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Abstract—Computer simulation of the flow field in crossflow membrane filtration in a porous
tube and shell system depends on the imposition of permeable wall conditions on the surface of
the inner tube. Porous wall conditions are often represented by the Darcy equation which
relates the pressure gradients within a flow stream to the flow rates through the permeable walls
of the flow domain. In crossflow filtration the feed stream which flows tangentially to the
porous tube surface is modelled by the Navier—Stokes equations. These equations represent
viscous laminar Newtonian flow. They can also be generalised to deal with non-elastic,
non-Newtonian fluids. The existence of viscous stress terms in the Navier—Stokes equations,
which are expressed in terms of second-order partial derivatives, makes the straightforward
linking of these equations to the Darcy equation in a numerical solution scheme impossible.
Therefore, in order to develop a fluid dynamical model for crossflow filtration, special tech-
niques which resolve this difficulty must be used. In this paper first, various methods of linking
the Navier—Stokes and the Darcy equations in a solution scheme are considered and the
strength and weaknesses of these methods are discussed. Following this discussion the details of
a novel method which is used to develop a robust, accurate and cost-effective finite-element
simulation scheme for the combined Navier—Stokes/Darcy flows in crossflow filtration is
presented. ( 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Crossflow filtration; porous boundaries; Navier—Stokes equations; Darcy equation;
modelling; finite-element method.

INTRODUCTION

The combination of free flow and flow through por-
ous media occurs in a wide range of fluid processes
such as crossflow and deadend filtration, viscous flow
over a bed of solid particles and solidification of metal
alloy melts during moulding. However, despite the
superficial similarity of the flow regimes in these pro-
cesses underlying flow field characteristics can vary
significantly from one type of process to another. For
example, in some operations, there is a constant and
distinct interfacial boundary between the free flow
domain and the porous media. In other cases the
shape and the position of the interface between these
zones change continuously by the progress of the
process. Other factors such as fluid compressibility,
flow Reynolds number, type of pores and porosity of
porous media also directly affect the dynamics of the
combined flows. The diversity of underlying phe-
nomena and the complexity of interactions between
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free and porous flow systems have prevented general-
ised theoretical analysis of the coupled flow systems.
Fluid dynamical description of free flows usually do
not cause a problem and in great majority of instances
the well-known Navier—Stokes equations can be used
to model these sections. The main difficulty, in math-
ematical terms, is the formulation of fluid flow equa-
tions which can reliably represent both the interfacial
boundary and the flow through porous section in all
types of combined flows. However, mathematical
models which justifiably represent coupled free and
porous flows under specific conditions can be de-
veloped. These models provide useful predictive tools
for the investigation and design of important classes
of combined flow processes.

The validity of the Darcy’s law for the representa-
tion of viscous, laminar, incompressible flows in por-
ous media with small porosity is widely accepted
(Beavers and Joseph, 1967; Gartling et al., 1997).
Therefore, in processes that a combined free and
porous flow occurs under the stated conditions
the flow regime must be modelled by the coupling
of the Darcy and the Navier—Stokes equations. The
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important point is to make sure that, wherever neces-
sary, the continuity of flow field variables across
the interface between free flow and porous region is
maintained.

The absence of the second-order derivatives in the
Darcy model is often cited as a source of difficulty in
coupling the Navier—Stokes and Darcy equations.
The substitution of the Darcy model with an alterna-
tive equation which includes second-order derivatives
apparently resolves this difficulty. However, in pro-
cesses where there is no experimental or theoretical
justifications for the substitution of the Darcy equa-
tion with a different model such an approach cannot
be used. The main focus of the present study has been
the development of a scheme for the imposition of
permeable wall conditions in viscous flow domains
which can resolve the difficulties associated with the
existing techniques of coupling the Darcy and
Navier—Stokes regimes. In this paper the developed
method in the context of a finite-element model for an
isothermal, steady-state laminar flow of a homogene-
ous power-law fluid in an annular domain with a per-
meable inner wall is described. It is shown that this
scheme can be successfully used to model the com-
bined flow field in crossflow filtration processes.

Crossflow membrane filtration is one of the most
important separation techniques used in process in-
dustries. Different configurations and design speci-
fications can be used to construct industrial crossflow
filtration systems. Fundamentally, however, an
axisymmetric crossflow filter is described as an an-
nulus in which a fluid (e.g. a suspension of fine par-
ticles or a solution) flowing parallel to the axis of the
symmetry of the annulus permeates through the por-
ous walls of the inner tube in the radial direction. The
porous inner tube is made of a material which dis-
plays different permeability against the fluid and par-
ticles (or solvent and solute in solutions) and therefore
acts as a membrane, separating the constituents of the
feed stream fluid. An overview of the process has been
published by Gutman (1987) and other numerous
works dedicated to the analysis, modelling, character-
isation and classification of crossflow filters can also
be found in the literature. Generally, crossflow filtra-
tion is described as a complex time-dependent opera-
tion and a complete mathematical model for this
process should include appropriate transport, consti-
tutive and fluid dynamical equations. However, the
type and nature of the mechanisms which determine
the physical characteristics of filtration processes de-
pend on various factors such as the duration of the
operation, properties of the feed stream fluid and the
size distribution of the solid particles in slurries and
suspensions. Therefore, it is not possible to develop
a universally applicable mathematical model for all
types of crossflow filtration and the particular charac-
teristics of each process should be appropriately in-
cluded in the set of the governing equations which
represent that process. On the other hand, the under-
lying fluid dynamical behaviour of almost all types of
crossflow filtration processes can be mathematically

described by a common form. It should be noted,
however, that despite this commonality the solution
of the fluid dynamical equations on their own cannot
provide practical process analysis data. This is due to
the following factors. As the filtration progresses the
physical characteristics of the fluid being filtered, such
as its density and viscosity distributions, change. Fur-
thermore, the mutual interactions of solid particles in
the suspension with each other and the fluid con-
tinuum continuously vary affecting the balance of the
forces in the flow domain. Therefore, the rate and the
mode of the transport of the solids in crossflow filtra-
tion and the fluid dynamical behaviour of these sys-
tems should be treated as interdependent. In addition,
due to the deposition of the solid particles on the
surface of the inner tube and the fouling of the porous
wall the permeability of the membrane varies during
the process. Also in some cases the narrowing of the
annular cross-section, caused by the deposition of the
solids, can be significant and therefore it may be
necessary that the changing geometry of the flow
domain should be taken into account. In most cases,
however, a pseudo-equilibrium condition prevails
after some time and from then on the filtration may be
considered as a steady-state process (Bowen et al.,
1996). Despite the importance of the above-described
mechanisms the necessity of the imposition of the
permeable wall conditions remains the most essential
and basic requirement in modelling of the flow regime
in crossflow filtration. Thus, the fulfilment of this
requirement is the prerequisite of any acceptable
mathematical simulation of crossflow filtration.
Moreover, it is self-evident that the validity and effec-
tiveness of the method used to couple free and porous
flow equations will not be compromised by making
simplifying assumptions about the other physical
characteristics of the process. In this study, the flow
field in crossflow membrane filtration is modelled by
the coupling of the Navier—Stokes and Darcy equa-
tions. This model is particularly valid for track-etched
membranes which have low porosity. Quantitative
evaluations based on overall mass balance are used to
validate the simulations obtained using the developed
scheme.

GOVERNING EQUATIONS

Consider steady-state, laminar, isothermal flow of
a homogeneous suspension in an axisymmetric annu-
lar domain with a permeable inner wall. The flow
regime in this domain is described by the following set
of equations.

(I) The continuity equation, expression of overall
mass balance for an incompressible fluid flow:
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where r and z are the radial and axial coordinates,
respectively, and v

r
, v

z
are the velocity components.

(II) The equation of motion (components of the
Navier—Stokes equations), expression of momentum
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balance for an incompressible fluid flow:
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where o is the fluid density, p the pressure and og
r
, og

z
are the components of the body force. In the present
analysis, the shear dependent viscosity of the suspen-
sion, g, is defined by the following power-law relation-
ship.

g"g
0
cR n~1 (3)

where g
0

is the zero shear viscosity (consistency coef-
ficient), cR is the shear rate and n is the power-law
index.

BOUNDARY CONDITIONS

In the present work the above-described governing
equations are solved subject to the following bound-
ary conditions. At the inlet the feed stream velocity is
defined. The outer shell provides non-slip solid walls
and the velocity components on this surface are equal
to zero. The inner wall is permeable and the following
Darcy equations are used to describe the conditions
on this surface:
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where k
f

is the viscosity of the filtrate (assumed to be
constant) and K

r
, K

z
are the porous wall permeability

coefficients in radial and axial directions, respectively.
Equations (4) also describe the flow of the filtrate
through the porous wall of the inner tube. The filtrate
flow inside the inner tube can be described by a set of
equations similar to eqs (1) and (2).

It is well known that the imposition of artificial
no-flux (stress free) exit conditions may lead to unac-
ceptable numerical errors in flow simulations.
A method suggested by Papanastasiou et al. (1992)
which is based on apparently imposing no outlet
boundary conditions is mathematically proved to
lead to the prescription of an effective proper bound-
ary condition at the exit section for Naveir—Stokes
equations (Renardy, 1997). In the present work, either
this method is used or a non-permeable section is
added to the end of the porous wall and the exit is
considered to be at the end of this section. The imposi-
tion of the developed flow conditions at the exit from
the free flow domain in the latter case is found to give
very accurate results.

FINITE-ELEMENT SOLUTION OF THE GOVERNING

EQUATIONS

The power and flexibility of the finite-element
method in dealing with non-linear field problems in
geometrically complex domains make this technique
the most appropriate method for the solution of the
governing equations of viscous flows. In particular,
the weighted residual Galerkin finite-element schemes
(Zienkiewicz and Taylor, 1994) have been extensively
used in conjunction with C0 continuous simplex and
tensor product Lagrangian elements to solve a variety
of industrial problems (Reddy and Gartling, 1994;
Tucker, 1989; Nassehi, 1996). However, in the case of
a viscous flow in a domain with permeable walls
a routine and straightforward solution scheme based
on the use of C0 elements cannot be developed. This
difficulty stems from the inability of the C0 elements
to cope with the second-order derivatives in the
governing equations of the flow problem. To resolve
this complication, ordinarily, the Green’s theorem
(analogous to integration by parts) is used to reduce
the order of the second-order differentials in the
finite element formulation of viscous flows. This
treatment results in the appearance of additional
terms in the finite element equations representing
viscous stress flux across the element boundaries,
such as

P! A2g
Lv
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where ! is the elemental boundary surface and n
r
is

the radial component of the unit vector normal (in the
outward direction) to the element boundary. Normal-
ly, it can be assumed that along the shared internal
elemental boundaries in the solution mesh for every
flux term, from one side, there will be an equivalent
term with opposite sign, from the other side, gener-
ated by the application of the Green’s theorem to the
model equations written for an adjacent element.
Therefore, during the assembly of the elemental equa-
tions all such terms will be cancelled out. Further-
more, on the exterior boundaries of the flow domain
the imposition of essential or natural boundary condi-
tions will make the use of governing equations re-
dundant and hence there is no need for any special
treatment of the flux terms on the exterior boundaries.
It is thus clear that a viscous flow combined by flow
through porous media in which the two parts are
represented by different flow equations (i.e. Navier—
Stokes and Darcy) cannot be modelled by a technique
based on the routine application of the Green’s the-
orem. Such a treatment will result in the generation of
additional flux terms along the boundary joining the
Navier—Stokes/Darcy regimes which cannot be as-
sumed to disappear during the assembly of the el-
emental equations. Typical examples of the previously
developed techniques which aim to solve this problem
are as follows.

Pangrle et al. (1991) avoided the above-described
difficulty in modelling laminar flow in porous tube
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and shell systems by assuming that the flow at the
interface between a porous medium and free fluid can
be represented by the Brinkman equation instead of
the Darcy equation. The Brinkman (1947) equation is
written as

+p!k*+2v"!

k
K

v (6)

where k* is defined as the effective viscosity of the fluid
flowing through the porous wall. Theoretical studies
show that the validity of the Brinkman equation is
limited to very high porosity domains (Lundgren,
1972; Kim and Russell, 1985). However, as it can be
seen from eq. (6) this model contains second- order
derivatives of the velocity. Thus, if it is assumed that
the effective viscosity of the filtrate is the same as the
viscosity of the suspension in the feed stream the
application of the Green’s theorem to eq. (6) results in
the generation of flux terms which cancel out their
counterpart terms in the free fluid domain during the
assembly procedure. In general, this assumption can-
not be supported by theoretical or experimental ana-
lyses (Kaviany, 1991; Martys et al., 1994; Givler and
Altobelli, 1994) and Pangrle et al. (1991) point out
that the use of the Brinkman equation in the described
form only provides a qualitative solution for the flow
in shell and porous tube systems. An analysis of the
limits of the applicability of the Brinkman equation
for flow in porous media is reported by Durlofsky and
Brady (1987). It is also self-evident that in the cross-
flow filtration of suspensions, the effective viscosity of
the filtrate passing through the porous wall cannot be
equal to the viscosity of the feed stream fluid being
filtered.

Nassehi and Petera (1994) developed a method for
the solution of the combined Navier—Stokes/Darcy
flow problems which is based on the use of least-
squares finite-element method. In this scheme,
C1 continuous isoparametric Hermite elements are
used. Hermite elements are constructed utilising high-
er-order interpolation models and therefore they can
automatically cope with second-order derivatives in
the governing differential equations without using the
Green’s theorem. However, more detailed numerical
experiments using this new element showed that the
developed least-squares scheme has the following
shortcomings. The number of degrees of freedom in
the solution domain increases very rapidly by mesh
refinement and consequently the use of the Hermite
elements requires excessive computational effort. This
problem becomes particularly acute in three-dimen-
sional filtration flow simulations. Second, in the
least-squares scheme the Green’s theorem is not used
and this means that in non-Newtonian flows the
shear-dependent viscosity appearing in the viscous
stress terms remains subject to differentiation. It is
therefore necessary to calculate the derivatives of the
viscosity at the integration points in this scheme. The
inaccuracy resulting from the approximate numerical
differentiation of viscosity function was found to be

significant in the simulation of practical shell and
porous tube systems. Another requirement of the de-
scribed least-squares scheme is that the entire domain
consisting of the free flow in the outer annulus, the
flow through the inner tube wall and the free flow of
the permeate inside the inner tube should always be
modelled in a coupled form. Thus, the scheme lacks
the flexibility of being used in a form in which the
Darcy equation is imposed simply as a boundary
condition along a permeable wall in viscous flow
domains.

In order to resolve the above-described problems,
a Galerkin finite-element scheme for the combined
Navier—Stokes/Darcy flow based on the use of
C0 Lagrange elements is developed by Nassehi and
Petera (1997). In this scheme, the layer of the elements
joining the porous wall to the rest of the domain in the
solution mesh are formulated in a form which can
represent a combined flow field. Essentially, this is
achieved by replacing the terms of the elemental stiff-
ness equations which correspond to the nodes located
on the porous surface by the discretised form of the
appropriate Darcy components while letting the re-
maining terms in these matrices to remain the same as
those originating from the Navier—Stokes equations.
In cases where a model for the whole system of outer
shell, porous wall and inner tube is required a similar
layer of elements combining the Darcy and the
Navier—Stokes equations are used to join the flow
domain inside the inner tube to the inner surface of
the porous wall. In order to obtain stable numerical
results for incompressible flow the Ladyzhen-
skaya—Babuska—Brezzi (LBB) condition must be
satisfied (Reddy, 1986). This poses a severe restriction
on the choice of elements which can be used in the
described scheme. This is due to the representation of
incompressibility constraint via eq. (1) in this ap-
proach. The most convenient element to be used is the
C0 continuous Taylor—Hood element (Taylor and
Hood, 1973) which is based on a lower order of
interpolation for the pressure calculations than the
velocities. Thus, despite the success of this scheme in
dealing with the basic problem associated with the
coupling of the Darcy and Navier—Stokes equations
due to the inevitable reduction in the accuracy of
the pressure interpolation it introduces an additional
approximation into the flow simulations. Further-
more, restrictions in the choice of approximations
for the velocity and pressure results in a scheme
which cannot be clearly shown to lead to a conver-
gent solution under all conditions for a combined
Navier— Stokes/Darcy flow (Gartling et al., 1997).
It can be argued that the ability to yield very accurate
and continuous pressure values on the porous wall
surface is crucial in determining the usefulness of
a combined scheme of this kind. To achieve this objec-
tive in the present work an alternative method for the
fulfilment of the incompressibility constraint is used.
In this method instead of a divergence free velocity
field [i.e. equation (1)] the following equation which,
theoretically, represents slightly compressible fluids
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is used:
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where c is the speed of the sound in the fluid. The use
of eq. (7) to model incompressible flow with equal-
order interpolation functions for velocity and pressure
in the finite-element solution schemes which satisfy
the LBB condition without any complications is very
well established (Zienkiewicz and Wu, 1991). In the
present scheme to make all of the model equations
compatible with eq. (7) appropriate time-dependent
inertia terms such as o(Lv

r
/Lt) are added to the left-

hand sides of the components of the Navier—Stokes
equation (2) and the Darcy equation (4). Zienkiewicz
and Wu (1991) give a detailed description of various
finite-element discretisations which can be used to
obtain stable and accurate solutions for incompress-
ible viscous flow using equal-order interpolation for
velocity and pressure in models which are based on
eq. (7) instead of the usual incompressibility con-
straint. They further show that this approach can be
very conveniently applied to obtain steady-state re-
sults iteratively using a transient computational
scheme.

WORKING EQUATIONS OF THE NEW SCHEME

The temporal derivatives in the model equations are
first treated using a two-level time-stepping scheme
(Nassehi and Bikangaga, 1993). In this scheme, the
predictor step to time level tn`1@2 is given as
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where ve
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and pe are trail function representations of

the velocity components and pressure, respectively,
which in the context of the finite-element discretisa-
tions are found within each element in terms of the
interpolation functions as
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where vm
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and pm are the nodal values of the

components of the velocity and pressure, respectively,
N

m
is the interpolation function associated with node

number m in an element and k and k@ are the number
of velocity and pressure nodes per element. As ex-

plained in the previous section in the present scheme,
elements which are based on equal degrees of interpo-
lation for velocity and pressure are used. The follow-
ing corrector step generates solution at time level
tn`1,
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After the replacement of the temporal derivatives in
the model equations by relationships (8a)—(8c) and
(10a)—(10c), the finite element discretisation is carried
out. The spatial discretisation in the above-described
predictor and corrector steps are based on the well-
known weighted residuals Galerkin finite-element
method (Zienkiewicz and Taylor, 1994). In this
method, the residuals generated by the substitution of
the variables in the model equations from relation-
ships (9a)—(9c) are first weighted using weight func-
tions identical to the interpolation functions and are
then integrated over the element domain Xe. In these
weighted residual statements the application of
Green’s theorem (analogous to integration by parts)
to the terms which involve second-order derivatives of
velocity and, for reason of compatibility, first-order
derivatives of pressure gives the working equations of
the present scheme. Using matrix notations these
equations are

Predictor step:
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, etc. the off-diagonal terms are all equal to
zero. The weight functions, N

l
(l"1, k) are the same

as the interpolation functions. In the present work
isoparametric elements are used and therefore
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In conjunction with the above mapping relationships
the measure of integration in the above formulations
are transformed in the usual manner using the Jac-
obian of coordinate transformations (Zienkiewicz and
Taylor, 1994). The terms of the load vector (right-
hand side) in eq. (11) represent values at time level
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tn and we have, for example,
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where !
e

is the element boundary and n
r
and n

z
are

the components of the unit vector normal to the
element boundary in outward direction. Other mem-
bers of the load vector are analogous to the above
example. The boundary integrals (i.e. the flux terms
generated by the application of the Green’s theorem)
in equations corresponding to elements which are
inside the free flow region are eliminated during the
assembly of the elemental equations except for the
layer which is on the porous wall surface. In this layer
of elements the members of elemental equation (11),
which correspond to the nodes located on the porous
boundary, are substituted by the Darcy flow equa-
tions. Spatio-temporal discretisation of the Darcy
flow equations, carried out in a similar way, yields
a matrix equation whose left-hand side is identical to
eq. (11); however, the members of the load vector
(right-hand side) in this equation are derived as
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The line (boundary) integrals in eqs (13a) and (13b)
cannot be neglected since this will amount to the
wrong imposition of zero pressure along the per-
meable wall.

In practice, the modification of the working equa-
tions in the free flow region for elements which are
adjacent to the permeable wall can be achieved in
a number of ways. An apparently simple method is to
use a thin layer of specially defined wall elements
along the interface over which stiffness equations rep-
resenting free flow and porous flow can be cast in
appropriate forms and assembled. The problem with
this approach is that these elements normally have
very high aspect ratios and hence their use generates
computational errors. An alternative method is to use
a Lagrange multiplier technique in which wall condi-
tions are imposed via the minimisation of a specially
constructed functional (Zienkiewicz and Taylor,
1989). However, one cannot be sure that the described
minimisation will always result in finding a suitable
multiplier and the final set of equations to be solved
may become highly ill-conditioned. To avoid these
problems in the present scheme, a more direct ap-
proach for combining the working equations of free
flow and porous regions is used. In this method, first
the nodes which are located on the interface between
two flow regions are identified and recorded. Then in
the elemental stiffness equations obtained for the free
flow region [i.e. equations found using working equa-
tion (11)] rows corresponding to the recorded degrees
of freedom are substituted by the discretised form of
the porous flow model [found using working equa-
tions (13a)—(13c)]. Since the interface nodes are com-
mon between the free and porous flow regions, the
described modified elemental equations are assembled
with their counterparts on the porous region over
these common degrees of freedom. This ensures the
continuity of the flow field variables across the inter-
face.

Corrector step: The derivation of the working equa-
tions for this step is very similar to the predictor step
and the final equations which are used to obtain the
solution at time level n#1 are analogous to the
above-described working relationships. In the present
application of the scheme where the steady-state solu-
tions are required time stepping is based on an iter-
ative cycle which is terminated after a satisfactory
convergence is obtained.

The described scheme is very flexible and can also
be employed to model a combined flow system in
which the interface between two regions is not con-
stant and changes by the progress of the process. In
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Fig. 1. Velocity field in a fully open exit annulus with a porous inner wall with a radial permeability of
10~8m~2 (velocity vectors and the domain are plotted using different scales).

Fig. 2. Velocity field in a fully open exit annulus with a porous inner wall with a radial permeability of
10~7m2 (velocity vectors and the domain are plotted using different scales).

this case at the end of every time step, after finding the
new position of the moving boundary by a surface
tracking procedure (e.g. see Petera and Nassehi, 1996),
the new interfacial nodes are identified and the modi-
fied elemental equations are assembled over these
nodes.

The developed scheme can also be used to model
flow through porous regions bounded by solid walls.
In this case solid walls are represented as imperme-
able interfaces and in the Darcy equation, k

r
, k

z
are set

to be zero (to avoid division by zero in the numerical
computations the Darcy equation should simply be
rearranged to give the velocity in terms of permeabil-
ity, viscosity and pressure gradients).

In crossflow filtration of suspensions the feed
stream which flows adjacent to a porous wall is not
a clear fluid and carries solid particles. As the filtra-
tion progresses due to the migration of these particles
the rheological behaviour of the feed stream fluid
changes with time and position. Therefore, a flow
model which is limited to Newtonian fluids cannot be
expected to provide an adequate representation of
the flow field in crossflow filtration and the scheme
should be able to simulate non-Newtonian (non-
linear) flow behaviour. In the present scheme, the
generalised Navier—Stokes equations are used to rep-
resent the feed stream flow. To cope with the non-
linearity of these equations, a local (nodal) iteration
procedure is included in the developed scheme which
is used to update the nodal values of viscosity. In the
examples given in this work, the nodal viscosities are
found using a power-law constitutive equation. If it is
desired, this equation can easily be substituted by
a different constitutive relationship which gives
a closer account of the rheological behaviour of a feed
stream fluid. Depending on the availability of an ap-
propriate equation of state a similar procedure can
also be used to update the nodal values of the fluid
density.

COMPUTATIONAL RESULTS

The flexibility of the developed technique allows it
to be used either simply as a method to impose per-
meable wall conditions in a viscous flow domain or it
can be applied to model the entire flow regime in
a shell and tube system. Therefore in the present work
two cases are considered.

In the first problem the flow of water in an axisym-
metric annulus of 0.5 m length and inner radius of
0.02 m and outer radius of 0.07 m is simulated. A sec-
tion in the middle of the inner wall is porous and the
rest of this boundary and the entire outer shell are
non-slip solid walls. The length of the porous section
is 0.38 m. At the inlet a plug flow with a velocity of
0.02 m/s is given as the boundary condition. The con-
vective acceleration terms for this flow are significant
and it should be treated as a non-creeping incom-
pressible laminar axisymmetric Newtonian regime
governed by the Navier—Stokes equations. Due to the
existence of a non-permeable section at the end of the
domain the prescription of the developed flow or
standard stress free conditions at the exit can be
regarded as a reasonable choice in this problem. It
should, however, be noted that a better approxima-
tion may be needed in more complex problems. More
explanations regarding the choice of exit conditions in
shell and tube flow systems is given later in this
section. For a fully open exit the simulated flow fields
with porous wall permeability of 10~8 and 10~7m2

(in the radial direction, no axial flow along the porous
wall is assumed) are shown in Figs 1 and 2, respective-
ly. These results are computed on a finite-element
mesh of 128 nine-noded bi-quadratic C° elements. The
steady-state solution is obtained after a minimum of
12 iteration cycles. However, more accurate solutions
are obtained if steady state is approached slowly by
increasing the number of these cycles (i.e. the number
of corresponding predictor—corrector steps). The in-
crease in permeability has a very significant effect on
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Fig. 3. Pressure contours corresponding to the velocity field shown in Fig. 2.

Fig. 4. Velocity field in a partially open exit annulus with a porous inner wall with a radial permeability of
10~7m2 (velocity vectors and the domain are plotted using different scales).

the amount of seepage flow through the porous
boundary. The amount of flow passing through the
porous wall (porous inner surface of the annulus) is
found by

Q
p
"2n r

i P
z2

z1

v
r
dz (14)

where r
i
is the inner radius of the annulus and z

1
and

z
2

are the axial coordinates of the beginning and end
of the porous section, respectively. The amount of
outflow is found by

Q
o
"2n P

ro

ri

v
z
r dr (15)

where r
o
is the outer radius of the annulus. The inte-

grals in eqs (14) and (15) are found numerically using
finite- element interpolation to represent axial or
radial velocities (Nassehi and Petera, 1994). The ratio
of permeate flow to the discharge through the exit
drops from 8 to 0.6 by reducing the permeability from
10~7 to 10~8 m2. The overall material balance based
on the comparison of total inlet flow with the sum of
permeate and outflows in both cases shows the accu-
racy of the numerical simulations. For wall permeab-
ility of 10~8 m2 the difference between input and the
total output is less than 1%. The discrepancy between
the inlet and the total exit flows in the case of in-
creased permeability is slightly higher than the lower
permeable wall but it is only 2.5%.

The presented results are obtained using a coarse
mesh and it is expected that even more accurate
simulations can be produced if finer meshes are used.
Furthermore, the accuracy of the present simulations

are significantly improved if the time step in the suc-
cessive predictor—corrector calculations is made
smaller, i.e. the number of transient stages leading to
the steady state is increased. Numerical experiments
showed that, in the above problem using the same
mesh, the difference between the input and the total
output is reduced to 2.3% if the steady state is ap-
proached more gradually after 14 intermediate transi-
ent stages instead of 12. An additional increase in the
number of cycles from 14 to 18 further improves the
accuracy of this simulation and the overall mass bal-
ance error drops to 1.7%.

The pressure contour plot corresponding to the
flow field with wall permeability of 10~7m2 is given in
Fig. 3 which, as expected, shows some deviation from
a typical pressure field for simple pipe flow character-
ised by equidistant parallel contours. In order to in-
vestigate the effect of exit conditions the flow regime
in a partially closed end annulus is simulated. The
simulated flow field for wall permeability of 10~7 and
10~8m2 are shown in Fig. 4 and 5, respectively. In
these simulations the stress free outflow conditions
are used. The errors in overall mass balance in these
simulations are 4.1 and 2.8% using 12 predictor—cor-
rector steps. The increase in the discrepancy between
the inlet flow and the sum of permeate and exit flows,
in comparison to the fully open end case, is mainly
due to the use of approximate exit boundary condi-
tions (Griffiths, 1997). Pressure contours correspond-
ing to the velocity field shown in Fig. 5 are given in
Fig. 6. This graph shows an expected increase in the
pressure gradient along the free flow direction as
a result of lower porous wall permeability.
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Fig. 5. Velocity field in a partially open exit annulus with a porous inner wall with a radial permeability of
10~8m2 (velocity vectors and the domain are plotted using different scales).

Fig. 6. Pressure contours corresponding to the velocity field shown in Fig. 5.

Fig. 7. Velocity field in a shell and tube system with inner tube wall permeability of 3]10~6m2 in the
radial direction. The axial permeability of the inner tube wall is zero.

In the second problem considered in the present
study, a complete shell and tube system of 0.5 m
length, inner radius of 0.02 m, outer radius of 0.06 m
and porous wall thickness of 0.005 m is modelled.
Initially, the flow and seepage of water in this system
was simulated and the overall mass balance was
checked. The model results showed 4% discrepancy
between the inlet flow and the total outflows through
the outer shell and inner tube exits if steady state
achieved after 12 cycles. The successive applications of

the predictor—corrector steps was increased to 18
steps and the mass balance error was reduced to 1.9%.
Following this test a more complex flow problem was
investigated. In this problem the feed stream consists
of a slurry defined as a power-law fluid of density,
o"1825 kg/m3, consistency coefficient of g

0
"0.83

and index n"0.64. The permeate is water. The
solution mesh therefore represents the inner tube
from axis of symmetry to the inside surface of the
annulus, porous wall and the outer shell. The flow
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regime is described as laminar, non-creeping incom-
pressible non-Newtonian flow in the outer shell, in-
compressible seepage Newtonian flow through the
wall and laminar, and non-creeping incompressible
Newtonian flow in the inner tube. Inlet is through the
outer shell.

Two different situations are investigated. In the first
case, the exit from the outer shell is partly blocked and
the inner wall permeability in the radial direction
(i.e. k

r
) is given as 3]10~6m2. It is assumed that the

inner wall is impervious in the axial direction. This is
the normal situation in track-etched membranes. The
imposed boundary conditions are zero velocity along
the outside wall of the shell, known plug flow inlet
velocity (0.01 m/s), conditions of symmetry (i.e.
v
r
"0.0) along the inner tube axis. At the exit to avoid

approximations generated by the use of unrealistic
stress-free conditions the ‘free boundary conditions’
suggested by Papanastasiou et al. (1992) is used. This
means that the line integrals generated by the applica-
tion of the Green’s theorem in the weighted residual
statement of the problem which correspond to the
nodes located at the exit are not eliminated by the
imposition of artificial stress-free conditions and in-
stead they remain in the elemental equations and
should be treated as unknowns. Renardy (1997) has
shown that a more suitable exit boundary condition
for discretised flow equations can be imposed in this
manner. In practice, a first guess solution based on the
imposition of the standard outflow boundary condi-
tions is found and used to obtain better results by the
described method via an iterative cycle. It should be
noted that this method is only relevant to free exits
from a flow domain and it cannot be used in the case
of exit by seepage through a porous wall. In the
present work, in order to simulate the flow in the
described shell and tube system in the layers of ele-
ments which join the free flow to the seepage flow
regimes the terms of elemental equations which cor-
respond to the nodes located on the porous surface
are modified according to the technique described in
this paper. The predicted steady-state flow field in this
case is shown in Fig. 7 and it seems to be accurate in
every respect. A previous model, based on the use
of mathematically sophisticated C1 continuous
isoparametric Hermite elements for linking Navier—
Stokes and Darcy equations, generated spurious cir-
culations in the flow field under exactly the same
conditions as in this example (Nassehi and Petera,
1994). This comparison provides an indication for the
robustness of the present model. Figure 7 shows the
velocity profile in the outer shell region, through the
porous wall and inside of the inner tube. The pressure
contours corresponding to this flow system are given
in Fig. 8. These isobars show a continuous pressure
drop from the outer shell to the inner tube across the
membrane.

As a numerical experiment the velocity and the
pressure data found for the porous region in this
example were inserted in the Brinkman equation. The
aim was to estimate the equivalent ‘effective viscosity’

Fig. 8. Pressure contours corresponding to the velocity field
shown in Fig. 7.

which can give comparable flow field results if the
Darcy equation is replaced by the Brinkman model in
this simulation. This experiment gives a k* which is
approximately 10—15 times smaller than the true per-
meate viscosity at different sampling nodes inside
the porous region. This is not unexpected since
the insertion of k* values which are smaller than
the true viscosity renders the second-order term in the
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Fig. 9. Velocity field in a shell and tube system with inner tube wall permeability of 3]10~6m2 in the
radial direction. The axial permeability of the inner tube wall is 10~9m2.

Brinkman equation insignificant and hence it be-
comes closer to the Darcy model.

In the second shell and tube system simulated in the
present work the exit from the outer shell is fully open.
Also in addition a membrane which is permeable in
both radial and axial directions is considered. Here,
the radial and the axial permeability coefficients of the
inner tube wall (i.e. k

r
and k

z
) are, respectively, given as

3]10~6 and 10~9 m2. The membrane wall at the exit
from the flow domain is assumed to be solid and
along this line both coefficients are given as zero. The
simulated flow field in this case is shown in Fig. 9. This
figure indicates that, under the given conditions, the
velocity field in the inner tube tends to become almost
parabolic and it is nearly constant after a short dis-
tance from the inlet. This changes, abruptly, at the exit
since the insertion of zero permeability stops the flow
through the porous wall and significantly alters the
velocity profiles in both regions. As it can be seen in
Fig. 9, tangential velocities on the surface of the por-
ous wall can be simulated by the present scheme.
Therefore, the developed model can be used as a tool
to generate porous flow fields comparable with the
model suggested by Beavers and Joseph (1967). These
investigators postulated the existence of a slip velocity
along the surface of the porous section in order to give
an analytical account of experimentally obtained
mass efflux of viscous fluids in porous domains. It is
however, important to note that in the present scheme
the insertion of a non-zero permeability in the
axial direction, which results in the appearance of
a slip velocity on the porous surface, does not
mean that the shear stresses across interfacial bound-
ary between the flow regions are made continuous.
The possibility of the matching of the shear stresses
across the boundary between free and porous flow
regimes is often cited as a rationale for using the
Brinkman model instead of the Darcy equation in

porous flows. However, in combined flow systems,
matching of the shear stress on the sides of the
interface between free and porous regions cannot be
regarded as valid since, on the porous side, a portion
of the stress is carried by the solid matrix (Nield
and Bejan, 1992). The pressure contours corres-
ponding to the velocity field given in Fig. 9 are shown
in Fig. 10. The pressure isobars shown in Fig. 10
reflect the special form of the simulated flow field
given in Fig. 9. As the velocity profile inside the inner
tube tends to become constant the pressure gradient
in the axial direction in this region almost vanishes.
This can be contrasted with the simulated pressure
field shown in Fig. 8 which reflects the change of the
velocity profile along the entire length of the inner
tube.

CONCLUSION

In this paper a new method for the imposition of
permeable wall conditions in viscous flow domains is
presented. This method offers a general technique for
the linking of the free flows modelled by the Navier—
Stokes equations to flow through permeable walls
described by the Darcy equation. In the present study
the developed technique has been applied to model
the combined flow of feed stream and permeate in
axisymmetric shell and porous tube systems. This
configuration is widely used in many crossflow filtra-
tion processes in industry and accurate modelling of
the flow regime in these systems is a basic requirement
in the development of reliable predictive filtration
models. Thus, the present combined Navier—Stokes/
Darcy flow model can be regarded as the first step
towards creating a complete model for crossflow fil-
tration. Such a task will involve the application of the
present model in conjunction with appropriate species
transport (e.g. particle migration in suspensions)
and constitutive and state equations which take into
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Fig. 10. Pressure contours corresponding to the velocity
field shown in Fig. 9.

account the variations of fluid properties. The com-
putational results obtained by the described method
show that the model accurately preserves the flow
continuity in complex branching flow domains. Vari-
ous simulations based on different inlet velocity pro-
files, wall permeability and exit conditions are pre-
sented to show the flexibility of the developed scheme.

NOTATION

a
lm

member of coefficient matrix in the el-
emental working equation

b
l

member of load vector in the elemental
working equation

c speed of sound in the fluid
g
r
, g

z
components of the body force vector

K, K
r
, K

z
Darcy permeability, non-isotopic Darcy
permeability in r and z directions

n power-law index
n
r
, n

z
components of the unit normal vector

N
m

interpolation function associated with
node m

N
l

weight function number l
p, pe pressure, interpolated pressure
t time variable
v
r
, v

z
;

ve
r
, ve

z

velocity components, interpolated velocity
components

r, z; re, ze space variable, interpolated spatial vari-
ables used in iso-parametric elements

Greek letters
c5 shear rate
g shear-dependent viscosity of a power-law

fluid
g
0

consistency coefficient (zero shear rate vis-
cosity) of a power-law fluid

k, k
f
, k* Newtonian viscosity, viscosity of the fil-

trate, effective viscosity
o fluid density
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