawa (1971), Takiyama (1974) and Sato et al. (1979). Ozeki (1977) 
noticed the Riemannian structure of the auto-regression models of time-series. There 
must have been many Riemannian-geometrical investigations in statistics. We can 
mention among others the works of Atkinson and Mitchell (1981), Ingarden et al. (1979, 
(1981) as well as Amari (1968). See also Reeds (1975). 

The non-Riemannian point of view was introduced by Chentsov (1972) by defining a 
one-parameter family of affine connections in the space of statistical distributions. He 
considered theJ category of the spaces of distributions on a finite number of atoms with 
Markov morphisms. He proved that (a constant multiple of) the Fisher information 
metric is the only invariant metric and that the one-parameter family of affine 
connections are the only invariant connections in the category (Chentsov, 1972). He 
elucidated the geometric and dualistic structures of the space of the exponential famnily 
(Chentsov, 1966, 1972). 

It was through Efron (1975) that an idea was opened up by introducing the 
"statistical curvature". Efron proved that the second-order information loss and the 
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358 SHUN-ICHI AMARI 

second-order variance of the MLE are related to the statistical curvature of a curve 
representing a one-parameter family (one-dimensional space) of distributions. The 
concept of connections is indispensible for the curvature. Dawid (1975) suggested that 
the exponential connection is implicitly used in Efron's approach, and introduced other 
possible connections in the function space of distributions. Further fruitful results are 
anticipated by these papers. Madsen (1979) succeeded in extending the result of Efron 
(1975) to the multi-parameter case. She defined the (exponential) curvature of a 
submanifold embedded in an exponential family, and proved that the covariance of an 
unbiased efficient estimator is decomposed into the sum of three non-negative terms, of 
which one is the curvature term. 

The present paper intends to give a differential-geometrical framework for analyzing 
statistical problems by the use of the one-parameter family of affine connections (a- 
connections). The second-order information loss and the second-order covariance of a 
general Fisher efficient estimator will be given in terms of the exponential (a = 1) 
curvature of the statistical model and the mixture (a = -1) curvature of the ancillary 
subspace associated with the estimator. 

First, we study the geometrical structures of parameter spaces of distributions by 
defining the metric and a one-parameter family of affine connections. In order to do this, 
we shall develop further the idea of Dawid (1975). We then treat the structures of the 
exponential families and the curved exponential families, which can be embedded in the 
exponential families as subspaces (Efron, 1975, 1978). It will then be found that these 
families have multifold dualistic structures: the duality connected by the Legendre 
transformation (Chentsov, 1972; Barndorff-Nielsen, 1978), the duality between two kinds 
of connections (Chentsov, 1972), and the duality between two kinds of curvatures. All of 
these dualities are intimately related to yield a geometric edifice. We shall finally 
proceed to clarify the second-order information loss of Fisher-efficient estimators, and to 
decompose it into the sum of two non-negative terms. One is related to the exponential 
curvature of the statistical model and the other is related to the mixture curvature of the 
estimator. It is shown that the latter vanishes for the maximum likelihood estimator, 
proving that this estimator has the minimum loss. This is the generalization and 
extension of Efron's result (1975). A set of statistics which recover the second-order loss 
will be derived immediately. The second-order covariance of the estimator is also given 
in terms of geometrical quantities (cf. Madsen, 1979). 

Our results are not necessarily completely new, and statisticians are aware of the 
second-order loss and the second- or third-order efficiency (K. Takeuchi, private 
communication). See also papers published by Fisher (1925), Rao (1962), Pfanzagl (1973), 
Akahira and Takeuchi (1979) and others. However, the geometrical approach seems to 
offer many suggestions to other theoretical and practical statistical problems concerning, 
for example, the role of ancillary statistics, robust estimators, fitness of statistical models, 
etc. The present approach will provide a primary basis for exploring such problems. 

In the present paper we adopt a rather classical and intuitive way of description of 
differential geometry, referring mainly to Schouten (1954) (see also-Eisenhart, 1927), but 
in a slightly modified manner. This is in order to provide an easier introduction for 
readers not familiar with differential geometry. We can of course rewrite the theory in 
terms of the modern approach using fibre-bundles, etc. 

In the Appendix we will give a rough sketch of the differential geometry of the 
function space of distributions (cf. Dawid, 1977). To this end, we introduce a one- 
parameter family of quasi-distances in the function space of distributions. These 
distances are closely related to the a-connections, so that we can elucidate the role and 
meaning of the a-connections. 

2. Geometry of parameter spaces. 
2.1 Parameter space, tangent space and metric. Let us consider a family S of 

distributions of (vector) random variables x, such that a distribution is specified by a set 
of n real parameters 6 = (6', 62, * * ., 9n). Then, we can construct an n-dimensional space 
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Sn of distributions with a coordinate system 0 = (91, ***, on). Let p (x, 0) denote the 
probability density function of x specified by 0. We assume the regularity conditions that 
the density functions p (x, 0) exist on some carrier measure of the space of x, that they 
are smooth with respect to 0, that 

p(x, 0) > 0 

for all x in the common domain X of x, and that p (x, 0) is defined for 0 belonging to an 
open set 0 homeomorphic to an n-dimensional Euclidean space Rn. Let 

(2.1) e(x, 0) = log p(x, 0). 

Then, we may regard every point 0 of S' as carrying a function e(x, 0) of x. 
Let To be the tangent space of S' at 0, which is, roughly speaking, identified with a 

linearized version of a small neighborhood of 0 in sn. Let e, (i = 1, 2, . . ., n) be the natural 
basis of Te associated with the coordinate system. Then, an infinitesimally small line- 
element dO stemming from the point 0 = (01, 02 * ., on) to h neighboring point 0 + dO = 
(01 + dOl, *o*,*'n + don), is identified with a vector 

(2.2) dO = =L d0te, 

in the tangent space Te. 
Since each point 0 of Sn carries a function l(x, 0) of x, it is natural to regard ei (0) at 0 

as representing the function 

ei (0) = ai (x, 0), 

where ai is the abbreviation for the partial derivative with regard to O', ai = 3/d0t. We have 

, d0tei = , dotad'(x, 0) = e(x, 0 + dO) - e(x, 0), 

which represents an infinitesimal change in e(x, 0) entailed by the change dO. Hence, Te 
is spanned by n functions a, (x, 0). We now define the inner product "." in each Te by 
defining n2 quantities 

(2.3) gij (O) = ei*ej, i, = 1, ** , n. 

We define gij by the inner product of two derivatives a, e(x, 0) and a.(x, 0) in the function 
space with respect to the weight p (x, 0). 

DEFINITION 1. 

(2.4) g,j(0) = Ee{oai(x, 0) aj(x, 0)}, 

where Ee denotes the expectation with respect to the distribution p (x, 0). 

In order that gij (0) is well defined and that gij is positive definite (or ei's are linearly 
independent), we need some regularity conditions. These are all fulfilled in the case that 
Sn is a smooth submanifold in a full, regular, minimally represented exponential family 
(Barndorff-Nielsen, 1978). Under these conditions, the n2 quantities g,j (0), i, j =1, * * *, n, 
constitute the metric tensor of sn, by which the square of the length ds of an infinitesimal 
line-element dO is given with the quadratic form 

(2.5) ds2 = dO . dO = Zij, gij (0) dOt dOj. 

We hereafter assume Einstein's summation convention, in which the summation is auto- 
matically taken without the symbol E for such indices as appear twice in one term, once 
as a subscript and once as a superscript, as for i and j in the above formula. Hence the 
summation symbol E can be neglected on the right-hand side, gij d0' d0J denoting the 
same quantity without the symbol E as the one with it. 

The tensor gij(0), which has n2 components, i, j =1, .*, n, is called the Riemannian 
metric tensor. As is well known, in this case it is nothing other than the Fisher information 
matrix, whose role is clear from the following. 
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CRAMEkR-RAO THEOREM. The covariance matrix of any unbiased estimator 0 of 0 
cannot be smaller than the inverse (giJ) of the Fisher information matrix (gji), 

(2.6) Kqf(@t - 0')(AJ - a})) _ gg> 

where the sign 2 is used in the sense that the matrix on the left-hand side of (2.6) is 
positive semi-definite. 

From the above theorem, we see that the distance ds in (2.5) represents a degree of 
distinction between the two distributions p (x, 0) andp (x, 0 + dO). The distance s between 
two distant points 01 and 02 is defined in a Riemannian space as the minimum value of the 
integral of ds along all the curves connecting the two points 01 and 02. The curve C that 
gives the minimum value is called the geodesic with respect to the metric gij. 

2.2 Affine connections. Let TO and To+do be the two tangent spaces at two neighboring 
points 0 and 0 + dO, respectively. It is sometimes necessary to compare vectors in To and 
in To+de. However, To and Te+de are two different vector spaces so that there is no means 
of comparing them without introducing some correspondence between To and Ta+ad. To 
this end, we introduce an affine connection, by which two tangent spaces Ta and TG+de 

become feasible for comparison. 
Let us take a natural basis vector ei (O + dO) of Te+dO, and consider which vector in To 

is in correspondence with it. The vector ei(dO) may not be the one, because the space S' is 
"curved," or, if not, the coordinate system (0') may be curvilinear. Let us presume that 
ei (8 + dO) in TG+dO corresponds to a vector ei (0) + Sei in T7. Because of the continuity of 
ei, Sei should be small, depending linearly on dO. Hence, when we represent 8ei as a linear 
combination of the basis { ek } of To, the coefficients of the combination are small quantities 
which are linear in dO. Hence, we can write 

(2.7) Sei = djPkiek(0), 

where the summations with respect to j and k are automatically assumed because of the 
Einstein summation convention. The quantity having n3 components ij- (0) (i, j, k = 1, 
* , n) defines an affine connection in Sn. An affine correspondence is established between 
two neighboring tangent spaces Te and Te+de by an affine connection. A natural basis 
ei (0 + dO) in Te+de is mapped into a vector ei (0) + dO i'F3 (O)ek (0) by this correspondence. 

Let us consider a vector field X(0), and let X(O + dO) a'nd X(O) be two vectors in To+de 
and To, respectively. We can define their "true difference" with the help of the affme 
connection. By representing X(0 + dO) and X(0) in terms of the respective natural bases, 
we have 

X(0 + dO) = Xi(# + dO)ei(O + dO), X(O) = X'(e)eiO). 

We have by expansion 

XI(O + dO) = XI(0) + dXI, 

where 

dX'= (ajX1) dli 

represents the apparent change in the components of the two vectors. The affine connection 
maps X(O + dO) E To+de to 

X0(0 + dO)(e, + Bei) = (X' + dX9)(ei + rPki dOjek) = (Xi + dX' + rj,kXk doj)ei 

of Ta. Hence the "true" or "intrinsic" difference is represented by the infmtesimal vector 
DX, whose components are given by 

(2.8) DXi = dX' + rJiXk dIP, 

where the second term arises due to the difference between the natural bases at To and 
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Te+do. When DX' = 0, or the apparent change in the components satisfies 

dXi = -_rkX dk', 

then the two vectors X(0 + d0) and X(0) are regarded as essentially the same, and they 
are said to be parallel shifts of each other. 

The rate 
DX' aX'(0) Xko (2.9) DX d( + rP,Xk(0) 

represents the "true change" in the vector field X(0), and is called the covariant derivative 
of the vector field. It is a tensor having n2 components, and is denoted shortly by VjX' 
(Schouten, 1954, page 122). 

Let 0(t) be a smooth curve in Sn. It is called a path or a geodesic with respect to the 
affine connection, when the tangent vectors 0(t) = d0/dt are parallel along the curve, i.e., 
the intrinsic change in direction vanishes 

(2.10) d =t 
dt 

along the curve, or 0(t) satisfies the equation 
d2oi(t) 

+pv~kfjdk=0. (2.11) dt2 J 

The geodesic is a natural extension of the straight line in a Euclidean space. If rj'k(0) 
vanishes identically, the geodesic equation is linear in t: 01(t) = att + bt. 

Mathematically speaking, the parameters of an affine connection rjk (0) can be defined 
arbitrarily (assuming adequate smoothness). In our statistical problem, the connection 
should be defined such that it represents the structure of distributions. Chentsov (1972) 
defined a one-parameter family of affme connections and proved that they are the only 
connections invariant in the categories of distributions on finite sample space. We now 
show "heuristics" in defining affine connections, following the ideas of Dawid (1975). This 
leads to the same one-parameter family of affine connections as introduced by Chentsov. 

Multiplying both sides of (2.7) by em and taking the inner product, we have 

(2.12) em Sei dOi rjim, 

where 

(2.13) rjim = ljgkm 

is the covariant (i.e., lower indices) expression for the affine connection, and 

(2.14) ri7 = jimgm 

holds, where gmk is the inverse (or the contravariant expression) of the metric tensor gkm. 

Since ei (0) is represented by doi(x, 0), a formal expansion yields 

ei(0 + dO) - a(x, 0 + do) = aje(x, 0) + aja/1(x, 0) dO'. 

Hence, if the additional term daija(x, 0) dOJ is a linear combination of dai(x, 0) or ei(0), it 
is included in To and hence Sei could be defined by the function daj/j(x, 0) dO' of x. 
However, by virtue of 

(2.15) Eo{d 1a'(x, 0)} = 0, 
any expression {(x) of a vector in To should satisfy 

(2.16) Eo{ f'(x)} = 0. 

We get by simple calculations 

Eof{aia(x, 0)}= -Eoe{aifje} =-gij(0), 
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and hence didajis not included in To. We modify it in two ways: One is 
1 
Si(x, 0) = aidaj(x, 0) dOi + ggj(0) dcJ 

and the other is 
2 

Si(x, 0) = aiaj(x, 0) dfP + dai(x, )a/j(x, 0) dO'. 
Both of them satisfy the requirement (2.16). Combining them linearly, we have 

(2.17)a1 
+ a1 1-a2 

(2.17) f8'(x, 0) = (2 (X' 0) + 2 i(X 0), 

where a is a parameter. If we regard the projection of 3, (x, 0) to To as the expression of the 
increment 3ei, which defines the affine connection, then we have from (2.12) that 

a a 

(2.18) dJrijim = em. 3ei = Eta,mf(x, 0)i(x, 0)}, 

where the affine connection depends on the parameter a. Here, we have replaced the inner 
product " .," by Eo in the function expressions. By substituting (2.17) in (2.18) and by 
calculating it, we are led to 

DEFINITION 2. 
a 1 - a 

(2.19) rjim(0) = Eo{aiaie(x,)amx, 0)) + 2Eo{dj(x, 0)a,e(x, 0)dme(x, )). 

a 

We have thus defined a one-parameter family of affine connections, andrijk is called the 
a-connection. 

The roles of a = 1,-1 and 0 connections were studied by Chentsov (1972) and also 
remarked upon by Dawid (1975). First, we treat an exponential family of distributions 

(2.20) p(x, 0) = exp{c(x) + Otxi - (0)), 

specified by the natural parameters or the natural coordinate system 0 = (Os). (Other 
parametrizations are also possible for specifying the distributions.) We have, in this special 
case, 

ai (x, 0) = x, - a, 4(0), a,aj(x, 0) = -adida(0). 

Hence, from (2.4) and (2.19), taking account of (2.15), we have 

gij(0) = a,a,'(0), 
a 1 - a 

(2.21) l,]k (0) = 2 Eo {ai&/ajtak'}. 
2 

a 

Since rFjk(0) vanishes identically for a = 1, any exponential family of distributions 
constitutes an uncurved space when the a = 1 connection is adopted. The natural 
parameters play the role of the Cartesian coordinate system. The 1-connection is therefore 

called the exponential connection and is denoted by Pijk. 
Next, we consider a family of distributions given by a mixture of n + 1 prescribed 

linearly independent distributions po (x), pi (x), ** *,Pm(x), 

p(X, 0) = OSpi(x) + (1 - :1 O)po(x), 

where 0 < 0' <1. In this case, we have 

dla(x, 0) = (1x e)a/(x 0),-Po ), 

didjl(xl 0) =-dil(xl 0)i)AX1( i), 
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so that 
a 1+a 

(2.22) rijk(O) = 2 Eo (ajecjc}, 

which vanishes identically for a = -1. Hence, a family of mixture distributions constitutes 
an uncurved space with the -1-connection. This connection is called the mixture connec- 

tion and is denoted by rijk. 

When a = 0, calculations yield 
o 1 

(2.23) Vijk = - (igjk + Ojgki- -Okgij), 2 

whose right-hand side is a quantity called the Christoffel symbol of the first kind and 
usually denoted by [ij;k], (Shouten, 1954, page 132). This connection is derived from the 
metric tensor gij. It is the natural connection compatible with the metric tensor, and the 
induced panmllelism is known as the Levi-Civita parallelism. The space S' is Riemannian 

0 
in this case. The connection rijk may be called the information connection, since it is 
derived from the Fisher information. 

It should be noted that the length of a vector generally changes by a parallel shift, 
because the connection is defined independently of the metric. The angle between two 
vectors is also not invariant under a parallel shift. This is because the covariant differen- 
tiation of the metric tensor does not vanish in general. Such a connection is said to be non- 
metric. Let 

(2.24) Tijk = Ee(aitleai'/ktl). 

Then, we have 
a 

(2.25) Vigjk = aTijk, 

a a 
where Vi denotes the covariant derivative with respect to the a connection riPk * Hence, the 
covariant differentiation of the metric vanishes for a = 0 connection. The length of a vector 
is invariant under a parallel shift by the information connection. 

By the use of the important tensor Tijk, the connections are represented as 
a ~~a T (2.26) rijk = ij:k] _- 2ijk 2 ~ 

2.3. Geometric quantities and coordinate transformations. We have so far defined 
the geometric structures of a general distribution space in terms of a specific coordinate 
system {08}. We may use another coordinate system {i,} to describe the geometry, where 
the one-to-one relation of the coordinate transformation 

Oti = f ,1 
2 ., nfl), 

q1i =WVi(Ol, 02, . . . fon), i,i=1 ** *, n, 

holds. Geometric structures are described by quantities, which consist of a number of 
components, e.g., the metric is represented by a quantity gij having n2 components and the 
affine connection is represented by a quantity rik having n3 components. 

Although the components of a geometric quantity are described with reference to a 
specific coordinate system, they represent the geometric structures which are independent 
of coordinate systems. For example, the components gij of the metric and Xi of a vector X 
depend numerically on the coordinate system, but the length of X 

IX 12 = g 

is invariant. 
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In order to ascertain this invariance, we should know how the components of a quantity 
are transformed under the coordinate transformation. Let B' be the Jacobian matrix of 
the transformation, i.e. 

and let B5, be its inverse, i.e. 

Bj' 

A tensor, Sl, for example, is a quantity whose components are transformed to S'?; in the 
71 i'-coordinate, 

(2.27) ij = Bi B7ZBnS m. 
A vector Xi is a tensor having only one upper (i.e., contravariant) index, and is transformed 
to 

Xi'= 'Xi. 

The metric tensor gij has two lower (i.e., covariant) indices, and is transformed to 

gij' = BiBg,l- 

From these transformation rules, one can see that the length I X I of a vector is absolutely 
invariant in whatever coordinate system it is presented, 

gijX'X = fiX,X X . 

A tensorial equation, for example, Sl- = 0, is invariant for any coordinate system, 
because a 0-tensor is mapped to a 0-tensor by any coordinate transformation. 

We can lower or raise any indices of a tensor by multiplying the metric tensor gij or its 
inverse gJi, for example, 

Sijk = S?gmk Sjk = SmjkgX 

These are different expressions of the same quantity. The inverse matrix gJ itself is an 
alternate version of g1i with upper indices, because of 

iy ik jm 
g =g g gkm. 

There are geometric quantities whose components are not transformed like tensors. The 
affine connection is such a quantity and its components are represented in the - 
coordinate system as (Shouten, 1954, page 124) 

(2.28) rij'k' = Bi'BjmBkn rPmn + B1'(aiBm)glm. 
Hence, even if rijk (0) = 0 holds for all B in a specific coordinate system, it is not necessarily 
equal to 0 in another coordinate system. 

In the following, we analyze the geometric structures of distribution spaces with 
reference to some specific coordinate systems. However, essentially, we study the invariant 
structures. Hence, we should take care of the rules of transformations of geometric 
quantities to ascertain the invariance. We sometimes use a restricted equation 

rijk? 0or rijk-a Tijk, 
which is not a tensorial equation (because rijk is not a tensor). It holds only for the specific 
coordinate system we have currently adopted for the ease of analysis. We attach " * " above 
the equality sign in order to emphasize this specific character of the equation. Of course, 
these equations represent invariant geometrical structures, but they take different forms 
in different coordinate systems, and we can derive their exact forms from the rules of 
transformations of such quantities. 

Refer to textbooks of differential geometry for more rigorous and detailed accounts. We 
mainly refer to Chapters III and V of Schouten (1954). 
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3. Geometry of exponential families. 

3.1. Geometric quantities in natural coordinates. An exponential family can be written 
in the form (2.20) by choosing natural parameters 0' where xi are functions of the original 
sample variables, constituting a set of sufficient statistics. The natural coordinate system 
0' is determined uniquely to within affme transformations. Since the characteristic function 

4 (j, 0 ) = E [exp {i x}], i2 = -1, 

of p(x, 0) is easily calculated as 

log 4dt, 0) = 4(0 + it) - 4i(0), 

the function 4A(0) includes sufficient information for the distributions. The geometric 
quantities are calculated as follows. From 

aie = xi - (34/, aiajtl= -aida4,, CiC3iake= -aiaJak4/, 

we easily derive 

(3.1) Ee(xi) = di4(O), 

(3.2) gi, (?) -diamo(L). 
Since gij is positive-definite, 4(L) is a convex function. From 

E{&aijaked'(x, O)) }--EE{ i ejeakel, 
we obtain 

(3.3) Tijk (0)-diajak4(0). 

From 

Eo{aciclelk{) = Eo{-gij(?)ckeJ = 0, 

we have 
a *1-a 

(3.4) rijk (o) = 2 Tijk (0) 

The left-hand side is not a tensor but the right-hand side is a tensor. Hence, this equality 
holds only for the natural coordinate system; cf. (2.26), which holds for any coordinate 
system. 

The Riemann-Christoffel curvature tensor (Schouten, 1954, page 138) of this space is 
calculated as 

a 1 -a 2 
(3.5) Rijki(O) = 2 Tkm[iTj]ltgm", 

where [ij] denotes the alteration with respect to indices i and j, i.e., Tkm[iTn]ln = (Tkmi Tjln 

-TkjmTiln)/2. We see that Rijki vanishes for a = +1, i.e., for the exponential and mixture 
connections, giving spaces of distant parallelism. We give a simple example next. 

EXAMPLE 3.1. Normal distribution. The family of one-dimensional normal distribution 
is specified by two parameters, the mean Iu and the variance a2, and the density function 
is 

1(x -1) 21 
p(X; 12)= Uexp- 2 2 

1 
//Xp(_L L12/.l\ 
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Hence, by introducing the natural parameters 6= (01, 02), 

01= A1 02 _ 1 

and by introducing a vector x = (xi, x2) defined by 

Xl = X, X2 = X2 

we have 

p(x, 0) = exp{(xi - 41(0)), 

where 

'(6) =-(01)2 1 log(_2) + 1 
log I. 

We have 

E(xi) = cii = ,u(O), E(x2) = O24 = p2(9) + a2(6). 

The metric tensor given by aiIj4 has the following matrix form, 

The componets of the [ii (0)]I=[ 
2 

41,2g2+g4J 

[i()= 21o + 2y 2 ] 

The components of the tensor Tijk are given by 

Tini = 0, T12 = 2a4, T122 = 8Aa 4, T222 = 2424 + 8a6. 

(Since Tijk is symmetric, other components are not necessary.) The affine connection rijk 
is given by (3.4). the Riemann-Christoffel curvature tensor has only one independent 
component in the case of n = 2, and is 

R12= (1- ) 

The scalar curvature K is defined by 

K = n(n I Rijgijgik, 

and we have in this case 

K=0 for a =+1, 

,c = -1 for a = 0. 
2 

Hence, the Riemannian space (a = 0) is a space of constant negative curvature, well known 
in non-Euclidean geometry. This result was first remarked by Amari. 

3.2. Dual space. Let us consider the sample space 3E" whose point is specified by x = 
(xi, * * *, x,,). Given a distribution specified by 0, the sample expectation = 1, = ( , 
is given by 

(3.6) i = Ee(xi) = ci (0). 

Since 4(0) is a convex function, there is a one-to-one correspondence between 0 and P 
connected by the Legendre transformation in the case of a fun, regular, canonical expo- 
nential family with a minimal representation (Chentsov, 1972; Barndorff-Nielsen, 1978). 
Defining 

(3.7) 4(') = max {q9i s- 44(0)), 

we have the inverse transformation 
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(3.8) 0i = a 

where at stands for 

at =_- 

Moreover, 

(3.9) 4(@) = max{qiO 0S-(v)) 

holds, and the two functions are connected by the identity 

(3.10) 4A(@) + +(vy) = Oi1i 

The two spaces S' and S9 are thus dually connected. Since v can also be used to specify 
the distribution, we can analyze the geometric structure of the distribution space in the 
dual space sn. 

By the one-to-one correspondence between S' and sn, the geometric structures such as 
the metric and affine connections can be transplanted in sn. One may consider v as a 
coordinate system of Sn by identifying the two spaces Sn and sn. However, it should be 
noted that v has a lower index, so that the roles of the upper (contravariant) and lower 
(covariant) indices are interchanged in this coordinate system v or in the dual space sn. 

The Jacobian matrix of the transformation is 

(3.11) oq, = CIP(o) = gji ao' ,i d)=gi 

and hence for the inverse transformation, it is 

(3.12) aO = t () = gij 

Any tensor, Sik for example, is represented by 

Sk = Sl g.g9 gnk 

in the dual space, i.e., only by lowering and raising the corresponding upper and lower 
indices, respectively. Obviously, the metric tensor in Sn is gi], and the infinitesimal line- 
element d'i is related to dO1 thus: 

d,qi = giJdJ A gi'dqi cb.=jd0J, dO' 

and its length satisfies 

ds2 = g-jdqidqj. 

The dual space, or the dual system, has an important meaning. It gives the coordinate 
system in which the Cramer-Rao bound is attained. Let 

?li = Xi 

define an estimator for the parameters q. We see that it is unbiased 

E(?j) = li, 
and it attains the bound 

('i- ?)(qj -qj)} = giy. 

EXAMPLE 3.1. (continued). In the case of the normal distribution, we have 

1 _ 12) l 
ON -~ 10g(q2 ~ - log 2v'e. 
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The one-to-one correspondence is given by 

01# 9 1 = 12- 9 
q2- ~'q 

and 

01 101 \2 1 
q1 =-22 'q2 = 282 - 22- 

The dual variables v are related to ji and g2 by 

711 = ? )q2 = 2 + a.2 

The Fisher information, or the metric tensor, becomes gi] in the dual space, which is the 
inverse of gji, and is given by 

g Ly [2+tL j~ 

3.3. Duality. The duality between the two spaces has been studied by Chentsov (1972), 
Barndorff-Nielsen (1978) and Efron (1978). It can be extended to include the geometrical 
structures such as the a - (-a) duality or the exponential connection and mixture 
connection duality; see also Chentsov (1972). 

As we have shown, the dualistic correspondence of any tensor can be obtained by 
lowering the upper indices and by raising the lower indices of its components. Hence, the 
Fisher information or the metric tensor has the following dual correspondence in the two 
spaces 

gij - 0ia;49, gii _aia? , 

Similarly, the tensor Tijk has the following expressions 

Tijk -aiajak4, T'ik 0i9j0k 

since we have 

T g ilggkn TImn = g ilg g knaigmn 

= _gjmgmngil(a,gkn) =- _ia ak. 

Since rik is not a tensor, the corresponding a-connection riPk in the dual space cannot 
a 

be derived by raising the indices. We can calculate the riek from the rule (2.27) of the 
transformation of the affine connection. Thus, the a-connection has the following dual 
expressions 

a 1-a * 1+a 
rijk -= T1jk rfik _ - TiJk 2 2 

It is interesting that the exponential connection (a = 1) rijk vanishes identically in the 

normal coordinate system, while the mixture connection (a = -1) Pi"k vanishes identically 
in the dual space. Hence the dual space (the dual coordinate system) is straight or 
Cartesian for the mixture connection, and the mixture connection plays the same role as 
the exponential connection does in the primal space. Thus, the duality is extended between 
the exponential and mixture connection, or the a- and (-a)-connections (cf. Chentsov, 
1972). 

THEOREM 1. The exponential connection vanishes identically in the normal coordi- 
nate system, while the mixture connection vanishes in the dual coordinate system. They 
are thus in a dual correspondence. 
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We can study the dual of the Kuilback-Leibler information (Chentsov, 1972; Efron, 
1978). The Kullback-Leibler information (Kullback, 1959) defined by 

(3.13) K(1:2) = Ee1{ e(x, 01) - e(x, 62)) 

is regarded as a quasi-distance from point 61 to point 62. It is not symmetric and does not 
satisfy the triangular inequality, but when 62 and 01 are located sufficiently close to each 
other, we have, by putting d6 = 02- 61 and neglecting the higher order terms, 

K(1: 2) =-gidO dOJ. 

For the exponential family, it is written as 

(3.14) K(1: 2) = (O' - O2 )ji-( (1 0)2- 

where 8q = 1 (61). We can define the dual K(1: 2) of K(1: 2) by interchanging formally the 
role of 6 and v as 

(3.15) K(1: 2) = (Thli - 72i)-il -{q(l) - (82)}. 

By simple calculations, we can prove (Chentsov, 1972; Efron, 1978). 

THEOREM 2. 

(3.16) K(1: 2) = K(2: 1). 

This shows that K(2: 1) is the dual counterpart of K(1: 2). 

4. Geometry of curved exponential families. 

4.1. Curved exponential families. A family of distributions is called a curved exponen- 
tial family when it can be embedded smoothly in the space of an exponential family. Let 
the curved exponential family S be specified by m parameters u = (u', u2, .*., uM), 

p(x, u) denoting the probability density function of sm. Let p(x, 6) be the probability 
density function of the enveloping space Sn, where 6 = (0', O., 0") is the natural 
coordinates. Then, we have 

(4.1) 0i = 6i(u) 

such that 

p(x, u) =p(x, 6(u)). 

This is the parametric representation of sm, which forms an m-dimensional submanifold 
in S'. 

In order to calculate the geometric quantities of sm, we need 

(4.2) aa e(x, u) = aa log p(x, u), 

where 
a 

a a a = 1, 2, --- , 

and hereafter we denote indices concerning the coordinate system u = (Un) by the letters 
a, b, c, etc. From (4.2), we have 

(4.3) an?(x, u) = Ba(u)ai (x, 6(u)), 

where 

(4.4) B'(u) = aO 
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THEOREM 3. The metric gab and the a-connection Iabe of Sm is related to those in S' 
by 

(4.5) gab(u) = BaBjgi (H(U)), 
a k ka 

(4.6) rabc(U) = (OaBRb)BJgj + B'aBJB,rjjk(0(u)). 

PROOF. From the definition (2.4) of the metric, we have 

gab = Eu[datC'Obe = BaBjE(u)[ditA3je] = BBiagij. 

From 

,Oacbfe= cla(B jOj{e) = (daB jb)djfe+ BIB a,dajfe 

and the definition (2.19) of rabc, we obtain (4.6) in a similar manner. 

4.2. Curvatures of Sm in sn. Let us consider the tangent space Tu of Sm at u. It is a 
subspace of the tangent space To at 6 = H(u), and is spanned by m tangent vectors of Sm, 
B1 = (Bi), B2 = (B2), , Bm = (B' ). Let 

(4.7) Baj(u) = gjiBTa 

be the covariant expression of the tangent vectors. Since the vector n' normal to Sm in S5 
is defined by the equations 

Bajn' = 0, a = 1, ... ,m. 

Baj may be regarded as the vectors which implicitly define the directions normal to S5 
with respect to the information metric. 

The curvature of a subspace is defined by a quantity representing the intrinsic change 
in the tangent or normal directions of the subspace (Schouten, 1954, page 256). The 
intrinsic change is measured invariantly by the covariant differentiation by the use of the 
a-connection. The curvature depends on which connection we are using. We first consider 
the rate of change in the tangent direction from B'b (u) at u to B' (u + du) at u + du, 

Bb(u + du) - Bb(u) 
limd. +? dua 

where the subtraction is carried into effect by mapping the vector Bb (U + du) in TO(u+du) 
to To(u) by the a-connection. This quantity can be formally written as 

a a . k aU (4.8) Hab (u) = B i (u)VjB ' (u) = daB l(U) + I"kB t(u)B b(U) 

and is called the a-curvature, where V. denotes the covariant derivative with respect to the 
a-connection. 

Similarly, by treating the change in the normal directions, we have another a-curvature 
ax ci a k 

(4.9) Labi = BJV]Bbi = aaBb, -Ji7BaBb1. 

Since the normal and tangent directions are orthogonal to each other, both definitions 
usually coincide. However, our a-connections are in general non-metric, and the orthogo- 
nality is not preserved by the parallel shift of vectors. Hence, they do not coincide. We 
have indeed 

(4.10) Lab, = B VI(Bbgk,) = (BjaVjB)gk + BjaB%Vjgki = H'bgk, + aTjkBjaBb, 

which is different from the covariant form Habi = Hkbgki of Hab. They coincide only in the 
case of the information connection (a = 0) which is metric. 
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We can treat the curved exponential family also in the dual space, where it is embedded 
as 

(4.11) v = (u), 

and the curvatures are similarly obtained. The following theorem shows that the a-(-a) 
duality is accompanied by the H-L dualistic correspondence. 

THEOREM 4. 
a . -a. 

(4.12) Hab = Lab. 

PROOF. By direct calculations, we have 

La b= = gg= (laBbj( - rkjBaBbI) = ga(Bbgkj) 2 ijT kBaBbI 

1 +a . .1-a a. 
= aaBb + gijBbB'aaigkj- 2 T'ab = aaBb + Tab = Hab) 

where we put 

(4.13) Tab = BaBkTJk 

We now need to know the rule of transformation of the curvature Hab. This is a 
quantity having two lower indices a, b and one upper index i. It behaves like a vector in S' 
with respect to the index i. Hence, for fixed a and b, it is a vector. When the coordinate 
system is changed from u = (Ua) to v = (va') in sm, the components change in the following 
manner, 

a . b a i. 
(4.14) Ha b'= Ba'BbLHab + B,alaBb,' 

where 
aua 

dua 

Hence, this quantity is not a tensor. However, it gives a tensor, when it is projected to the 
normal subspace of Tu in T0, i.e., its normal components with respect to i form a tensor, 
because the second non-tensorial term of the right-hand side of (4.14) has tangent 
components only and they vansh when projected to the normal subspace. Let NJ be the 
projection operator of a vector in T0 to the subspace normal to the subspace Tu of Sm. 
Then, the normal components of Hib are written as NJHJb, and they form a tensor 
representing the intrinsic curvature of Sm. We have introduced the curvature tensors 
Naljab and N)Lab and in a little different way from Schouten (1954, page 256), but the 
results are the same. It also should be remarked that the projection of Hab to the subspace 
Tu is nothing but the a-connection of sm, as 

(4.15) rabc = HabB gij. 

EXAMPLE 4.1. Let z be a normal random variable z - N(1, a2) where a is a constant 
and let 

x = uz, 

where u is an unknown parameter. Then, x is also a normal random variable 

x N(u, u2a2) 
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specified by one parameter u. The distributions constitute a one-dimensional curved 
exponential family S', which are embedded in the S2 of the normal distributions by 

2 2 2 
1 = U, a =au, 

or in terms of the natural coordinates by 

819 1 92=_ 1 
a2u' 2a 2U2 

Therefore, S1 is a parabola 
a2 

92 = (91)2 

in S2. The tangent vector is 

dOP 1 
B'l= - -= [-U, 1]. 

du a 2u3 

The metric gab of S' has only one component gil in this case, and is 

(2a2 + 1\ 1 
gil = BlBJgij =- a2 )u2 

The a-curvature of S1 is a vector in S2 given by 

Hab = Hi = 2 44 {[-2u, 1 - 2a2 + a[2u(1 + 2a2), -(4a2 + 1)]). 

The normal component of Ha b is given by 

N~ -1 + 2a2_-a 
- 2a4(2a2+ 1)u4 [-2u(l + a2), 1]. 

4.3. The maximum-likelihood estimator and its dual. Let x be the observed data from 
an unknown distribution belonging to the curved exponential family sm. When N indepen- 
dent observations x1, X2, * * , XN are made, we take the sufficient statistics 

(4.16) x =-N r= 

In this case, the likelihood function e (xi, * * *, xN; u) becomes 

(4.17) e(xi, ... , x; u) = Ne (R, u), 

so that we only have to make a slight modification by multiplying the metric, the affine 

connection, and the tensor Tijk by N, to adopt Ngij, Nr ijk and NTijk, respectively. 
Let us define the data point v in the dual space by 

(4.18) = 

or the data point 0 in the primal space by 

(4.19) 0= 0(v). 

The point 
- or 0 is by itself a sufficient statistic and represents a distribution in Sn or in sn. 

The maximum likelihood estimator (MLE) uC is defined as the estimator which maxi- 
mizes the likelihood e (x, u). It is easy to see that the MLE uC represents the point in S5 
that is located closest to the data point in the sense of the Kuilback-Liebler distance, 

minuesm K(0: 0(u)) = K(0: 0(u) )). 
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The equation determining ui is obtained by differentiation as 

(4.20) {i -71i (Uf))B (u') = 0, 

where qj (u) is the dual point of (P(u). 
In a dual manner to the above, one can define an estimator ui, which is the point in Sm 

closest to the data point in the sense of the dual of the Kuilback-Leibler distance, 

minuesmK(0: 0(u)) = minuesmK(0(u):0) = K(0(uC):0), 

(Kullback, 1959; Efron, 1978). We call u the dual maximum likelihood estimator (DMLE). 
The equation for determining u- is given by 

(4.21) (#'- _'(ut)}Baij(u) = 0. 

It should be noted that these estimators are defmed independently of the specific coordi- 
nate systems u. 

In order to elucidate the properties of these estimators, we introduce a subset A(u) of 
S' by 

(4.22) A(u) = {O I minv,esmK(0:0(v)) = K(0:0(u))}, 

that is, A(u) consists of those points 0 from which 0(u) is the closest among all the points 
in the subspace Sm. When and only when the data point 0 belongs to A^(u) is u obtained by 
the MLE. We call A(u) the ancillary domain of u by maximum likelihood estimation. 

Dually to the above, we introduce the ancillary domain A(u) of u with respect to the 
dual maximum likelihood estimation by 

(4.23) A(u) = {0 I minvesmK(0(v):0) = K(0(u): 0)}. 

When and only when the data point belongs to A(u) is u obtained by the DMLE. The two 
sets A(u) and A(u) form (n - m)-dimensional submanifolds which intersect Sm at the 
point 0(u) only. 

Let us elucidate the geometric meaning of the MLE and DMLE. A geodesic with 
respect to the exponential connection (mixture connection) will be called an exponential 
geodesic (a mixture geodesic). More generally, a geodesic with respect to the a-connection 
will be called an a-geodesic. 

THEOREM 5. A(u) andXA(u) are composed respectively of the mixture and exponential 
geodesics which intersect S' at point 0(u) and are orthogonal to S' at this point. 

PROOF. We first study A(u). We see from (4.21) that a point 0 belongs to i(u), only 
when it satisfies 

(4.24) ('- _i(u) }BJ(u)gjj(u) = 0, 

where gij(u) implies gij(O(u)). Let us consider an exponential geodesic 0(t) which passes 
through 0(u) and is orthogonal to s'. Then, the equation of the geodesic is 

d)=dt+ r jkO2JO = O' = 
o 

dt 

e 
because of rik = 0 in the natural coordinates, with the initial conditions 

00) = 9i(U), 6R(0)BJa(u)gij(0(u)) = 0. 

The solution is given by 

(4.25) 8i(t) = 90(0)t + 0i(u), 

which satisfies (4.24). Conversely, every solution of (4.24) is written in the form of (4.25) 
with suitable 0i(0) orthogonal to s'. Hence, we have proved the theorem for A(u). 
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We use the dual space or the dual coordinates v to obtain A(u). A point q belongs to 
A(u) only when 

(4.26) {qi - qj(u)}Ba (u) = 0. 

Now consider a mixture goedesic q(t) which passes through q (u) and which is orthogonal 
to Sm at q(u). The equation of the mixture geodesic path is written as i1j(t) = 0, because 
the mixture connection vanishes in these coordinates. The initial conditions are 

71()= 71i(u), 7ji(0)Bia(U)gii = 1jABa(u) = 0, 

because the tangent vectors are 

ca j (u) = da a,ai?j = gijB i = Bja. 

Hence, the solution is 

ni= t 1)(O)t + ni(u), 
which satisfies (4.26) and vice versa, proving the theorem. Since the geodesic is a geometric 
concept defined invariantly, the theorem holds in any coordinate systems. 

Extending this result, we can now define the a-estimator u. Let A (u) be the set 
composed of the a-geodesics that pass through 0(u) and are orthogonal to S' at this point. 

Then, the a-estimator u is the estimator whose domain is A (u), that is,u = u when and 

only when the data point belongs to A (u). The MLE is the (-1)-estimator, and the DMLE 
is the 1-estimator. As will be shown in the following, all of these estimators are Fisher 
efflcient. 

EXAMPLE 4.1 (continued). We analyze the MLE and DMLE of Example 4.1 In the 
dual space. The equation (4.20) of the MLE is written as 

ilU - ?2 + a2a2 = 0 

Hence, A(u) consists of the straight line 

Au) = {q I '2= Ur 1+ a2u2} 

which passes through q(u) = [u, (1 + a2)u2] and is orthogonal to S1. The MLE is given by 

U = 72{-1+8(2 + 4a 12)} 

The equation of the DMLE is given in the primal space by 

6i1- + 2(1 + a2)2U2+1=0 

which is 

12 =1 _ U1 + (1 + a)U 

in the dual space. Hence, A(u) is a parabola in the dual space, 

A(U) = {vJ I X12 = ?1-um + (1 + a2)u2), 

and 

u2(1 + a 2) [ + v/{4(1 + a2) 2-(3 + 4a2)x?}]. 

We can obtain the u by solving the equation of geodesics with respect to the a-connection. 
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5. Curvature and information loss. 

5.1. Consistent estimators. We can study the asymptotic properties of consistent 
estimators in the framework of the geometry of curved exponential families. Let 0 be the 
data point in Sf depending on N independent observations, and let 

u = ii(0) 

be a smooth estimator independent of N. Then, its ancillary domain A(u) is defined by 

A(u) = {O I u = ii(0)}, 

i.e., u is obtained by the estimation when and only when the data point 0 is included in 
A(u). The set A(u) forms a smooth (n - m)-dimensional subspace in Sn. 

The estimator ii is consistent if and only if A(u) intersects Sm only at point 0(u). This 
is proved as follows. By the law of large numbers, the data point x tends to the average 
ffu) as N tends to oo, where u is the true parameter of the distribution. The data point 0 
also tends to 0(u). Hence, the estimator is consistent if and only if 0(u) is included in A(u). 

Let us introduce in the submanifold A(u) a local coordinate system v = (vK), K = 1, 2, 
* , n - m, such that the point 0(u) E A (u) has the coordinates v = 0. We use letters K, 

X, ,i, etc., to represent the indices with respect to this coordinate system of A(u). The n 
coordinates (u, v) together form a local coordinate system of Sn in a neighborhood of 0(u). 
Let 

(5.1) 0 u = 0t(u, v) 

be the 0-coordinates of a point (u, v), i.e., a point having coordinate v in A(u). Thus, the 
points satisfying v = 0 constitute Sm, and the points satisfying u = uo constitute A(uo). 

The tangent space of Sm at 0(u) is spanned by m vectors B'1(u), * , B' (u), where 

(5.2) B a(u) =1aa'(u, 0). 

The tangent space of A(u) at 0(u) is spanned by n - m vectors 

(5.3) B'(u, 0) = aKO'(u, 0), K = 1, 2, ... , n -m, 

where 

aK aVK 

These n vectors span the tangent space To of Sn at 0(u). 
The a-curvature of Sm is written as 

a a 

(5.4) H'ab(u) = aaBb(u) + rt b(U), 

where we put 
a a 

(5.5) rPb(U) = rjk(u)Bja(U)Bb(u) 

and rk(u) = rik(0(u)). The a-curvature of the subspace A(u) at 0(u) is defined in a similar 
manner, 

a . a ..a . 
(5.6) Ht (u) = BJ(u, O)VjBA(u, 0) = KBA(u, 0) + rFx(u), 

where 

(5.7) KA (U) = rk (u)BJ(u)B\(u) 

and B (u) is the abbreviation for Bi (u, 0). 
We may study as an example, the ,8-estimator u, whose domain is A (u). Let 
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nl, n2, , **ann-m be a set of independent solutions of 

B'a(u)nJgij(u) = 0, a = 1, ** , m. 

Then, they span the directions perpendicular to Sm. Let 0i(t) be a fl-geodesic, passing 
through 0(u) and perpendicular to sm. Then, it satisfies 

0(O) = 0(u), 0(0) = aKniK 

for some a = (a', * , an-r). Moreover, we have 

wm = -P5k (U) 9i(O) &k(O) 

from the equation of the ,8-geodesic. Expanding 9i(t), we have 

oi(t) = Oi(o) + 9i(o)t + 1/2 9i(O)t2 + 0(t3) 

K 
. p . i* k K t + 3) = Oi(u) + ta nKn /2 rk(u)n{naat +K(t ), 

where 0(t3) is the terms of order t3. Since A (u) is composed of these geodesics, vK = taK 

can be used as a coordinate system of A (u) in a neighborhood of 0(u), and we have 

9i(u, v) = 9i(U) + VKfnl - 1/2? FjkfkKAVV + ?(I v 13). 

Obviously, 

BK(u, 0) =n, 

fi. kfi. 0 
aKBA (U, 0) = - P5kBJ(u, O)Bx(U 0) = - 

Hence, by substituting this in (5.6), the a-curvature of A(u of the fl-estimator u is given 
by 

a a . i 

(5.8) HKA = rKA- rKA 

Especially, the a-curvature of A (u) vanishes. 

5.2 First-order efficiency. When the true parameter of the distribution is u, the 
distribution of the data x is asymptotically normal, 

x - N (q(u), Ngii (u)). 

Hence, asymptotically the data point # is also normally distributed 

N(O(u), N gij(u)). 'N 

We can represent the data point # in terms of the (u, v)-coordinates of a consistent 
estimator. Let u be the true parameters. Since # is close to 0 (u) for large N, we have 

# = (P(u + u, v), 

where ui and v are small terms, and the estimator takes the value u + ud. We have by 
expansion 

(5.9) = 0'(u) + B (U)iia + B (u) UK, 

where the higher order terms are neglected. Now we shift the coordinates u, 0, v without 
losing generality such that 

u= 0, O(O)=O, v(0) =0. 
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Here, the true parameter is u = 0. Then, (5.9) becomes 

(5.10) = Baiia + BiKV, 

where B' and B' are, respectively, B' (0) and B' (0). We can solve this linearized equation, 
and obtain 

(5.11) u D=iD', v = iDK 

where the n x n matrix 

D- [Di] 

is the inverse of the n x n matrix 

B=[Ba 3]. 

By introducing an n-vector w = [ii, v]T we have 

w=DO, #=Bw 

in the matrix notation, where T denotes the transposition. 
Since ii and v are asymptotically jointly normal, having asymptotically zero mean, we 

calculate their variance-covariance matrix as 

a-b 1 
gab, a-K 1 aK A 1 

cKX. (5.12) E(uab) = N E(uv N E(VKVi) = g 

Let 

1- (W T) 1 [gab gaK1 - V=E(Ww N) =- -b g-AKI 

in the partitioned form, and let G = (gij). Then, 

V= DE[OT]DT= 1 DG-1DT 
N N 

and hence we have 

V-l = B TGB. 

By putting 

(5.13) gab = B'Bbgij, ga. = B'BKgi1, gKX 
=B'BJgijg 

we have 

-Igab gaX 
gKb gKX 

in the partitioned form. 
By the partitioned calculus of matrices, we have 

(5.14) gab = (gba - gKgKbgXa) A 

where gK" is the inverse of (n - m) x (n - m) matrix gAK. Since gab/N is the covariance 
matrix of the estimator ui, we have the following theorem. 

THEOREM 6. A consistent estimator iu is Fisher or first-order efficient, if and only if 
A (u) is orthogonal to Sm at the intersecting point 0 (u). The loss of information Agab due 
to summarizing the data into the estimator iu is given asymptotically by 

1 
(5.15) _-Agab = ggKx,agKb. 
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PROOF. Since gxa is the inner product of two tangent vectors B'a of Sm and BJA of A (u), 
all the g a vanish when and only when A (u) is orthogonal to Sm. In this case, 

1 g-ab = 1 ab 

N N=- 

holds, where gab is the inverse of the Fisher information matrix gab of sm. Hence, the 
estimator iu asymptotically attains the Cramer-Rao bound, so that it is Fisher or first- 
order efficient. When A (u) is not orthogonal, the inverse of the variance g-ab/N of the 
estimator iu becomes smaller than the Fisher information Ngab by Ng'xgAbg"a as is shown 
by (5.14). Since u- is asymptotically normal, it carries the Fisher information N(gab)-l 
Therefore, the loss of information is given by (5.15). 

When A (u) is orthogonal to Sm, we have 

(5.16) gab = gab, gKX =gKXA 

Moreover, Di and DiK are obtained as follows: 

(5.17) Da = gabBbgl, DM=g KBJgji. 

It can also be proved that 

u-a = DgaO1 and UK= D7Ol 

are the orthogonal projections of # to Sm and A (u), respectively. More precisely, 

TJ7= Bi Di, NJ= BiD', 

are the projection matrices to the tangent space of Sm and to the tangent space of A (u), 
respectively. 

5.3. Curvature and second-order information loss. We now calculate the loss of 
information due to summarizing the data by a first-order efficient estimator u5. The amount 
of information which an estimator u carries per sample is written as 

1- 
gab(U) = Eu [a((iu U)ab (U, U)], 

where e(ui, u) is the logarithm of the probability density function of u- with the true 
parameters u. When the estimator is first-order efficient, g-ab (u) coincides asymptotically 
with gab (u) which is the amount of information carried by one original sample. The total 
loss of information is hence given by 

A gab (u) = N {gab (u) - gab (U)} 

and is of order 0(1). The term of this order is called the second-order information loss, 
and has been calculated by many statisticians (e.g., Rao, 1962; Hosoya, 1979; see also 
Akahira and Takeuchi, 1974). We give its geometrical presentation, extending the result of 
Efron (1975). 

We use the following lemma. 

LEMMA. The loss of information by taking a statistic T is given by 

(5.18) Agab(U) = Eu[Cov{fa a(x1, *,* * XN, U) I T(xi, * * , XN) = T}] 

where CoV{ *} is the conditional covariance and E is expectation with respect to the 
distribution of T. 

By the use of this lemma, we have the following main theorem, which states that the 
second-order loss of information is decomposed into the sum of two non-negative curvature 
terms. One term is the square of the exponential curvature tensor of the model Sm, 

e e 
(5.19) HaCK =H 

I 
cB'gK> 
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fe Since this denotes the normal components of Hac, it is a tensor representing the intrinsic 
curvature of Sm. The other term is the square of the mixture curvature tensor of the 
estimator, 

m m. 
(5.20) H,Aa = HxBJagji 

This also denotes the normal components of the curvature of A (u), and hence is a tensor 

representing the intrinsic curvature of A (u). Since the a-estimator u has the mixture 
curvature 

+ a 1+ aTBB4B 
H.Aa = 2 2TKa TijkBKBjABa 

the curvature term vanishes for a = -1, i.e., for the MLE. The MLE thus has the least 
second-order information loss. 

THEOREM 7. The second-order information loss of a first-order efficient estimator is 
given by 

e e 1 m m 
(5.21) Agab 

= 
HalCKHbdAgK'g9 + -H,saHK bg"9g, 

which becomes 

Agab = HaCKHbdAg K?g d + (1+8a2 TTKAbgKgA 8 

for the a-estimator u. 

PROOF. We have 

(5.22) dae(i, 0) = Baxi 

where we assume that u = 0 is the true parameter and 0(0) = -q(0) = 0, and all the 
quantities such as Bia are evaluated at u = 0. We represent late in terms of ii and iv, 
neglecting the terms of 0 (1 i 3)I We have by expansion 

(5.23) xi = &4(OA) = gij9j + 1/2 TijlkOlk, 

and 

(5.24) i= Ba aa + Bg1K + 1/2 d3 Bgiiaab + 1 aKBUKiV + claB V7aiK. 

By substituting (5.23) and (5.24) in (5.22), we have 

dae= gabU + 1/2 Ba(Tbci + giiabB {c)ubu 

+ 1/2 Ba(T.Ai 
+ gjilKBJA)V V + Ba(giijbBj + TKbi) iibK, 

where the orthogonality condition 

(5.25) B a(u) B i (u) gii (u) = 0 

is takon into account and TKbi = BkBjb Tkji, etc. We have from (4.6) 

Ba ( Tb,i + gjidbBJc) =rbca 

and from (5.6) 

B'a (TKA i + gjilKBXjA) = HKA a 

By differentiating the orthogonality condition (5.25) with respect to Ub, we have 

HbaK = (CbBa)Bjgji = -Ba ( TKbi + gijbB{K). 
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Hence, we obtain the important relation 
m m e 

(5.26) Cd e= gaba + 1/2 rbcaiibiiC + '/2 HK.a. - HabKl vbK. 

Next, we calculate the conditional covariance of Oaf.e Since (ii, vr) are asymptotically 
normal, we have 

E( UKiX) =_gKA 

E (UKV&VvV) = 2-(gKAgV& + gKVgAl + gKI.gAV), 

E(aaab) = gab, 

and the expectations of ija UK as well as of UK jA jV vanish to within the higher order terms. 
By substituting these in (5.18), and taking (4.17) into account, we have (5.21), which proves 
the theorem. 

EXAMPLE 5.1. The second-order information loss of the a-estimator in Example 4.1 is 
given by 

Agab 2 2 {16a2 + (1 + a )2(4a2 - 3)2) 
-8(2a 2 + 1)2U2 

where the first term is due to the exponential curvature of the model and the second term 
is due to the mixture curvature of the a-estimator. The latter vanishes for a = -1 or MLE. 

5.4. Recovery of information loss. We have shown the second order information loss 
of an efficient estimator ii. We need some additional statistics to recover the second order 
loss. Such statistics are derived directly from (5.26). Let 

e .m 
Aab = Hab(i)B'(ii)iE, Ba= 1/2 HKa(u)B'(U)BJ(U)XiXj 

be two statistic tensors. Then, we have from (5.26) 

(5.27) Oae(R, u) = gabU + /2 rbcaabac + Ba - Aabu + 0(| x | ) 

Hence, the expectation of the conditional covariance of Cael(k, u) on the condition ii, Aab 
and Ba is of the order 1/N3. This proves the following theorem. 

THEOREM 8. The second-order loss of information for a first-order efficient estimator 
ii is recovered by the statistics Aab and Ba. That is, 

(5.28) limN,- Agab = 0 

for the statistics ii, Aab and Ba. 

The tensor Aab is related to the exponential curvature of sm. The vector Ba is related to 
the mixture curvature of A (u), and vanishes for MLE. These terms are asymptotically 
ancillary. Since Aab and Ba together have m (m + 3)/2 components, information is 
summarized in ii, Aab and Ba only when m (m + 3)/2 < n - m. Otherwise, ii and v~ having 
n components carry sufficient information. 

It is another important and interesting problem to see how to use these statistics to get 
better inference (see e.g., Efron, 1978; Efron and Hinkley, 1978; Hosoya, 1979). 

5.5. The second-order covariance of efficient estimator. Efron (1975) pointed out that 
the second order term of the covariance of a first-order efficient estimator includes the 
square of the statistical curvature. The result was extended to the multi-parameter case by 
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Madsen (1979), where she used the multi-dimensional exponential curvature tensor. Here 
we show the result in our framework, which will be treated elsewhere in more detail. 

THEOREM 9. The covariance of an efficient estimator ui is given by 

CoV(ua, b) = ab 2 mb cegdf + HaA mbgKPgXiI 

(5.29) N +Ae+2 gcdgKA _ g abCb b - bCO}ba) + O(N-3), 

where 

-b= E(aa) = _ - a(fggbc + Ha,KA) N 2 

is the bias of the estimator, which can be eliminated by modifying Ua into 

UA* a = Aa _b (u) a* ..a - bNii 

It should be noted that the second-order squared error of ui * can be decomposed into 
the following positive semidefinite terms, 

(2r,adr,fg-egdf + Agdgcadb 

The first term is the square of the mixture connection, which depends on the parametri- 
zation of Sm. This sometimes called the naming curvature. There exists a parametrization 
by which this term vanishes identically, if and only if the Riemann-Christoffel mixture 

curvature tensor Rabcd vanishes. The term Agcd is indeed the second-order information 
loss, which is the sum of the squares of the exponential curvature of the subspace Sm and 
of the mixture curvature of the associated ancillary subspace A (uC). The latter vanishes for 
the MLE. 

Conclusion. We have given a differential-geometrical framework for describing sta- 
tistical problems by introducing the Fisher information metric and the one-parameter 
family of a-connections. It is shown that the a-curvatures play a fundamental role in the 
asymptotic theory of estimation. The second-order information loss and covariance of an 
efficient estimator are given in terms of geometrical quantities. The meaning of the a- 
connection is elucidated further by introducing the a-quasi-distances in the function space 
of statistical distributions (see the Appendix). 

There remain many important problems to be analyzed in the geometrical framework. 
They are, for example, higher-order efficiency, conditional estimation and ancillary statis- 
tics, asymptotic theory of testing hypotheses, robust estimation, and fitness of statistical 
models (cf. Akaike, 1974). Moreover, our geometrical theory should be extended to the 
function space. We have already obtained some results, which will be published in 
forthcoming papers (Amari, 1982, Amari and Kumon, 1981, Kumon and Amari, 1981a, 
Kumon and Amari, 1981b). 

Appendix. a-distance and a-connection in the function space of distributions. 

Al. Function space of distributions. Let us consider the set of all the smooth density 
functions p (x) of a random variable x E X with respect to some carrier measure P on X, 
with p(x) > O for all x E X. Let us put 

(A.1) !(x) = log p (x). 

Let S be the space consisting of all such densities. 
Let us consider a smooth curve p (x, t) in S and put 

{(x, t) = log p (x, t). 
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Then, 

dt (A.2) {(X, t)=dt {X 

can be considered as a tangent vector of the curve at p (x, t). This satisfies 

Et[1(x, t)] = 0, 

where Et is the expectation at p (x, t). 
The tangent space Tp of S at p (x) thus consists of smooth random variables a (x) with 

(A.3) Ep{a(x)} = 0, 

(A.4) 7) = {a(x) I Ep[a(x)] = 0) 

(cf. Dawid, 1975). To be mathematically rigorous, we need some subsidiary conditions, 
such as the boundedness of a (x)p (x), the finiteness of Ep{a (x)}2], etc., which we do not 
discuss here. A tangent vector is a linear mapping from the set of smooth functionals F to 
the set of real numbers, satisfying the Leipnitz law. For f E F, {(x, t) E Tpt, we have if = 
(d/dt)f(p (x, t)). In general, we can write, for a E Tp, af = (Df )a, where Df is the Fr6chet 
derivative. 

We can introduce the inner product in Tp by 

(A.5) a-b = Ep{a(x)b(x)}) 

This is the information metric, because 

II til2 =EP 

is the Fisher information for the one-parameter family of distributions p (x, t). 
Let a (x, t) be a family of tangent vectors defined on the curve p (x, t). When a (x, t) is 

the solution of the equation 

1-a a{+1+ Etai)O (A.6) a + 2 a 2 = 

where a is a parameter, we call a (x, t) the parallel displacement of a with respect to the 
a-connection along the curve. This defines the a-connection in S. By substituting (A6) in 
(d/dt)Et {a (x, t)}, we have 

d 
tEt a (x, t)} = Et(ae) + Et(a) = 0, 

which shows that the paralleled displacement a (x, t) indeed belongs to Tp(x,t). 
When the tangent vectors { of a curve are by themselves the parallel displacements 

along the curve with respect to the a-connection, the curve is called an a-geodesic. The 
equation of the a-geodesic is 

(A.7) -+ a2 + 1 2 i(t) = 0, (A.7) ~~ ~~~~~2 2 

where 

i(t) = Et (j) 

The (a = l)-geodesic connects two distributions by a one-parameter exponential family, 
while the (a = -1)-geodesic connects two distributions by a one-parameter mixture family. 

A2. Quasi-a-distance. Let k (u) be a smooth function satisfying 

(A.8) k(l) = O, k"(u) > O, k"(1) = 2. 
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Then, for two points p (x), q (x) E S, 

(A.9) Dk(p, q) = Epk (q(x) )] 

satisfies 

Dk(p, q) 0, 

where the equality holds when and only whenp = q. We call Dk (p, q) the quasi-k-distance 
from p to q. This does not satisfy the triangular inequality and is not symmetric in general. 
However, this is an extension of the Fisher information metric, because we have 

Dk {p (X, 0), p (x, t)} = i (t)t2 + 0 (t3), 

for small t. 
Let us define the following one-parameter family of functions 

[2u log u, a =1, 

(A.10) ka(u) = l18a2 (1- U(+a)/2), a ? 1, 

-2 log u, a=-1. 

They satisfy the requirements in (A.8). (They satisfy the single equation k'(u) = 
2u(a - 3)/2X 

We call 

(A.11) Da(p, q) = Dk (p, q) 

the (quasi)-a-distance fromp to q. The (a = -1)-distance gives twice the Kullback-Leibler 
information, and the (a = 0)- distance is four-times the Hellinger distance, which is 
connected to the true Riemannian distance (cf. Dawid, 1977). The a-distance (a # ?1) is 
related to the Chernoff distance (Chernoff, 1952). 

The following duality holds for the a-distances. 

(A.12) Da(p, q) =D-a(qp) 

so that the a-distance from p to q is equal to the (-a)- distance from q to p. 

A3. Ancillary subspaces for the a-connection. Let us consider a statistical model S5 
specified by n parameters O = (81, . . ., 0"), S" = {p(x, 0)). We assume that S forms an n- 
dimensional manifold in S, and the Fisher information gij(0) is well-defined and positive- 
definite in it. 

For a point q E S, let p(x, 0) be the point which minimizes the a-distance from q to sn, 
i.e., 

(A.13) minsn D,{q, p(x, 0)) = Da{q, p(x, 0)). 

We callp (x, 0) the a-approximation of q by s8. We assume that there exists a neighborhood 
U of s8, in which every q has a unique a-approximation in sn. Let M, be the mapping 
from U to s8, which gives the a-approximation. 

Let us call the subset of S of which every point has the same a-approximation p (x, 0), 
i.e., 

(A.14) Aa (0) = M'Y1(0) = {q iMaq =p(x, 0), q E U), 

the a-ancillary subspace of p(x, 0) EE s8. We then have the following theorem, which 
elucidates the meaning and role of the a-connections. 

THEOREM. The a-ancillary subspace of p(x, 0) E 8" consists of all the points on the 
a-geodesics which pass through the point p(x, 0) and are orthogonal to S8 at that point. 
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PROOF OUTLINE. Let q(x, t) be an a-geodesic passing through a point p(x, 0), 

(A.15) q(x, 0) =P(X, 0) 

and orthogonal to s8 at that point, 

(A.16) Eo{a ci (x, 0)dlog q(x, t) It=o} =0. 
dt 

We first prove that 

M. q(x, t) = p (x, 0). 

To this end, we put 

(A.17) Ri(t) = liD.{q(x, t), p(x, 0)), 

where ai = alaO'. The conditions (A.15) and (A.16) imply 

(A.18) Ri(0) = 0 and Ri(O) = 0, 

respectively. Moreover, by differentiation of (A.17), we have, after a little complicated 
calculation, the equation 

1 - a 2 

By solving this with the above initial conditions, we have Ri(t) = 0, from which we can 
prove that the a-distance from g(x, t) to S' is minimum at p(x, 0). 

Conversely, let q(x) oe a point which satisfies 

M.q =p(x, 0). 

Let q (x, t) be the a-geodesic connecting q(x) and p(x, 0), with q (x, 0) = p(x, 0) and 
q(x, T) = q(x). Then, Ri(t) defined by (A.17) for this q(x, t) satisfies (A.19) with Ri(0) = 
0, and Ri(T) = 0, from which we have hi(0) = 0 or (A.16). This implies that the a-geodesic 
is orthogonal to s8, so that q(x) is on an orthogonal a-geodesic. 
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