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Abstract 

Recent research in artificial intelligence has developed computational theories of agents’ in- 
volvements in their environments. Although inspired by a great diversity of formalisms and 

architectures, these research projects are unified by a common concern: using principled charac- 
terizations of agents’ interactions with their environments to guide analysis of living agents and 

design of artificial ones. This article offers a conceptual framework for such theories, surveys 
several other fields of research that hold the potential for dialogue with these new computational 
projects, and summarizes the principal contributions of the articles in this special double volume. 
It also briefly describes a case study in these ideas-a computer program called Toast that acts as 
a short-order breakfast cook. Because its designers have discovered useful structures in the world 
it inhabits, Toast can employ an extremely simple mechanism to decide what to do next. 

1. Introduction 

The papers in this special double volume illustrate an emerging way of doing research 
in artificial intelligence, which might be stated compactly as follows: 

Using principled characterizations of interactions between agents and their envi- 
ronments to guide explanation and design. 

The purpose of this introduction is to explain this emerging style of research and to 

explore its relationship to other research in AI and elsewhere. 
Let us begin with a familiar example. Consider a device (a “controller”) that must 

direct the operations of an oil refinery. So far as control theory is concerned, an oil 
refinery is an enormous machine (the “plant”) with a number of “control variables” 

that can be adjusted from the outside (the settings of various valves and burners) and a 
number of “output variables” whose values at any given moment can be determined from 
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the outside (the readings on various sensors and gauges). The task of the “controller”, 
let us say, is to stabilize some of the output variables around certain values while 

maintaining other variables within certain fixed ranges. In concrete terms, the controller 
must adjust the valves and burners to sustain a fixed flow of oil without the plant blowing 

up. 
Given a proposed design for this controller, how do we know whether it will work? 

It is impossible to answer this question simply by analyzing the controller itself. Nor, 
obviously, does it suffice to analyze the plant in isolation. Instead, it is crucial to analyze 
how the controller will interact with the plant. Given any particular set of initial values, 
and supposing for simplicity that the interaction is not stochastic, the combined system 
of plant plus controller will follow a determinate trajectory. The designer’s goal is to 
ensure that the entire family of these interaction trajectories has certain properties. One 
way to characterize this family of trajectories is in terms of a differential equation that 

relates changes in the control variables to the current values (and perhaps the ongoing 
rates of change, or past values, or both) of the output variables. 

The controller in this example might be regarded as an agent interacting with its envi- 
ronment, namely the plant, and differential equations provide one way of characterizing 
such interactions. Control theory, of course, provides only one way of thinking about 
interactions. It is tied to a particular model of interaction (through output and control 
variables), its historical development has been profoundly influenced by the need for 

safety and conservatism in relatively well-behaved systems, and it is thoroughly mathe- 
matical. A principled characterization of interaction, though, need not have any of these 
qualities to provide a useful guide to the design of artificial agents and the explanation 
of natural ones. Indeed, we have deliberately chosen the vague word “principled” (as 
opposed to, say, “formal”) in order to include an unforeseeable range of possible types 
of theories of interaction. The important thing is that our characterization of interaction 

should allow us to address questions like these: 
l What will our agent do in a given environment? 
l Under what conditions will it achieve its goals or maintain desired relationships 

with other things? 
l In what kinds of environments will it work? 
l How do particular aspects of an environment, such as topography or mutability or 

the workings of artifacts, affect particular types of agents’ abilities to engage in 
interactions that have particular properties? 

l What forms of interaction require an agent to employ particular elements of internal 
architecture, such as memory? 

l What forms of interaction permit an agent to learn particular knowledge or skills? 
To ask these questions, we do not need to make any a prioti assumptions about the 

architecture of our agents. To the contrary, the point is to understand, in as general a 
way as possible, the relationships among the properties of agents, environments, and 
forms of interaction between them. Of course, it is doubtful that any single theory can 
give a complete account of this vast topic. The papers in this special double volume, 
though, each provide detailed examples of the analysis of interactions within some 
particular domain of architectures and environments. This special double volume is 
thus explicitly ecumenical in approach, advocating no single architecture and no single 
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formalism. Through the shared themes that arise within the principled characterization 
of interactions, we hope that each project can benefit from the others, and that readers 
can benefit from the three-dimensional picture of research in this area that this approach 

can offer. 
This introduction cannot attempt a complete synthesis of research in this area, nor is it 

a manifesto representing a definite group or movement. Instead, it offers one perspective 
on how the research reported in this special double volume is situated in the larger 
intellectual and technical world. It is organized as follows. Section 2 outlines a series 
of themes that arise when doing computational research on interaction between agents 

and their environments, together with examples and conceptual discussion. In so doing, 
it also specifies more precisely the territory of research covered by this special double 

volume. Section 3 describes the conceptual connections between the research reported 
here and research in other fields. These connections may provide inspiration for further 
computational research on interaction. Section 4 summarizes the individual papers in this 
special double volume, offering comments on their distinctive contributions and their 

relationships to one another. Section 5 presents a case study in the ideas of the special 
double volume. Section 6 concludes with a prophesy and plea for interdisciplinary 

research. 

2. Studying interaction 

It is far too early to assemble a rulebook for research into computational theories 
of interaction and agency. It is possible, though, to convey some of the intuitions that 
have been developing through the progress of research in this area, both through the 
computational research reported here and through the existing traditions of research upon 

which it builds. Putting words to these intuitions is a hazardous matter, and the words 
offered here should be understood as heuristic devices, as first passes, and as invitations 
to formulate things in different ways, through different metaphors. 

2.1. Mapping the territory 

First it is necessary to define carefully the scope of research reported here. Let us 
imagine research on agents interacting with the world to be arrayed in a two-dimensional 
field, with one axis corresponding to the number of agents involved in the interaction and 

the other axis corresponding to the degree of realism with which the world is modeled. 

(See Fig. 1.) A single agent interacting with a very simple world would lie toward the 
origin of this diagram. Any project to model human life, or the lives of most animals, in 
a realistic way would lie in the upper-right corner of the diagram, and that is surely the 
future ideal of much of the field. As it is, most current research clusters in three areas: 

( 1) Research that explores single agents interacting with relatively simple environ- 
ments, where particular aspects of the environment are analyzed in enough detail 

to bring out larger points. 
(2) Research on relatively complex forms of interaction among several agents in 

extremely simple environments, where the interaction is largely symbolic and 
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Fig. I. Current Al research falls mostly into three clusters. which can be contrasted according to the degree 

of complexity of the environments they deal with and the number of interacting agents they employ. 

depends little on the agents’ bodies. The emphasis is on the logical structure of 
the interaction. 

(3) Research on relatively simple interaction among numerous agents in slightly 
more complex environments, where the interaction does depend in some way on 

the agents being embodied. The agents may be physical robots or simulations, 
and the emphasis is on the emergence of order from simple forms of interaction. 

The papers in this special double volume lie exclusively in the first of these three 
clusters, with the exception of the paper by Shoham and Tennenholtz, which lies in the 
third. As a result, numerous important issues go unaddressed here, including symbolic 
forms of interaction among agents. Integration of the three approaches, leading to an 
exploration of the middle regions of the diagram, is obviously an important goal for the 
future, and we hope that the analyses developed here will contribute their part to that 
project. 

2.2. Planning and reaction 

Computational research on interaction between agents and their environments has 
historically been structured by two sets of ideas: a dominant tradition focused on “plan- 

ning” and a subordinate tradition focused on “reaction”. Careful consideration of these 
ideas will make the distinctive position of the research reported here much clearer. 

Although the term “planning” is not always used with great precision, let it refer here 
to the notion of organizing action through the construction and execution of computer- 
program-like symbolic structures called plans (cf. [ 73 > . This idea can be traced back- 
wards through the history of AI to a number of sources. Perhaps the most important of 
these is Karl Lashley’s 1951 lecture “The problem of serial order in behavior” [ 493. As 
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a neurophysiologist vitally concerned with the workings of human brains, Lashley urged 
an understanding of cognitive processes whose prototype was the phonetic structure of 
language. Utterances of language have a formal structure of great intricacy whose basic 
elements, the phonemes, follow upon one another so rapidly that the structure simply 
could not emerge through the chaining together of behavioristic stimuli and responses. 
It follows, Lashley argued, that the brain must be capable of generating these structures 
on its own internal resources. 

Moreover, Lashley proposed understanding all human action on the model of language. 
The job of the brain was to string together the “‘expressive elements” (by analogy to 
words or lexical units) by means of “the syntax of the act” (the grammar of action) 
in accord with the “determining tendency” that the action is intended to express. Al- 
though the theoretical vocabulary has changed, the general shape of this proposal was 
enormously influential [ 31. In a more familiar AI vocabulary, Lashley is suggesting that 
the brain generates sequences of primitive actions by applying stored habitual schemata. 
The vague idea of “determining tendency”, which Lashley abstracted by analogy to the 
semantic content being expressed by a linguistic utterance, has been replaced by the 
simpler notion of the goal to be achieved at the end of an action sequence. 

Another influential early proposal, better known in the AI world because it was ac- 
companied by computer models, was Allen Newell and Herbert Simon’s computational 
model of problem solving based on search [ 591. Although linguistic metaphors were 
not central to their exposition, their proposal was similar to Lashley’s. Thought was held 
to consist in a process of search through a space of possible sequences of “operators”, 
some of which correspond to desirable situations which might be understood as problem 
solutions or goals. The term “planning” entered the AI lexicon as one of the heuristic 
devices that could abbreviate these searches. According to Newell and Simon’s concep- 
tion, planning takes place when a coarser search space is used to guide the exploration 
of a finer (and thus combinatorially much larger) search space. This notion of nested 
search spaces aligned neatly with the formal concept of the hierarchical decomposi- 
tion of action that was already found in research on linguistics. Each utterance has a 
grammatical structure that can be drawn as a hierarchical parse tree, with each lexical 
item itself having a hierarchical structure of syllables and phonemes. To researchers 
such as Newell and Simon, hierarchical decomposition held the promise of a universal 
structuring principle for human cognition. 

The ideas proposed by Lashley and by Newell and Simon were combined in the first 
synthesis of the computational theory of planning, Plans and the Structure of Behavior 

by George Miller, Eugene Galanter, and Karl Pribram [57]. There one encounters the 
first recognizable definition of “Plans”: 

A Plan is any hierarchical process in the organism that can control the order in 
which a sequence of operations is to be performed. 157, p. 161 

Note that a Plan here is not necessarily a symbolic mental structure. It is less specific than 
that: a “hierarchical process” specified in terms of its ability to structure (in Lashley’s 
terms) the serial order of the organism’s behavior. Miller, Galanter, and Pribram’s 
conception of a Plan shaped later AI research in numerous ways. But the most important 
of these for present purposes is a persistent ambiguity throughout the whole of their 
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book between two conceptions of Plans and their use: 
( 1) A notion of “Plans”, a relatively fixed repertoire of commonly employed struc- 

tures of action. In more recent AI work, this would be called a “plan library”. 

Miller, Galanter, and Pribram give no account, however, of where these Plans 

come from. The Plans are hierarchical in their structure, and they can be assem- 
bled into larger structures by treating them as elements in a larger hierarchy. 

(2) A notion of “the Plan”, a hierarchical structure or process which provides a 
sort of running transcription (in linguistic terms, a parse tree) of the organism’s 

behavior. No commitment is made here to the mechanisms by which this Plan 
arises, and it could perfectly well be improvised from moment to moment, with 

the sole constraint that it be possible to the process in retrospect as having been 
hierarchical in nature. 

These two concepts correspond conceptually to two strands of research in AI, which 
are commonly known as “planning” and “reaction”. In Miller, Galanter, and Pribram’s 

book, though, they are conflated in a wide variety of ways. Brief reflection on them 
makes it clear why. A computational theory of action has at least two central goals: 

l to explain how action has the structure it does, and 
l to explain how actions are chosen that are appropriate to the circumstances in which 

they are taken. 
The notion of “Plans” addresses the question of structure: action has the structure it 
does, says this theory, because it arises through the execution of things called Plans 
which have that same structure. Yet this theory does not provide a convincing account 
of how these actions are adapted to their circumstances. Of course, if the organism 
is wholly in control of the circumstances then rational decisions about action can be 
made a priori, before the execution of one of these Plans. And this may indeed be true 
for short stretches, as when uttering a single word or phrase. But Miller, Galanter, and 
Pribram wished to explain the whole structure of everyday life, in which a wide variety 

of contingencies arise. 
The notion of “the Plan” addresses this need. It allows for a greater degree of 

improvisation, since elements can be added to the hierarchical structure of the Plan 
at any time, including at the very moment when those Plan elements are about to be 
executed. But it offers no account of the reason why action has the structure it does. 

Action is still hierarchical in nature, but the particular shape of the hierarchy is wholly 
unspecified. Miller, Galanter, and Pribram do not seem aware of the problem, most likely 
because they do not clearly distinguish between their two proposals, shifting frequently 
back and forth between them as the details of their argument demand. 

This ambiguity in Miller, Galanter, and Pribram’s book foreshadowed the outlines 
of three subsequent decades of research. Starting with Fikes and Nilsson’s STRIPS 
program [ 221, a long tradition of research focused its attention on the first of Miller, 
Galanter, and Pribram’s concepts, that of Plans which are constructed and executed 
as packages, and which might be stored in Plan libraries to provide an organism or 
robot with a repertoire of habitual patterns of action for future occasions. STRIPS did 
address the question of improvisation in a simple way through certain flexibilities in the 
execution process [23,24]. But for the next decade or so, research generally focused 
upon the plan-construction process, assuming plan execution to be a relatively simple 
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matter. This line of research into plan-construction shifted to a new phase in the late 
1980s as researchers began to cast the classical problems of plan-construction in much 
more formal terms, and to explore the mathematical questions to which these formalized 
problems gave rise [ 14,31,42,55]. Yet all along, half of Miller, Galanter, and Pribram’s 
original story was missing. 

This situation was remedied in the mid 1980s with the rise of what has come to be 
called “situated action” or (somewhat unfortunately, in my own view) “reactive plan- 
ning” [4,26,28,68,70]. These “reactive” systems should be understood not as a radical 
departure, but as filling in a hole in the existing system of ideas around planning- 
as reinventing the other half of Miller, Galanter, and Pribram’s theory. Here the em- 

phasis was on interaction with the environment and on the role of tightly coupled 

perception-action loops in organizing activity. Just as planning offered no robust account 
of moment-to-moment interaction with the world, reaction offered no robust account of 
how the organism or robot’s actions could be guaranteed to “work”, understood as ratio- 
nal, and so on. Conflict between the two schools of research has often been heated, as 
each school has been able to point at substantial weaknesses of the other’s mechanisms 

without always possessing the necessary concepts to appreciate the weaknesses of its 
own. 

Observing this impasse, a substantial literature immediately grew up attempting to syn- 

thesize the planning and reaction theories through “hybrid architectures” (e.g., [ 25,621. 
Just as Miller, Galanter, and Pribram attempted (probably without realizing it) to rec- 
oncile planning and reaction through rhetorical ambiguity and logical improvisation, the 
designers of hybrid architectures recapitulate in computational terms (again, probably 
without realizing it) this same attempt at reconciliation. In each case, the implicit project 
is to fashion a whole theory out of two half-theories that presuppose incompatible views 
of action. Although it is conceivable that the resulting theory might work out, and prob- 
able that the resulting architectures may have some practical applications, such research 
will most likely be frustrated in its forward progress by its lack of a consistent concep- 
tual framework. These things are easy to see with the benefit of hindsight, of course, but 
it is important to recognize them nonetheless because of their substantial implications 

for computational theories of action. 
It is the central purpose of this special double volume to overcome the conceptual 

impasse between planning and reaction. The point is not necessarily to offer a better 
and newer architecture, though research informed by new ideas will presumably lead in 
that direction, but to identify some concepts and methods of research that will reconcile 

the unhappy split between planning and reaction by providing interesting accounts of 
both the structure of behavior and the dynamics of an agent’s interactions with its 
environment. Symbolic plans might play a role in this story or they might not, but they 
are not ruled out a priori. 

To reconcile planning and reaction, the important thing is to focus upon the structures 
of interaction between agents and their environments. Every agent that undertakes actions 
in some world has a structure of interaction with its environment, whether it is symbolic 

or connectionist, whether it has internal state or not, and so forth. To focus on interactions 
is not to legislate these things ahead of time. Nonetheless, a focus on interactions does 
impose a stiff constraint on the research process. Given an agent interacting with an 
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environment, one must ask this question: “why do we think it should work?“. Of course, 
the notion of “working” has no single definition, and different research programs can 
pursue a wide range of notions of “working” with equal legitimacy. The proposal of 
this special double volume is that approaches to this question will require researchers to 
formulate principled characterizations of the agent’s interactions with its environment. As 
noted at the outset, the phrase “principled characterizations” is designed to cast a wide 
net, including both formal and informal theories, symbolic and quantitative theories, 
explanatory and prescriptive theories, biological and social theories, and so forth. 

Whatever its faults, research on planning does at least offer a clear account of 

why the agent’s actions ought to work. The environment is usually assumed to be 
basically stable, in the sense that the agent is the only significant source of disrup- 
tion within it, and interaction proceeds in ways that can be anticipated in advance 
through some kind of search process. The agent itself formulates all of the char- 

acterizations of its interaction with its environment that it needs, and if its search 
for an adequate plan halts then the designer can be assured that that plan will actu- 
ally work-the search process is effectively proving the theorem that some such plan 
will work. (In the case of probabilistic planning [45], the proposition being “proved” 
will be probabilistic in nature.) The problem, of course, is that the design of such 
provably correct plan-construction systems requires that highly restrictive conditions 

be imposed upon the world-roughly, that the world be representable using a for- 
malism within which a proof of correctness can be performed as a practical matter. 
Of course, historically most such “proofs” have been informal. The point, though, 
has been to construct systems that produce correct plans if they halt with any plan 
at all. 

The accomplishments of this research should certainly not be underestimated. It is not 

a simple matter to obtain any kind of correctness proof in domains as formally complex 
as those that AI research has investigated. Research on principled characterization of 
agent-environment interaction will surely build upon this existing work in a wide variety 
of ways. At the same time, it will also incorporate a wide variety of other influences. 
The remainder of this section sketches the outlines of the approach to AI research that 
results from this still emerging synthesis. 

2.3. Correspondence and convergence 

How does one argue that a particular agent-environment interaction will work? By 
far the most common approach in AI research has been to formulate arguments in terms 
of correspondence between internal representations and the outside world. In a simple 

form, such arguments work by induction: if it is assumed that the agent has correct 
knowledge of the world at some initial time, and if we can demonstrate that correctness 
of knowledge is preserved from one unitary action to the next, then it follows that the 
agent’s knowledge of the world will remain correct for as long as it takes actions. If the 
correctness of an agent’s actions is guaranteed by the correctness of its reasoning, the 
agent can then be shown to “work”. This section contrasts this correspondence method 
of argument with a broader convergence method that is employed by many of the papers 
in this special double volume. 
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The correspondence method may seem unfamiliar when stated in the abstract form 
provided in the previous paragraph. Nonetheless, it is precisely what is at stake in 
attempts to solve the frame problem. Understood in its broadest terms, the frame problem 
is a lemma that must be proven in the midst of any attempt to design a plan-construction 
program. It asks, given that the agent correctly anticipates what the world will be like 
up to a certain point, how can it infer what the world will be like after a particular 
action is taken? In particular, which of the agent’s beliefs can be assumed to stay in 
correspondence with the world after the action is taken? Answering these questions is 
a difficult matter, since it can take real work to infer all of the consequences of a given 
action. These consequences might be hard to catalog, yet we would not wish an agent 
to become disabled worrying that opening a door might have consequences far beyond 
its reasonable surmises, for example causing the sun to fall from the sky. Technical and 
philosophical research into the frame problem has determined that it can be usefully 
decomposed into a variety of separate problems [65], but this decomposition does not 
matter for the purposes of the present argument. The point is simply that the frame 
problem arises as part of any attempt to argue for an agent’s correctness in a given 
environment by means of the correspondence method. 

Some authors have made strong claims about the theoretical implications of the frame 
problem. Toth [73], for example, argues that the frame problem is fatal for a certain 
conception of AI research, whose unit of analysis is the individual’s cognitive process. 
Likewise, the difficulty of bounding the necessary inferences from a given action is 
reminiscent of Dreyfus’ [20] argument that real-life reasoning takes place against a 
large enough unarticulated background that attempts at logical formalization necessarily 
encounter an infinite regress of rules-about-how-to-apply-rules. These arguments should 
not be interpreted as grounds for the categorical rejection of a tradition of research, 
but rather as roughly indicating the contours of a complex phenomenon. Indeed, the 
paradoxes of the frame problem may simply be, at least in part, an inherent condition 
of life that is “solved” piecemeal by real agents through learning in particular cases. 
Although it is not possible to resolve the question here, we can explore how the question 
arises through the concepts that have historically guided AI research. 

The correspondence method makes fairly specific assumptions about the process 
through which agents choose actions. These assumptions are not necessarily architectural 
in nature: the reasoning processes that encounter a version of the frame problem might 
operate on symbolic structures in an agent’s memory, but they might also potentially 
be encoded in hardwired circuitry, simulated through neural networks, or subserved 
implicitly in the operation of other types of machinery. The point, though, is that the 
designer is approaching the design process in a certain way, maintaining a sense of the 
representational content of various machine states and making sure at all points that the 
correspondence method of argument constrains the design process. 

This procedure might be contrasted with the convergence method. Here the design 
process is also constrained by an argument about correctness, whether formal or informal. 
The difference is that the method of argument focuses upon the agent’s behavior and not 
on its internal states. Put another way, the method focuses upon particular relationships 
between the agent and its environment, characterizing these relationships in principled 
ways and making arguments about their invariants and their evolution. This approach is 
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not wholly distinct from the correspondence method; it is a larger category that includes 
the correspondence method as a particular case-the relationship in that case being one 

of semantic correspondence. The term “convergence” is a little misleading in suggesting 
that the agent is necessarily evaluated by its eventual arrival at some kind of goal, but 
many other kinds of evaluation are possible as well. 

The point is that principled arguments about correctness can be formulated in a 
variety of ways other than in terms of correspondence. Some of the most important 
invariants identified by these arguments might be located in the physical world, without 
any regard for the agent’s internal states. To take a trivial example, an agent that 

performs an exhaustive search of a finite physical territory, placing breadcrumbs on 
each spot already searched and continually homing in on spots without breadcrumbs, 
can be easily demonstrated to find what it is looking for within a certain amount of 
time. Early AI theorists referred to this sort of thing as “external memory” and did 
not regard it as significantly different in its implications for cognitive architecture than 

internal memory [ 1,2]. Although this view is surely too simple once we take account 
of the geography of the physical world and the capacities of our organisms’ physical 
bodies, note that the proof of correctness for this simple agent is entirely familiar from 
proofs of program correctness in computer science. The proof involves an invariant (the 
total of spots searched and unsearched), a progress function (the number of spots still 
unsearched), and a convergence condition (no more spots unsearched). Other arguments 
for correctness might employ considerably different methods. In each case, though, the 
argument will depend on some kind of principled characterization of the interaction- 
not necessarily of every detail of the interaction, just enough of its properties to allow 
an adequate argument to be formulated. 

Another example may help to illustrate one of the correspondence method’s inher- 
ent limitations for research on agents in environments with much qualitative structure. 
Consider an agent with a traditional set of symbolic “beliefs” that employs logical 
reasoning, based on these beliefs, to decide what actions seem indicated in particular 
situations. Since the agent is a finite being in a complicated world, it will probably 
have mistaken beliefs occasionally. Yet it may still be possible to demonstrate that the 
agent will necessarily achieve its goals anyway. Such a demonstration might proceed 

in several different ways, but in each case it will take into account specific properties 
of the relationship between the agent and its environment. For example, different paths 
may be easily distinguishable so long as the agent is registering certain properties of 
its environment, thus guarding against ending up on unintended routes. Likewise, the 
environment may be provided with signs that disambiguate all of the ambiguous situa- 
tions that the agent might encounter. As with any other theory of erroneous beliefs (for 
example in computer perception research), demonstrating such things in a principled 
way requires an error model-a theory of the circumstances through which errors in 
belief might take place (cf. [77] ). One might be able to demonstrate that mistaken 
beliefs will necessarily get corrected, that mistaken actions will necessarily provoke safe 
indications of the difficulty, or that uncorrected mistaken beliefs will lead at worst to 
alternative solution paths that are quantifiably less desirable than the optimum. In each 
case, the argument proceeds on the convergence model, even though symbolic beliefs 
are present and other, interrelated arguments might rest on the correspondence model. 
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A simple example might be provided by the control-theoretic notion of robust control: 
uncertainty about the plant is characterized by assuming that plant parameters are within 
certain known bounds. A controller that is robust under these conditions produces the 
desired behavior for all the possible plants consistent with these constraints. 

These examples are obviously simple and abstract, meant for illustration. The rest 
of this introductory article will explain some of the concepts that have led the authors 
in this special double volume to develop more sophisticated forms of argument about 
interactions between agents and their environments. 

2.4. Aerial and ground views 

Another helpful distinction in research on interaction and agency is that between 
aerial and ground views of an agent’s activities. When designing agents that operate in 
abstract territories such as search spaces, and that do not have bodies (simulated or not) 
in any real sense, it can be easy to lose the distinction between what the agent knows 

about a situation and what the designer knows about that situation. This distinction is 
not crucial when the design process is being constrained by the correspondence method, 

since in that case it is important for the agent to maintain enough knowledge about its 
environment to permit a proof to be constructed that the agent will do the things it is 

supposed to do. The agent need not be capable of actually performing that proof, since 
it suffices for the designer to have conducted the proof in a generalized way off-line, 
but the whole point of the correspondence method is that the agent knows those facts 

which permit it to get along successfully. 
This is not true with the convergence method. An agent designed using the conver- 

gence method might be spoken of as having knowledge (or it might not), but this 
knowledge need not necessarily support a proof of convergence. The designer might be 
able to demonstrate that a large number of conditions about the agent’s environment, 
together with the agent’s internal states, afford a proof that the agent will be able to 
achieve its goals. For example, an agent that relies upon posted signs to find its way 

around will have great trouble in a world where such signs are sparse, but if the designer 
knows one particular world to have been adequately posted then it will be possible to 
prove that the agent will get where it is going, regardless of whether the agent itself can 

be sure of this. 
This too is obviously a trivial example, and it is also a conceptually straightforward 

example in the sense that the agent is spoken of as having knowledge-the only ques- 
tion concerns the relationship between the agent’s knowledge-set and the designer’s. 
Things become more interesting when the agent is understood to have different kinds 
of knowledge from the designer-for example, indexical knowledge of its relationship 
to its surroundings-or when the agent is spoken of in wholly different terms, without 
reference to notions of knowledge. In such cases, it becomes particularly important to 
maintain a rigorous conceptual separation between the agent and the designer, so that 
the particularities of the agent’s relationship to its environment can come out in full 
relief-and so that new theories about knowledge can arise that are rooted in the agent’s 
having a body, being located in a physical environment, interacting with artifacts, and 
so forth. 
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The general point is that agents who are interacting with physical worlds have bod- 
ies, and embodiment has pervasive consequences for computational theories of action, 
knowledge, perception, and learning. In large part this is due to locality: agents with 
bodies, embedded in physical environments, only have direct access to limited regions of 
the world. These limited regions are not accidental or arbitrary in their shape, but have a 
structure that is made from the geometry of the space, the shapes of physical objects like 
hills and roads and walls and tools, and the causal interconnection of things. The simple 
partialness of the agent’s access to these things already has significant consequences for 
theories of action that require agents to have substantially complete world models. 

But more subtly, the local structure of an agent’s involvements with the world brings 

to those involvements a pervasive indexicality: the agent is involved with this place, 

faces in this direction, interacts now with these artifacts. The agent does not necessarily 
know where it is, nor what time it is, nor what its heading is, nor which particular stone 
or can-opener or McDonald’s it might be dealing with at any given time. Given this 
fact, the correspondence method, at least in its traditional forms, would suggest ensuring 
that the agent always know the answers to all these questions. The agent might possess 
a compass and a clock and a map, objects might be labeled with their identities, and so 

on. Another approach, compatible with the looser demands of the convergence method, 
is to explore the relationships between indexical knowledge (“this bike here now”) 

and the more objective kinds of knowledge (“Karen’s bike in Miami on Christmas”). 
Perception and action, after all, are inherently indexical in character: your retinas do not 

register “red” at a specific latitude and longitude, but rather “red here”. Likewise, your 
hand does not close the door to room 317, but rather “this door”. To interact with the 
world is to do things with your body, and your body is a physical thing that participates 
in the same locality and the same concrete particularity as any other. 

It is this materiality of embodied action that makes the distinction between the aerial 
view and the ground view so compelling. The designer, taking a metaphorical position 
above the territory, can know a wide variety of things that an agent resting in a particular 
spot on the ground, with a particular heading, may not know. The agent’s knowledge 
and ignorance are structured phenomena, and it is the designer’s job to understand those 
structures. An agent might be going around in circles without ever knowing it, but the 
designer might be in a position to characterize the conditions under which the agent can 
and cannot avoid such a fate. An agent might be at risk of running out of stove burners 
without realizing it until it is too late, but the designer might be able to demonstrate 
that stove burners will necessarily be plentiful unless certain supplies run low. An agent 
may continually lose track of its tools, but the designer might be able to demonstrate 
that the tools will remain accessible so long as the agent makes a habit of putting them 
back where they belong. 

2.5. Structure in the agent and the world 

Having established the outlines of this emerging style of research, what kinds of 
things can be learned from it? Perhaps the most important lessons concern the ways 
in which agents are adapted to their environments. Although notions of adaptation are 
perhaps most familiar from biology, the most important ideas about adaptation in the 
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history of AI are actually sociological. In his pre-AI book Administrative Behavior [ 7 11, 
Simon outlined many ways in which social organizations compensate for the “limited 
rationality” of their members. The orchestration of numerous workers within a larger 

organization, Simon argued, compensates for the individual’s limited capacity for work. 
Likewise, the division of labor and the assignment of specialized tasks to individuals 
compensates for their limited abilities to learn new tasks. The flow of structured in- 
formation through the organization compensates for their limited knowledge, and the 
precise formats of that organization, together with the precise definition of individual 

tasks, compensate for individuals’ limited abilities to absorb information and apply it 
usefully in making decisions. Finally, Simon believed that the hierarchical structure of 

bureaucracies compensates for individuals’ limited abilities to adopt their own values 
and goals. 

Whatever the value system implicit in this analysis, the general form of argument 

has had an important influence on AI. This influence, though, has been indirect. When 
Simon moved from studies of organizations to studies of individual cognition in the 
1950’s, most of these ideas about the individual’s cognitive environment did not survive 
the transition. The individual imagined in AI research has generally been isolated and 

self-reliant, except in the matter of goals, which in practice have almost invariably been 
assigned from the outside by the system’s designer. Yet almost through the inherent logic 
of the enterprise, AI researchers have rediscovered the general form of argument outlined 
in Administrative Behavior: structure in the world compensates for the weaknesses of 

cognitive architectures. Some of these weaknesses might be imposed by the designers, for 
example when the goal is to explain human processing limitations, or they might derive 
from the weaknesses of all known architectures, or they might be inherent computational 
limitations deriving from undecidable problems and the like. 

Despite this insight, perhaps the most significant shortcoming of research on “reac- 
tive” systems and “hybrid” planning-reaction architectures is a relative lack of concepts 
for discussing the useful structures of the world. When breaking free from the safe 
and constrained microworlds of classical planning research, these new schools empha- 

sized environments which are “uncertain”, “unpredictable”, “complex”, ‘changing”, and 
the like (e.g., [ 33,401). Unfortunately, it is next to impossible to say anything very 
general about environments that are characterized in these negative terms, as not-this 
and not-that. It is quite plausible that, by some measure, most environments are in 

fact wholly untenable, in the sense that they are so uncertain, unpredictable, and so 
forth that no organism above a certain primitive level could possibly survive in them. 

(Of course, these negative characteristics may be viewed as constitutive of warfare 
and other profoundly adversarial activities, and they are certainly part of American 
military discourse.) But given that the classical problems of plan-construction rapidly 
become intractable or undecidable as the qualitative complexity of the agent’s envi- 
ronment increases (or, more precisely, as the planning formalism registers more and 

more of that complexity), it becomes imperative to discover the features of a given 
world-and of the agent’s interaction with the world-that make life in that world 

tenable. 
To be sure, AI research has employed a variety of concepts of “structure”. Marr [ 521, 

for example, outlined a method of vision research that posits a set of modules, each 
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include what AI has historically called “the domain” ? The various papers in this special 
double volume, which are summarized in a later section of this introduction, make 
numerous suggestions. By way of general orientation, though, here are some general 
categories that might aid the search for structure: 

l Artifacts. How do the properties of tools simplify the reasoning that decisions that 
agents must undertake in choosing actions? How about buildings and streets? How 
about clothing and furniture? 

l Signs. Where are signs placed in the particular world being studied? What do they 
say, and what assumptions about knowledge do they make? What other sorts of 
symbolic labels are placed on things? What kinds of instructions are provided? 
Does the language in those instructions have any reliable properties? 

l Physical dynamics. What rhythms are established in a particular category of phys- 
ical interactions with an environment? What properties of those interactions are 
conserved or remain invariant? Under what conditions do they converge to attrac- 
tors or remain bounded by certain envelopes? Why? 

l Customs. What conventions do the agents in this world maintain? If the agents 
can rely upon one another to maintain these customs, how can this simplify their 
reasoning? What invariants do these customs maintain in the physical world? 

l Practical constraints. What orderings upon actions are dictated by plain physical 
practicality? A cupboard must normally be open before objects can be retrieved 
from it. Although often possible, it is usually impractical to put on your pants after 
putting on your shoes. You cannot normally pick something up without being near 
it. You cannot bake bread every day without periodically obtaining fresh supplies of 
flour. The sheer mass of such constraints will tend to channel activity in particular 
ways. 

l Learning situations. In what situations are agents called upon to do something new? 
Do those situations have any reliable properties? Does anyone or anything ensure 
that agents need only perform reasoning that is incrementally more complex than 
they have performed in the past? When and how can the agent get help? 

l Mutual adaptation. Does some pressure operate to incrementally adapt various en- 
tities to one another? Examples might include biological coevolution, accumulation 
of shared knowledge in joint activity, and moving parts wearing together. Each of 
these cases obviously has its own particular logic and its own way of conceiving 
adaptation. 

l Inertia. Are there limits to the possible rates of change of important things in the 
world? Does this inertia provide agents in that world with a margin of safety in 
uncertain situations? Does it guarantee that dangerous situations will be detectable 
before they cause permanent damage? 

l Locality. Are the effects of actions confined to relatively limited parts of the world? 
Such locality effects can arise either through physical distance or more subtle 
routes of causal connection. Do these effects simplify reasoning or perception? 
In particular, do they guarantee that particular important circumstances will be 
perceptible when the agent needs them to be? Do they provide provable bounds on 
the possible harm that mistakes can cause? 

l Stabilization. (The term derives from the article by Hammond, Converse, and 
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Grass.) What actions do agents in this world take to ensure that the world maintains 
its computationally useful properties? 

l Geometry. What properties of the physical environment bound the complexity of 
the reasoning required to act or learn in it‘? Are there useful notions of “diameter”, 
“bottleneck”, “critical path”, “hillclimbing”, and so forth? 

These are elementary examples of the kinds of structure that one might seek in the 
environment. In hinting at their computational ramifications here, it has been necessary 
to employ terms such as “reasoning” and “perception” that might tend to presuppose 
particular architectures or philosophies of activity. But such commitments are not neces- 

sary a priori. As the articles in this special double volume will illustrate, analysis of the 
relationship between agent architectures and structures of the world can be conducted 

on a wide range of agents in a wide range of worlds. In each case, since the point 
of structure is to simplify computations, the questions one might address to the world 
will be shaped by the needs of the architecture. What is the architecture good and bad 
at? When has it been fragile or incapable of scaling up? When have the necessary 

computations been impossible or intractable? And so forth. 
In particular, one should distinguish between two uses that a designer might make 

of these structures in the world, corresponding to the aerial view or the ground view. 
As part of the aerial view of the agent’s activities, knowledge about structures of 

the world might enable the designer to prove that the agent’s activities will neces- 
sarily have certain properties. For example, these structures might inspire the devel- 

opment of formalisms and methods of argument that enable the designer to demon- 
strate convergence to set goals. As a separate matter, knowledge about structures in 
the world might also be part of the agent’s ground view of its situation. The agent 
might engage in explicit symbolic reasoning about these structures, it might commu- 
nicate about these structures with other agents, or it might even use its ideas about 
the structures to set about creating, maintaining, or restoring them as the need arises. 

The agent’s understandings of its environment need not correspond to the designer’s 
understandings. The agent might have a subset of the designer’s understanding of 
the world, or it might have a simplified or comparatively shallow version of the de- 
signer’s understanding, or it might slowly discover that understanding for itself by 

increments and approximations. Clearly distinguishing between the aerial and ground 
views of the world will help designers keep track of the wide range of design op- 
tions that are compatible with any particular designer’s understanding of the agent’s 
world. 

A focus on structures in the world and upon principled characterizations of in- 
teractions has a further benefit. When research is focused upon architectures and 
mechanisms, little intellectual room exists for interchange between researchers pursu- 
ing different lines of research. Discoveries about structures in the world and prop- 
erties of interactions, on the other hand, might be useful to researchers employ- 
ing radically different architectures. Different research projects may employ incom- 
mensurable vocabularies, but each project can learn valuable lessons from the ways 
that the others have moved back and forth between the design of agent archi- 
tectures and the exploration of structures of the world and properties of interac- 
tions. 
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2.6. Units of analysis 

All of this attention to activities in the world can be misleading when it is viewed from 
within the context of the history of AI. Founders of AI such as Newell and Simon were 
engaged in a fight against behaviorism, as were other authors such as Lashley whose 
ideas were influential in the development of AI. As such, embedded in the concepts 

and values of AI is a powerful allergy to behaviorism born of the field’s founding 
battles. One factor contributing to this allergy is a powerful distinction made within AI 

between “cognition” occurring inside agents and “the world’ located outside of them. 
The earliest texts of AI were mostly framed with terms like “thinking” that pointed to 

internal cognition, perhaps with occasional perceptions and actions but with no strong 
sense of an embodied agent’s continual and structured involvement in an outside world. 

Perhaps as a result, research on agents’ interactions with their environments can sound 
like covert advocacy of behaviorism. Indeed, it is easy enough for research that would 
rebel against AI’s conventional ideas to slip into a reliance on behaviorist-type ideas 
such as the stimulus-response chains that Lashley argued against in his article on the 

structure of serially ordered behavior. The central conceptual challenge for computational 
research on interaction and agency is to formulate AI problems and methods in a way 
which does not fall into either extreme. 

Borrowing a term from sociology, the conceptual issue here concerns the “units of 

analysis” within which research is conducted. There can be little doubt that human 
beings and other creatures have skins and skulls which provide a certain degree of 
causal isolation between the things that occur within them and the things that occur 
outside of them. To the extent that interactions between agents and their environments 

provide a useful focus of research, though, it will be necessary to define concepts that 
cross the boundaries between inside and outside. In other words, AI research will have 
to develop units of analysis that refer to interactions and not simply to an agent plus 
a world considered as two separate entities. This proposition can sound forbidding to 
people trained in computer science, inasmuch as an interaction is not a “thing” that 
can be spoken of as causing effects to happen, or else as being the object of effects 
caused elsewhere. Yet to speak of interactions as units of analysis is stronger than simply 

studying interactions: it requires that at least some of one’s fundamental concepts be 

defined in terms of interactions and their properties. What does this mean? 
To reconstruct in computational terms the idea of the interaction as a unit of analysis, 

let us return to the control-theory example with which this introduction began. A con- 
troller attached to a refinery (or, for that matter, to a walking robot) will receive a long 
series of inputs through its sensors, and it will produce a long series of outputs as well. 
Long-term observation of these numbers may reveal that they converge to certain values, 
or that they enter into an oscillation with a certain amplitude and frequency. Does the 
controller cause this behavior? Does the plant cause it? Of course, the behavior results 
from the interaction of the two, and responsibility for it cannot be pinned down any 
more precisely. That does not make the behavior mysterious; it only means that the 

structure of the behavior is (to employ one more term from sociology) “located” in the 
interaction between the controller and plant, and not in either of them separately. 

The notion of units of analysis becomes more important when the agent and its 
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environment are continually influencing each other, so that each one changes through 
the course of the interaction. If we watch the interaction proceed for a moderately long 
period of time, so that both organism and environment have had a chance to change 

in large and complex ways from their original states, then it can be a challenge to 
specify what the agent and its surroundings even are. Of course, one might make a list 

of every molecule or variable setting or memory address or synaptic weight, but such 
an enumeration would probably not be a useful or parsimonious description. In such a 
case, the very identity of the agent, as well as the identities of the various things in its 
environment, can only be conceptualized in terms of the interaction through which they 
arrived at their current states. Again, nothing is mysterious about this. The challenge for 

research is to develop principled ways of talking about it that allow useful arguments to 
be made about the properties of the interaction, and thence about the rationale behind 
the agent’s architecture and design. 

These ideas allow us to reformulate in a more sophisticated way the insights about 
“structure in the world” described in the previous subsection. The point is not exactly 

that the world has structure all by itself, but rather that the world has the kind of structure 

that makes a difference to the workings of that particular agent. This is a property of the 
relationship between the agent and the world, not of the world alone. For example, we 
might discover that certain tools have come to be designed in such a way that human 
hands are minimally likely to slip when using them as they are customarily used. Such 
tools are well adapted to their customary use, but they might be poorly adapted to use 
by other species or for other purposes. It is only in a very narrow sense, then, that the 

tool’s adaptation is a property simply of the tool. It is better to conceptualize it as a 
property of the relationship among a number of entities (tool, hand, materials being 
worked on, etc.), and specifically as something that only makes sense in the context of 
a particular form of interaction among those entities. The unit of analysis in this case, 
then, is not the tool but rather the customary way of using the tool to interact with the 

world. 
This is progress, but much remains to be done. The account of “interaction” in this 

special double volume is almost wholly individualistic in nature. Its units of analysis, 
likewise, frame research issues in terms of a single agent’s interactions with a struc- 
tured environment. To make full sense of these interactions from the designer’s aerial 
view, though, it will be important for research on embodied interaction to merge with 
computational research on social interactions. Tools and the customary ways of using 
them, for example, are generally not properties of an individual’s activities but of a 
culture’s. Cultures provide forms of embodied interaction that offer us considerable 
guidance in adapting ourselves to a complex world, and computational research holds 
as much promise for analysis of these settings as it does for the more particular types 
of interaction treated here. 

2.7. Representation 

The revised theoretical orientation suggested here clears some new space for compu- 
tational research on representation. So long as research is guided by the correspondence 
method and the maintenance of objective world models, representations have very spe- 
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cific jobs to do and in consequence are highly constrained in their forms and uses. 
Within the broader perspective suggested here, though, new possibilities open up. Some 
of these have already been sketched. Perhaps most fundamentally, designers need to 
understand the respective roles of indexical and objective forms of representations (“a 

couple of feet straight ahead” versus “latitude 41, longitude 13”). Indexical representa- 
tions are more closely tied, in causal and epistemological terms, to the agent’s immediate 
circumstances, but they are not as well suited for other purposes, such as distributing 
knowledge about spaces and times to agents at distant or unknown locations. 

Reacting against conventional theories that have seemed to import an encumbering 
system of philosophical and architectural assumptions, computational research on sit- 
uated action has been deeply ambivalent about the concept of representation. Authors 

such as Brooks [ IO] and Beer [9] have been willing to say that their agents employ no 
representations at all. Since representations obviously exist (inner monologues, visual 
imagery, tactile maps, etc.), this raises the question of what purposes representations 

actually serve. Brooks and Beer concentrate their attention on insects, and it is com- 
mon to suppose that representations are late evolutionary developments [ 431. Agre and 

Chapman [4] take another approach, describing a notion of “indexical-functional rep- 
resentation” in which the representational elements are not internal symbolic structures 
but stable interactional relationships between agents and the objects that serve particular 
functional roles in the agents’ activities. Whether these things really deserve to be called 
“representations” is a valid question. The important thing, though, is not to provoke a 
binary argument framed in terms of “representations versus no representations”, but to 
explore interactional concepts which might do similar theoretical work while providing 
alternatives to the correspondence model. 

As the papers in this special double volume demonstrate, it is possible to take a 

variety of approaches to representation. The perspective advocated here does not dictate 
any single approach to the question, and the reality of the matter might be complex 
and heterogeneous. For present purposes, it will be valuable to review some of the 
history of the AI notion of representation. Most of the earliest explicit theorizing about 
representation in AI was tied to architectural assumptions and processing mechanisms. 
Quillian [66], for example, explored mechanisms for automated reasoning in network- 
like structures that resembled the structure of the brain, at least in the sense of consisting 
of a small set of basic units joined by connections that can transmit simple signals. Faced 
with the difficulty of building representations of complex things within these semantic 
network structures, AI researchers invested great effort into making their semantics 
clear (e.g., Woods [ 791)) with the result that the structures were eventually understood 
by most of the AI community as merely notational schemes for modified first-order 
logic [ 381. Subsequent AI research on representation has primarily been concerned 
with logical semantics, which has widely been viewed as providing foundations for 
the whole of AI work [ 271. Concern with the physical realization of logical reasoning 
has lately taken the form of complexity-theoretic analyses of the problems of making 

crucial types of inferences within logics with particular sets of expressive features [ 121. 
Complexity analysis, though, does not yield detailed information about the consequences 
of particular architecture choices. Connectionist research, due to its strong focus on the 
possibilities of a particular class of architectures, has resumed the type of close analysis 
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of distributed inference mechanisms that Quillian began [41]. 
The story of representational research in AI, then, has had two interacting aspects, 

semantics and physical realization, whose constraints upon one another have been ex- 

plored in tits and starts. Computational research on agency and interaction will surely 
have these two aspects as well, but now each aspect will be placed in the context of 
agents’ involvements in their environments. A basic observation in this regard, already 
remarked upon, is the inherent efficiency virtues of indexical representations that are 
tied to direct sensorimotor interaction with an environment. The research in this special 
double volume is deeply concerned with the physical realization of agents’ reasoning 
(if, indeed, the vocabulary of “reasoning” is employed), but it has no fully developed 

interactional account of the meaning of representations, and in particular the relationship 
between what AI has historically understood as “internal” and “external” representations. 

As already remarked, external representational materials are likely to provide a sub- 

stantial amount of useful structure in the everyday world, including things like signs 
and instructions. What do people do with representational materials, how do these activ- 
ities complement internal uses of representations, what role do representation-mediated 
interactions play in the rise of internal representations, and what properties do internal 
representational reasoning have as a result? These topics have been thoroughly investi- 
gated in a variety of other fields I 16,17,29,37,50,80], so rather than speculating on the 
directions that future computational research in this area could take, let us simply survey 
some possible connections to these other fields that future research could develop more 

concretely. 

3. Connecting to other fields 

As the articles in this special double volume demonstrate, computational research on 
interaction and agency can benefit from contact with a wide variety of other fields of 
research. The common denominator of these contacts is the abstract notion of interaction, 
although an extraordinary number of other strands run through the various fields as 
well. This section offers a very brief outline of some of these fields and their potential 

connections to AI research. Control theory has been discussed briefly above, and several 
other fields might be mentioned as well, including philosophical logic, sociolinguistics, 
decision theory, and several varieties of psychology. 

3.1. Dynamical systems theop 

In recent years, researchers in numerous fields have developed mathematical models 
of dynamical systems, which are defined generally as any systems that can be described 
in terms of the changes over time of a set of interacting variables. Many such “systems”, 
of course, have no very useful properties. And others are simple linear systems whose 
properties can be analyzed with traditional mathematical tools. Yet others fall within 
categories of differential equations for which robust solution or analysis methods are 

known. Dynamical systems theory extends the categories of systems for which useful 
analyses can be made. The most important cases are those in which the development 
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over time of a system is driven by the repeated application of the same principle, 
for example the laws of mechanics or natural selection or economic choice. Since AI 
pursues computational understandings of organisms at all levels, from the neurological 
and mechanical to the social, the full range of these cases should ultimately be relevant 
to AI research. 

A challenge for the relationship between AI and dynamical systems theory is to 

reconcile the quantitative and qualitative aspects of the various systems that AI research 
seeks to understand. Differential equations describe systems that can be characterized in 
terms of numerical variables, but symbolic systems require other types of analysis. In 
its broadest definition, systems theory is general enough to provide definitions of even 

very complex symbolic systems. But it does not follow that general results exist that 

cast useful light upon those systems. As the various fields develop, they will most likely 
begin to overlap in their approaches, particularly as the conceptions of structure in the 
world that inform the research in this special double volume also continue to influence 

research in other fields. 

3.2. Robotics and vision 

Inasmuch as roboticists construct actual embodied agents, research on robotics has led 
to several forms of principled analysis of interactions between agents and environments. 
The most innovative of these have been on the lower levels where the main analytical 

tools are built upon the theories of kinematics and dynamics in physics. Raibert [67], 
for example, analyzes the various types of symmetry found in animals’ gaits and demon- 
strates how these might be represented mathematically and used to simplify analysis and 
synthesis of walking and running machines. The designer of a running machine cannot 
impose any arbitrary pattern of leg movements and foot landings that might come to 
mind. Only certain cycles of movement are physically possible, and principled analysis 
allows this space of possibilities to be characterized. 

Or consider the theory of force control [ 781. Whereas a position control system directs 

the movements of a robot effector by specifying a sequence of physical locations that 
it should occupy, force control is defined in terms of dynamic relationships between the 
robot and its physical environment, such as a specific force vector that should describe 
the robot’s pressure upon a picked-up part regardless of any changes or variations in 
the parts’ shapes. Because force relationships are indexical or relational in nature, it 
can be easier to build a sensor for them than for objective quantities like absolute 
position (unless, of course, the robot and the workpiece are made of rigid elements and 
fixed to the floor). The point is not that position control is useless, but that the space of 
possible designs is structured in large part by the kinds of epistemological considerations 
discussed in this special double volume. 

Robot design must also be informed by dynamical analysis of the interactions among 
objects in the world that the robot’s actions will set in motion. Mason [ 531, for example, 
presents a mathematical analysis of the interactions that arise when a robot must push 
an object across a surface. A part might move in a variety of ways due to the vagaries 
of friction, and anticipation of the space of possible trajectories allows motor plans to 
be fashioned that move the part into a desired configuration without wasted motion and 
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even without sensors. In situations with greater uncertainty, such a system might visually 
observe the part’s progress and update the dynamic analysis and motor strategy as new 
information becomes available. 

Because computer vision programs can be presented with digital snapshots taken at 
distant places and times, research in vision has not always been forced to confront the 
embodied nature of visual activity. The theories of Marr, for example, do not envision 
an agent that is interacting in any complex way with its environment, assuming instead 
that the purpose of vision is to construct a three-dimensional model of the world with 
little reference to its purpose. But recent research on visual systems for robots has 
begun to demonstrate the depth of rethinking that the construction of embodied agents 
demands. Ballard [ 81, for example, presents a series of experiments in “animate vision”, 
in which the architecture of visual processing is interconnected in tight and principled 
ways with the architecture of motor control. A paradigm of this kind of interconnection 

might be vergence control, in which the physical configuration of the visual system 

(eye orientation, for example) is dynamically adjusted to permit stereo focus upon a 
particular object at some determinate distance. And the architectural boundaries among 

reasoning, learning, and perception start to disappear altogether once one starts modeling 
the active choices agents make about what to perceive based on what information they 
need (cf. [15]). 

3.3. Biology 

Ecology and evolutionary biology offer several powerful concepts for thinking about 
the relationship between organisms and their environments. Perhaps the central such 
concept is adaptation. For an organism to be adapted to an environment is not a simple 
thing, since neither the organism nor the environment are likely to be simple themselves. 

Some aspects of adaptation, of course, can be explained in relative isolation from this 
full complexity, for example in terms of the mechanics of flying or swimming. The 
challenge for a full explanation of adaptation is that every organism’s life has many 
aspects-locomotion, respiration, avoiding predation, finding and eating food and water, 
regulating body temperature, social interaction, and so forth-each of which brings its 
own adaptational demands. 

Biologists sum up these demands by speaking of a particular species as filling a 
“niche” in its local ecosystem. Each component of the ecosystem provides part of 
the adaptational context for the others, and the result is a tendency for all of the 
elements to coevolve and to become adapted to one another in intricate ways. As the 
ecosystem changes through exogenous influences and the internal interactions of its 
various components, the adaptational demands of the niche will change as well. This 
dynamic notion of an agent’s environment is much more complex and subtle than the 
conceptions historically employed by computational research. 

At the same time, biology has historically had fairly simple concepts to de- 
scribe organisms’ activities in their environments and their interactions with one an- 
other, and it is here that computational ideas may make significant contributions. 
Research on “artificial life” [46,74] has commenced precisely this project. Build- 
ing and analyzing artificial and simulated creatures may help clarify many biologi- 
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cal concepts by forcing unarticulated assumptions and unasked questions to the sur- 
face. 

3.4. Activity theory 

Activity theory is a school of sociologically oriented psychology and education re- 
search that developed from the writings of the Russian psychologist Lev Vygotsky [ 761. 
Vygotsky believed that human cognition is profoundly shaped by culture, and in par- 

ticular that cognitive processes arise through the internalization of patterns of social 
interaction among people. Vygotsky believed that the process of learning has a great 
deal of structure. Specifically, he believed that most learning takes place in what he 
calls the “zone of proximal development”. Watching caretakers and children interact in 
the context of shared activities like games and chores, he observed that the caretakers 
endeavored to dynamically shift the division of labor between the two, with the aim of 
ensuring that the child’s portion of the activity lay near the outer edge of the child’s 

current capabilities. Thus spared from overly simple and overly difficult tasks, the child 

could focus on incremental learning. Vygotsky argued that these complex structures of 
learning are reflected in the child’s developing cognition, so that the child’s processes 
of thinking could be viewed as internalizing the patterns of social interaction that gave 
rise to them. 

A strong believer in the cultural dimensions of cognition, Vygotsky also emphasized 
the role of cultural artifacts such as tools in shaping cognition. The invention or refine- 
ment of a tool is an important event, inasmuch as it effectively encodes in a physical 
material the result of a beneficial process of thinking and experimenting. In learning 
to use the tool according to its affordances and the customs surrounding its use, future 

generations will be spared the tedious and haphazard burden of reinventing it. Moreover, 
in order to use a tool it is usually not necessary to fully understand the reasoning behind 
it, much less the alternative designs for the tool that had been tried out and discarded. 
The environment of daily life includes a rich collection of cultural artifacts-the tools 
and other artifacts to which Vygotsky’s arguments apply-that provide a tremendous 
amount of support to individuals and groups who are organizing their activities. These 
artifacts include kitchen utensils, buildings and streets, machines like cars and computers, 

clothing, and much else. 
Subsequent research has developed Vygotsky’s ideas in numerous directions. The 

term “activity theory” was coined by Vygotsky’s follower Leontiev, who proposed a 
conceptual framework for analyzing larger “activity systems” beyond the simple parent- 
child dyad. Leontiev shares with much AI research an interest in the process through 
which activities become habitual or automatic, no longer requiring conscious structuring 

and guidance. Activity theory has been brought to the English-speaking world by a 
number of psychologists and educationalists who are looking for ways to place children’s 
cognition and learning in larger social contexts [ 601. Engestrom [21] has considerably 
broadened the activity theory framework to provide a principled means of intervening 
in complex organizational settings to bring about changes in the local activity system 
through the development among its members of an “expanded” awareness of its actual 

dynamics. 
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3.5. Genetic epistemology 

Another relevant school of developmental psychology is that founded by Jean Piaget 
[ 631, whose work on “genetic epistemology” traces the ways in which the child grasps 
the nature of reality through its interactions with its environment. In contrast to Vygotsky, 
Piaget focuses upon the child as an individual figuring things out through a process that 
has been likened to scientific experimentation. He argued that the child’s relationship to 
its environment proceeds through a series of discrete and identifiable “stages”, each of 
which is defined by a different form of epistemology. A child in a very early sensorimotor 

stage, for example, might have difficulty connecting the object that it encounters on 
one occasion to the same object a few moments later, after it has been momentarily 
obscured. Later, though, the child will come to understand the “permanence” of objects 
across time, and this is the beginning of the child’s understanding of a world that exists 
independently of thought. 

Drescher [ 191 has conducted an extensive program of computational research based 
on Piaget’s theories. Building on some suggestions of Piaget’s, he has implemented a 
computer system that employs “sensorimotor schemata” to learn and represent knowl- 
edge. A schema, in Drescher’s usage, does not represent the world through correspon- 
dence or mirroring. Instead, it states (roughly) “when the perceivable world is like this, 

and you take this action, then the world is likely to turn out like this”. Such schemata can 
be learned through a relatively simple process of induction by simply trying numerous 

simple actions in numerous situations. More complex cognitive structures can then be 
built up by “chaining” these schemata, a process similar in form to the assembly of new 
plans through the stringing together of existing plans and primitive actions in traditional 
AI planning research. Another, more advanced mechanism is the creation of “synthetic 
i terns”, which function similarly to “items” of sensory input except that they represent 
the much more abstract proposition that a certain schema is likely to be applicable in 
the ongoing situation. Drescher presents some extremely detailed scenarios that describe 
how the creation of these complex cognitive structures through the simpler sensorimotor 
schemata explains various features of the developmental process that Piaget traced in his 
work, including the detailed sequence of substages through which the child passes during 
the period leading up to the full establishment of object permanence. These scenarios 
allow Drescher to construct a theory of cognitive architecture that is consistent with 
Piaget’s theories, as well as with recent empirical claims that Piaget underestimated the 
amount of innate cognitive structure in the infant. Specifically, he argues that the infant, 
in constructing its own cognitive apparatus in the process of development, effectively 
reconstructs the functionality of many innate peripheral faculties, thereby allowing them 
to be integrated with one another more effectively than is possible on a simple modular 
design. 

For present purposes, the great strength of Drescher’s work is that its scenarios include 
numerous arguments that depend upon on the structure of the environment in which 
the human infant lives. Within Piagetian theory, the most fundamental fact about this 
environment is precisely the existence of permanent objects. When you rest something 
on a table and cover it with a cloth, it stays there until you take the cloth back off. 
When you put something in the refrigerator, it stays there until someone takes it back 
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out again. As you move around a stationary object, the views of that object that become 
available to your eyes possess some stable, reliable, and predictable relationships to 
one another. And so forth. This observation about the environment of human activity 
gives substance to the scenarios, which follow the child through the discovery of a wide 
variety of simple but fundamental interactional regularities. 

3.6. European phenomenology 

Phenomenology is a branch of philosophy whose goal is to develop good vocabu- 
laries for describing the experience of ordinary activities. Put in plain language, phe- 
nomenology provides words for answering the question, “what is it like?‘. Although 
Merleau-Ponty’s [ 561 phenomenological analysis of human embodiment has a straight- 
forward relevance to the analyses in this special double volume, phenomenology is 
chiefly known in AI through the influence of Martin Heidegger, whose book Being and 
Time [39] provides a phenomenology of ordinary routine activities such as carpentry. 
Heidegger’s work is notorious for its obscurity, and those who have been inspired by his 
writing to criticize various central tenets of AI routinely find themselves in the impos- 
sible situation of translating between intellectual languages and communities that could 
hardly be more different. In particular, attempts to read Heidegger as directly specifying 
alternative algorithms or architectures of cognition are doomed to especially intractable 
confusion, inasmuch as it was very much Heidegger’s goal to avoid expressing himself 
in such terms. 

Nonetheless, Heidegger’s writing can, if handled with care, provide useful guidance 
for the development of computational theories of interaction. Heidegger places great 
emphasis on the customary forms of activity that structure much of everyday life, 
and in particular upon the customary uses of tools that give a conventional structure to 
actions, space, and materials. This “structure”, for Heidegger, is not a cognitive symbolic 
structure, but a structure of experience within which things take on particular interrelated 
meanings. He emphasizes, for example, that we do not normally relate to a pencil as 
this particular pencil, but rather as a pencil that is used in a certain habitual way. We 
can choose to withdraw the pencil from this ordinary, routine kind of relationship to our 
activities, staring at it as an object of curiosity or levity or scientific inquiry, but that 
is a very different experience from simply using it to write. This idea suggests, in a 
loose sort of way, investigating how a computational theory of interaction might give a 
different status to routine interactions with generic things (writing with a pencil) than 
to exceptional interactions with specific things (examining or measuring this particular 
pencil). 

But research like Heidegger’s can have its most productive influence upon AI when AI 
itself recovers a sense of its own historical development. Despite the efforts of Dreyfus, 
Heidegger’s work is not directly addressed to AI as it exists today, but rather to a larger 
tradition of which AI is one part. If Heidegger’s analysis of the history of philosophical 
ideas can be viewed as indicating paths not taken-and, therefore, alternative ways in 
which AI research might be conceptualized-then it need not be taken as posing an 
all-or-nothing challenge to AI’s foundations, but rather one critical perspective to assist 
in the field’s self-examination and evolution. 
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3.7. Buddhist phenomenology 

Whereas the European phenomenological literature is relatively recent (while, of 
course, building upon much older philosophical tradition), Buddhism has an ancient and 
continuously developed phenomenological system. The whole point of Buddhism is to 
seek enlightenment by using systematic meditation to pursue mindful awareness of one’s 

own cognition, and Buddhist scholars have developed extensive descriptive accounts of 
cognitive processes that provide guidance for this process. These systems of description 
have evolved historically as communities of meditators have found previous formulations 
inadequate to describe their own experiences. Central to this evolving intellectual system 
is the idea of illusion, which holds that any particular conceptualization of reality must 
be understood as an imposition, perhaps possessing heuristic value but not providing 
any definitive or exhaustive representation. Prior to the cultivation of mindful awareness, 
cognition proceeds in a ceaseless cycle of imposing specific, prestructured interpretations 
upon the world and contracting desires and drives based on the unrecognized illusions 

that result. Mindfulness does not eliminate thought or paralyze action, but it does liberate 
the individual from the illusion that thought transparently grasps reality or inevitably 

compels action. 
These ideas may seem distant from the concerns of computational research. Yet Varela, 

Thompson, and Rosch [75] have argued that the connections are actually numerous 
and deep. Both traditions of inquiry, after all, are concerned with the mind and its 
relationships with reality. The pivot through which these authors develop the connections 
between the two traditions is Maturana and Varela’s notion of “structural coupling” [ 54 1. 
Structural coupling is a biological notion rooted in the theory of evolution. Evolved 
species are adapted to their environments, and this adaptation ought to be conceptualized 

in interactional terms: 
l the organism interacts in complex ways with its environment; 
l this interaction both sustains the organism’s internal functioning and has some range 

of effects upon the environment as well; 
l the organism’s internal structures and the structures of its external environment 

have both changed over historical time through mutual adaptation of species and 
ecosystem; and 

l the changes in these structures have accumulated to such a degree that it is difficult 
if not impossible to understand them except in the context of their interaction. 

The structures of the organism and its environment are, in this sense, “coupled” to one 
another. Varela, Thompson, and Rosch point out that this coupling is analogous in certain 

ways to the Buddhist notion of “codependent arising”, which describes the experience 
of cognition: one does not experience cognition as rising up, searching for something in 
reality, and then settling upon it; nor does one experience reality as invading oneself and 
bringing a previously dormant cognition back to life. Instead, the processes of cognition 
and the structures of reality arise together, each proposing the other as its own illusory 
validation. Although further research will need to Resh out this analogy in more detail, 
it is certainly stimulating, and leads to innovative investigations of the processes through 

which perception and action guide one another in embodied activity. 
This type of research has many skeptics among technical people. And indeed, phe- 
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nomenology and computational research are not straightforwardly commensurable. Al- 
lowing each to influence the other requires drawing out the most promising analogies 

between them and pursuing the suggestions for research that these analogies might 
generate. Unfortunately, the phenomenological method strikes many people in the cog- 
nitive science tradition as akin to introspection, which was once pursued systematically 
by Russian and German psychologists but ultimately ran afoul of its lack of concep- 
tual precision and empirical reproducibility. Phenomenology, though, makes no claim 
to identify internal mental mechanisms but only to provide compelling and detailed 

descriptions of experience. More importantly, phenomenological methodology, particu- 
larly in the Buddhist version, is simply far more rigorous than introspectionism, having 

developed over a long period in extensive communities of investigators. 

3.8. Sociology 

Sociology has numerous schools and subdisciplines, many of which have potential 
connections to research on interaction in AI. Perhaps the central question of all sociolog- 

ical research, though, is the question of social order: in virtue of what does society seem 

to have a relatively stable structure? It is impossible to survey the many formulations 
of this question in a short space, much less the available answers to it. Nonetheless, 
research within sociological schools such as ethnomethodology and symbolic interac- 
tionism has been distinguished by a commitment to detailed empirical investigation of 
how, in fact, people actually enact the structures of society in their dealings with one 
another. 

The sociological research program that has had the greatest influence upon thinking 
in AI is arguably that of Lucy Suchman in her critique of AI planning research in Plans 
and the Structure of Behavior [ 721. Suchman observed some people attempting to use 

a photocopier that had been equipped with a device that, based on AI planning theories, 
attempted to guide its users through complex copying operations by constructing a plan 
and then presenting the successive steps of the plan to the users. The users experienced a 
wide range of difficulties using these instructions, and they interpreted them in complex 
ways based on the situation as it presented itself in the moment. In particular, far from 
executing the instructions in the manner of a computer program, the people employed 
the instructions as resources-and as one set of resources among many-in figuring out 
what actions to take next. Both through Suchman’s influence and other developments, 
a number of AI research projects have investigated the complex and varied uses that 

might actually be made of plans [5,30,64]. The deeper point, though, concerns the 
many subtle and improvised ways in which people structure their actions in accord with 
the demands of moment-to-moment meaningful interaction. These phenomena may lead 

future computational research to rethink its basic concepts in ways that can do justice 
to the improvisatory nature of human action. 

3.9. Anthropology 

Historically, anthropology differs from sociology in that it studies “them” rather 
than “us”. Remarkably, even as this distinction has become untenable, anthropology 
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has retained its distinctive character through its focus upon culture-and specifically 
upon the notion that cultures differ from one another in profound ways. Exploring 
the question of social order in a large variety of settings has led anthropologists to 
investigate numerous features of life that are normally too familiar to attract much 
attention. Among these is the role of habitual activities and customary artifacts in 
defining and maintaining a social order. Pierre Bourdieu [ 111, for example, disagree- 
ing with a long tradition that locates social order in loud and visible things such as 
laws and ceremonies and conflicts, suggested to the contrary that the social order can 
best be found in the most ordinary details of everyday activities, and particularly in 
the habitual structuring of everyday uses of artifacts like houses, hearths, tools, cloth- 
ing, pathways, and so forth. Anthropologists refer to this kind of theory as “practice 

anthropology” [ 6 11 because of its emphasis on the hidden order to be found in every- 
day cultural practices. While perhaps exaggerated in its emphasis on structured habit 

as opposed to conscious choice, this style of research has had a massive and gen- 
erally salutary influence as anthropologists have chosen to view ever more ordinary 

and quotidian aspects of life as important and meaningful, and as legitimate topics of 

research. 
In connecting anthropology with computational research on interaction and agency, a 

significant obstacle is the differing scales of research. Computational researchers must 

get things working, and that requires analyzing very small and specific actions. Whereas 
several schools of sociology, including those previously mentioned, have engaged in 
microscopic studies of human interaction, anthropology has mostly been concerned with 
larger things. Even when an author such as Bourdieu speaks of the fine details of 
habitual activities, it is rare for anything like a worked-out grammar of those activities 

to be provided. The focus, instead, is on articulating a set of analytical categories that 
allow apt descriptions to be given-descriptions that allow things on very different scales 
to be fitted together, so that economic structures, for example, can be related to the ways 
in which people teach and learn skills. 

In this regard, a particularly promising analytical framework can be found in the work 
of Jean Lave. In her book Cognition in Practice [ 5 11, she provides a set of categories 
for analyzing people’s interactions with their worlds on several different scales (more 

accurately, “levels”), from the moment-to-moment interleaving of different tasks to the 
historical structuring of an arena of activity such as a kitchen or supermarket. In con- 
trast to much research in cognitive science and AI, she rejects the notion that people 
decide what to do by solving “problems” that can be abstracted from the complex and 
interconnected details of moment-to-moment activity. The people she observes do not 
so much solve problems as work through complicated dilemmas, resolving things just 
enough to keep moving. Her resolute focus upon units of analysis defined in terms of 
interactions leads her to theories that are hard to reconcile with computational research 
as it has historically been practiced. And indeed, numerous details will have to be 
worked out and rethought in order to strike up a productive relationship between con- 
ceptual systems such as Lave’s and the concepts that guide computational research on 
interaction. An emphasis upon formulating computational ideas in terms of interactions, 
though, will ensure that the units of analysis in the two research projects are at least 
commensurable. 



P: E. Ape/Artificial Intelligence 72 (I 995) l-52 29 

4. Papers in this double volume 

The papers collected here are a diverse group, deriving from a remarkable variety 
of disciplinary backgrounds and technical literatures. Although they are described here 
within the agenda and vocabulary of this introductory article, it bears repeating that 
they each represent a distinctive approach to the issues. They should be understood as 
voices in a conversation, with numerous and subtle points of interconnection among 
them. Despite the temptation to impose an artificial structure upon them by sorting them 
into topical groups, they are arranged in alphabetical order by the first author. 

4.1. Arbib and Liaw 

Arbib and Liaw present an evolutionary scenario for explaining the complex func- 

tionality of the nervous system. Taking as their model the visual system of the frog, 
they summarize the evidence that motivates their model. Rather than directly specifying 
the operation of neurons, they frame their theory at an abstract level, in terms of the 
interacting “schemata” that give rise to the observed patterns of behavior. Schemata are 

abstract units of computational functionality that can be implemented on a variety of 
hardware substrates. In particular, schemata provide a level of abstraction that allows 
brains and computer hardware to be discussed in a common vocabulary. Arbib and 

Liaw and their colleagues have developed general formal models of schemata that allow 
precise accounts of particular systems to be formulated and reasoned about in principled 

ways. 
Beginning with the life and ways of the frog, Arbib and Liaw develop an approach to 

the study of the visual system that places it squarely within the context of an embodied 
agent’s interactions with its environment. Having done so, they discuss the issues that 

arise in making the difficult transition from sensorimotor behavior to symbolic reasoning. 
In particular, they sketch some processes through which novel schemata might arise in 
response to the demands of novel situations. They emphasize, however, that cognition 
within the schema model is not controlled by a centralized device but is a matter of 
cooperation and competition among a distributed set of schemata. Furthermore, these 
schemata do not employ any single representation scheme, but rather a patchwork 

of partial representations, each of which captures a particular aspect of the agent’s 
interactions within a particular mode of processing. 

Arbib and Liaw’s argument illustrates an inversion of priorities that is common in 
computational research on interaction and agency. AI has traditionally been concerned 
with “higher” cognitive functions such as the construction of innovative plans to solve 
arbitrary goals, with less attention to evolutionarily prior phenomena. This is natural 

enough if one believes that, in fact, “thought” is a phenomenon that can be defined and 
studied by itself, without reference to the whole background of “low-level” processing 
and routine activity against which thought takes place. Rejecting this point of view leads 
to a considerably different approach: an emphasis on routine activities, on sensorimotor 
interactions with the world, and upon the ways in which “low-level” functions provide 
the functional, developmental, and evolutionary basis for the higher functions. In practice 
this means that the higher functions generally suffer the same methodological postpone- 
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ment that older Al research had visited upon the lower ones. The ultimate challenge, of 
course, is not to declare one set of functions to be more important than the other, but 
rather to provide substantive accounts of their interrelationship. Arbib and Liaw suggest 

some ways of seeing the higher functions as continuous with the lower ones. Although 
the higher and lower functions are made of the same stuff, so to speak, they do differ in 
the sense that the higher functions require schemata to be replicated and synthesized in 
a way that the lower functions do not. As Arbib and Liaw point out, this evolutionary 
shift is congruent with the theoretical movement that Newell referred to as the “Great 
Move” [ 581 -from a focus upon hardware, with its static interconnections, to a focus 

upon the interconnectable symbolic structures of higher thought. 

4.2. Barto, Bradtke, and Singh 

Barto, Bradtke, and Singh review and synthesize a great deal of research on the 
use of dynamic programming, applying their unified understanding of this class of 

algorithms to real-time control. Each of these algorithms enables an agent to learn how 
to improve its efficiency in achieving goals when interacting with dynamic, and possibly 

stochastic, systems. Through repeated trials of actual or simulated control of a given 
system, the agent draws on its accumulating experiences to produce improved control 
strategies. These methods differ from AI’s heuristic state-space search techniques in that 
they must repetitively visit a large number of states, as opposed to threading their way 

through an explosive number of states. By improving their heuristic evaluation function 
using principles from dynamic programming, they improve their search strategy. Unlike 
classical dynamic programming systems, the algorithms described by Barto, Bradtke, 
and Singh do not need to visit all of the possible states. As the algorithm converges, 
effort is focused increasingly upon those states which must actually be visited by an 
optimal controller. It is possible to prove fairly strong results about the conditions under 

which these learning methods will converge to optimal controllers. 
This research unifies results from a number of fields. In particular, by pointing out 

the relevance of asynchronous dynamic programming methods to research on learning 
in stochastic environments, it greatly strengthens the connections between AI research 
on search and learning and control theory research on adaptive control methods. The 
result is a nearly exhaustive investigation of a set of weak methods that can be applied 
to a wide range of problems. On the other hand, as with any weak method of any 
generality, the results guarantee convergence without making any strong promises about 
how long convergence will take. A project for future research will be to understand 
how the learning methods might be specialized to take advantage of particular kinds of 
structure in the environment. 

4.3. Basye, Dean, and Kaelbling 

Basye, Dean, and Kaelbling develop a series of algorithms for probabilistically solving 
the problem of “system identification”. On an abstract level, system identification is the 
problem of reconstructing the structure of a state-transition graph by sampling its input- 
output behavior. That is, the algorithm is presented with a series of discrete options 



P: E. Agre/Artifcial Intelligence 72 (199.5) I-52 31 

(such as turning left or right) and, upon choosing one of those options, is told what 
information can now be “seen” (red or green; hot, warm, or cold; etc.). Although 
system identification problems have been investigated in a wide variety of settings, their 
relevance here is to the problem of discovering the structure of an environment by 

traveling around in it according to some strategy. And since Basye, Dean, and Kaelbling 
have real robotic applications in mind, they have extended the problem to assume that 
the information about the environment that the agent receives is only probabilistically 
correct, perhaps because of noise in the operation of its sensors. As a result, their 

algorithms do not guarantee perfect correctness but a certain specifiable likelihood of 
correctness. 

The problem cannot be solved in its most general form, since insufficient information 
may be available to sort through the fog and actually pin down which states are which. 
Intuitively, the difficulty is that the agent never knows where it is, has no guarantees 
that it can return to where it came from, and has no perfectly reliable way of knowing 
if its present location is the same as its location at any previous time. Its exploration, 

moreover, must begin wherever it happens to be located; it cannot, in other words, jump 
to an arbitrary location. Therefore, the authors explore the structures in the environment 

which can be exploited by particular search strategies to provably reduce uncertainty. 
It transpires that the problem can be solved in probabilistic polynomial time, provided 
that the world has certain properties such as reliable landmarks or tightly constrained 
structures which can be mapped with greater certainty than wide-open fields of densely 

interconnected vertices. 
Although clearly simplified in relation to many real environments, Basye, Dean, and 

Kaelbling’s paper is a sophisticated study in the interaction between learning, partial 
knowledge, action strategies, and environment structures. Their agent is not omniscient, 
does not reliably know where it is, may have wildly mistaken ideas about the structure 
of the environment, and follows trajectories that the designer can only characterize 
in abstract terms. Despite this, it is possible to characterize the agent’s interactions 
with the environment in sufficient detail to demonstrate that the resulting models of 

the environment will converge to accuracy. Although it is convenient to explain the 
algorithm using the spatial metaphors of travel through a graph-structured space, the 
results will apply to environments in which the state-transitions represent other kinds 
of changes, such as the workings of artifacts. An important project for future research 

will be to understand what structures of particular categories of environments, especially 
these not-literally-spatial ones, correspond to the formal properties of graphs that permit 

Basye, Dean, and Kaelbling to prove their results. 

4.4. Beer 

Beer applies the mathematical machinery of dynamical systems theory to the formal- 
ization of agent-environment interactions. Specifically, he proposes viewing agent and 
environment as two coupled dynamical systems, so that the interaction between them can 

be viewed as the trajectory of one large system whose variables are simply the variables 
of both agent and environment together. This proposal provides a straightforward reading 
of the general notion of making interaction, not the internal cognitive processing, the 
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unit of analysis for AI research. Having defined things in this way, dynamical systems 
theory provides an extensive vocabulary for discussing the space of possibilities through 
which a given agent-environment system travels. A given region of the space, for ex- 
ample, might form a basin within which all possible initial configurations eventually 

settle into a stable, periodic “limit set”. The interaction might be defined as adaptive in 

relation to an arbitrary condition upon its trajectory. 
One benefit of this general approach is in analysis. Research on interaction and 

agency will only progress if it becomes possible to inspect particular performances, and 
to characterize general categories of them, so as to understand what the agent is really 
doing and why. Since any given interaction can be understood as a trajectory through 
a space, this trajectory can be submitted to analysis using a variety of tools. Particular 
trajectories can be visualized by being plotted, though presumably in a reduced subset 
of the dimensions of the full coupled dynamical system. Beer provides several examples 

of this kind of analysis, and of the conclusions that can be drawn from it. 

Beer’s particular domain is a walking robotic insect whose leg parameters are driven 
by a simple neural network. The weights of this network, in turn, are set by a ge- 
netic algorithm that simulates many different settings of the weights and homes in 
through incremental, evolutionary refinements on a set of weights that maximizes cer- 
tain measurements of the simulated insect’s performances. Analysis of these perfor- 
mances demonstrates that the neural network has settled upon patterns of interaction 
with the environment (the insect walks on a horizontal floor) that correspond to the 
gaits used by insects. Moreover, when the sensors measuring the positions of the in- 
sect’s legs are unreliable, the genetic algorithm settles upon a set of weights that permit 
the insect to switch among different dynamics for generating gaits as the situation 
demands. 

Beer emphasizes, though, that his principal commitment is not to this particular 
architecture but to the dynamical-systems framework. He presents these discoveries as 
prototypes of an emerging style of AI research in which an agent’s embodiment is 
accorded a central role. Once this is done, he argues, all of the traditional categories 

of AI research must be rethought. His robotic insects, for example, have internal states 
but do not have anything resembling traditional symbolic notions of representations. Of 
course, one might vindicate the notion of representation by defining it widely enough 
to include all possible uses of internal state. But so long as the notion retains any real 
content, Beer argues, his insects fall outside of it. Instead, the internal states in the 
robotic insects are grounded in, and take their functional “meanings” in relation to, the 
agent’s interactions with its environment. 

Dynamical systems theory provides a highly general framework for formalizing agent- 
environment interactions. Perhaps the principal challenge for research within this frame- 

work will be to formulate systems-theoretic definitions that capture the particular kinds 
of structure encountered in more general categories of agent-environment interaction. 
The structures of tool use, for example, presumably correspond to particular properties 

of enormous dynamical systems. But can these constraints be captured by relatively 
compact and comprehensible formulas for characterizing those properties? This question 
will presumably not have a single, simple answer. As Beer’s analysis shows, develop- 
ment of this theory will require the elucidation of new, more appropriate conceptions 



PE. Agre/ArtiJicial Intelligence 72 (1995) 1-52 33 

of categories as basic as “representation”. AI having been decades in the making, its 
reconstruction in terms of interactions will take unpredictable forms as well. 

4.5. Donald 

Donald presents a formalism for reasoning about the computational properties of 
distributed sensor systems. Given two sensor systems arranged in the world, one would 
like to ask a series of questions modeled on the theory of computational complexity: 

Can one sensor system detect every condition in the world that the other can? Are 
the two sensor systems equal in their sensory powers? If not, can we define precisely 

what would need to be added to the “weaker” sensor system to make it equivalent in 
power to the “stronger” one? And most generally, does there exist a formal sense in 
which information is “conserved” in the movement from one design to the other (for 
example, a design that involves two relatively simple mobile agents communicating via 

flashing lights versus a single relatively complex agent performing all of the necessary 
computations on its own)? 

Formalizing these questions brings forth a large number of points that usually remain 
in the background of a design process. For example, a great deal of information is 
encoded into the calibration of sensors, and the formalism makes it possible to explain 
precisely what this information amounts to, and how it compares to the addition of 
another sensor or the addition of extra capabilities to an existing one. To take another 

example, it may turn out that one sensor system cannot be transformed into another, 
seemingly similar one, without the expenditure of considerable computational effort 
because that transformation would require a particular computation to be inverted; inverse 
problems, of course, are frequently much harder to solve than the problems they invert. 

The form of analysis made concrete in Donald’s paper would be extremely useful 
if extended to other aspects of the design of autonomous agents. An informal model 
in this regard might be found in Braitenberg’s [ 131 speculations about the capacities 
of various kinds of agent machinery. Intuitively speaking, as an agent’s machinery 

grows nore sophisticated, it ought to be able to participate in a growing range of 
interactions with a given environment. Different forms of interaction would thus fall 

into a hierarchy, according to which categories of agent machinery are capable of 
participating in them. Of course, this hierarchy depends on the particular environment 
being considered, and the rearrangements of the hierarchy in different environments 
would provide a valuable indication of the degrees and kinds of adaptation that different 
varieties of agent machinery possess to environments with particular properties. These 

kinds of understandings would qualitatively improve our abilities to design novel situated 
agents and to understand and explain the ones that already exist. 

4.6. Hammond, Converse, and Grass 

Hammond, Converse, and Grass wish to develop computational models of what they 
call “long-term activity”. Whereas classical planning was defined in terms of an agent 
pursuing a goal (and then, presumably, going to sleep or asking for a new goal), 
Hammond et al. wish to understand the strategies by which an agent can engage in 



34 PE. Agre/Art$cial lntellipwe 72 (1995) 1-52 

productive activity in a given environment over long periods. In their contribution to 
this special double volume, they explore a category of action policies that contribute 
to orderly action over long periods. They refer to these policies as “stabilization”- 
actively changing the environment so as to maintain in effect the properties that the 
agent’s actions rely upon. A simple example would be putting away your tools when 
you are finished with them. Hammond et al. provide a helpful taxonomy of the types 
of stabilization, with many examples, and they embody some of these examples in a 

simple demonstration program. 
The underlying argument in Hammond et al. is important for the general project of 

making computational theories of interaction and agency. An omnipotent and omniscient 
agent would not need to put its tools away, since it would bave no trouble finding them 

the next time it needs them. Agents with more realistic capacities, by contrast, need the 
world to have relatively stable properties. This observation takes on a specific form in 

the context of the case-based architectures that Hammond et al. employ. Their emphasis 

is not upon unique, complex, creative forms of reasoning but upon the stockpiling of 
“cases” that permit newly arising situations to be usefully assimilated by precedents 

from situations that have gone before. An agent with a large collection of casts will 
be able to act in a sophisticated fashion without necessarily engaging in sophisticatcd 
computation. But a collection of cases is only useful if those casts actually arise in the 

future. If the tools are always left in different places then new cases might be required 
much more frequently than if they are always left in the same place. It therefore makes 
sense, other things being equal, to actively manipulate the world so that the same cases 

tend to arise over and over. 
Note the form of this argument: faced with a seeming lack of generality in their 

architecture, Hammond et al. did not immediately decide to make the architecture more 
general. Instead, they sought structures in the world-and, more specifically, in agents’ 

interactions with the world-that, once properly articulated, actually revealed an adaptive 
“fit” between the architecture and its environment. This is similar to Simon’s approach 
in Administrative Behavior [71], where he explained the functioning of organizations 
largely in terms of compensating for the limited rationality of individual employees. 
Hammond et al. are, of course, dealing with individual agents in a wider variety of 
environments, but the similarities remain. It could have transpired that no viable com- 

pensatory structures were found, in which case suspicion might have been transferred 
back to the architecture. But generalization of the architecture should be the second line 
of defense, not the first. 

The approach of Hammond et al. ought to find application in a wider variety of 
settings. Social and organizational activities have their own forms of stabilization, 
and techniques of stabilization are supported by cultures in many ways, from arti- 
facts such as toolboxes to teaching methods to linguistic phrases such as “this goes 
here”. Analysis of the limits of stabilization, moreover, might lead to the discovery 
of new (seeming, apparent) weaknesses in the case-based architecture, which might 
in turn provoke a search for further types of structure in agents’ interactions with the 
world. 
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4.7. Hayes- Roth 

Hayes-Roth introduces the concept of the “niches” that can be occupied by particular 
categories of agent architectures. While inspired by the biological concept of a niche, 

Hayes-Roth defines a niche according to several dimensions, each calling for a particular 
architectural approach: perceptual strategies, control mode, reasoning choices, reasoning 
methods, and meta-control strategies. For example, some environments, perhaps due to 
their high reliability and their high demands for efficiency, call for control modes based 

on strict linear sequencing of actions; other environments, by contrast, may call for 
actions to be improvised based on relatively complex moment-to-moment adaptation to 
evolving circumstances. 

Rather than looking for a single super-architecture that is equally responsive to the 
entire territory of niches, Hayes-Roth has developed an architecture that is capable of 

dynamically adapting itself to changing conditions, synthesizing control policies that 

select and combine certain elements of the system’s architectural repertoire according to 
its analysis of the demands of the situation. This kind of dynamic adaptation is necessary 
in Hayes-Roth’s target domain of intensive-care monitoring, an extraordinarily complex 

environment whose demands can qualitatively shift among extreme positions. When a 
patient has a sudden medical crisis, for example, long-term tracking and reasoning must 
give way to a much more urgent form of processing that is capable of rapid responses to 
shifting states. Likewise, the patient’s response to treatment may drift into an unfamiliar 
pattern, requiring the agent to change its processing mode into a much more active 
policy of probing and diagnosing to determine what might be going on. This reasoning, 
in turn, might shift between more qualitative forms based on past precedents and more 
quantitative forms based on simulation, depending on what kinds of information and 

symbolic knowledge might be available. 
Hayes-Roth’s system is still evolving. In evaluating it, Hayes-Roth insists upon the 

accumulation of empirical experience in complex real-life domains such as intensive 
care monitoring. As a strategic matter, the architecture can be deemed promising if it is 
able to shift gracefully among the various modes of operation that changing conditions 
require of it. Detailed analysis of whether the system behaves optimally within each 
of its many modes will be required later on, of course, once each facet of the system 
is equipped with the mass of detailed knowledge that it will require. But qualitatively 

accurate responsiveness within a relatively parsimonious architectural framework will 
provide promising signs for future development. 

4.8. Horswill 

Horswill presents a methodology for the construction of specialized agent architec- 
tures. Observing that AI has long pursued the goal of wholly general architectures that 
can be adapted to arbitrary circumstances, Horswill considers the contrary project, a 
search for architectures that are maximally adapted to particular environments. He sug- 
gests a process of incremental refinement in which structures of the environment are, 
so to speak, “folded in” to the agent’s computations as assumptions, yielding simpler 
versions of the architecture that require simpler forms of computation and perhaps, in 
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extreme cases, no computation at all. Experience with this method ought to lead de- 
signers to fill out a space of possible designs, a kind of lattice structure within which 
a designer can move downward as new environmental regularities are discovered and 
upward as those regularities prove false or unstable. 

His examples are chosen from the construction of an autonomous robot designed to 
provide tours of an office space. Suitable constraints are discovered in the level floor, 
reliable visual properties, and independence of variables in search spaces afforded by this 
environment, leading to a particularly simple agent design. The same design process in a 
different environment, of course, might lead to the discovery of different regularities and 

the making of different simplifications to the agent architecture. Horswill emphasizes that 

his analysis of his robot’s architecture is largely retrospective. The point of the design 
methodology is not to provide a simple algorithm from which optimal designs can be 
cranked out, but to provide a framework for thinking within which the generalization 
and specialization of designs can be undertaken in a conscious and deliberate way. 

Horswill’s paper expresses in a particularly clear way a theme that runs throughout 
these papers: the desirability of parsimony in architectures. When the units of analysis 
for design and analysis are defined in terms of interactions, the mutual fit between an 
agent and its environment becomes the most important source of guidance for the design 
process. A highly genera1 architecture may be able to function well in a wide variety 
of circumstances, assuming that its computations are not impossibly cumbersome, but 
this very generality will produce a great deal of “slack” in the architecture’s relationship 

to the environment. By aiming for simple machinery, and by shifting the primary ex- 
planatory burden to interactions and not to the architecture, designers such as Horswill 
are forced to pay ever more detailed attention to the environment and the agent’s place 
within it. 

4.9. Kirsh 

Kirsh explores the wide variety of ways in which people employ the space around 
them to complement their cognition. If we watch people as they work we note that 
they constantly manage the resources around them, not just to get things done, but for 
cognitive ends-to highlight opportunities, to encode useful information, and to keep the 
task-relevant complexity of the world to a manageable level. These cognitively oriented 
manipulations of the environment happen on all scales, from a slight repositioning of a 
single workpiece to a long-term structuring of a whole workplace. Considering a striking 
range of cases, he distinguishes among three phenomena: spatial arrangements of tools 
and materials that simplify an agent’s choices among alternatives, spatial arrangements 
that simplify the gathering of information through perception, and spatial arrangements 
that permit calculations to be formulated in a way that fits better with the capacities of 
internal cognition. As we observe an individual interacting with a complicated array of 
physical things in an environment-particularly when participating in a familiar activity 

in a familiar setting-it can become difficult to draw lines between the “internal” and 
“external” aspects of cognition. Of course, it is simple enough to make one list of the 
causal events going on with hands and artifacts and a second list of the causal events 
going on within brains, but the fact is that these two categories of events are continually 
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triggering one another, so that it is difficult to make sense of them except as a members 
of a closely coupled system. 

It is here that the case for an interactional unit of analysis in computational research 

on situated agency starts to become compelling. This is not to say that analyses based 
upon traditional theories of cognition must be abandoned. To the contrary, Kirsh uses 
theories of cognition-as-search to provide an intuitive explanation of why certain spatial 

arrangements of things lessen the burden upon internal cognition. The resulting picture 
of interaction, though, takes those traditional concepts in new directions, placing them 
in the larger context of an agent’s involvement in a highly structured environment. 

Kirsh’s analysis brings out some of the enormous complexity of the phenomenon of 
“adaptation”. The metaphors used to explain adaptation are frequently structural: the 
agent is spoken of as “well-fitted” to its surroundings. Yet if we ask whether a particular 
cognitive architecture is well-adapted to a given environment, the question only makes 
sense in the context of a potentially elaborate set of practices by which the agent actively 
manipulates its surroundings from moment to moment to achieve that “fit”. Many of 

these practices are cultural in nature, must be learned by the agent, are supported by 
artifacts, and so forth. Furthermore, the means by which agents actively manage their 

workplaces are inseparable from the means by which they actually get useful work done 
in those settings. With this realization, the boundary between “perception” and “action” 

becomes complicated, and it becomes necessary to take care about what these terms-so 
sharply distinguished by many conventional AI architectures-are to mean. 

4. IO. Lespe’rance and Levesque 

Lesperance and Levesque adapt methods from philosophical logic to give an account 
of the distinction between objective knowledge and indexical knowledge. Their point of 
departure is the observation that agents routinely know things in indexical terms that 

they do not know in objective terms. For example, it is common to know things like 
“something red just went by here” without having any objective name for “here” (such 

as a conventional place name or a latitude and longitude) or any objective knowledge of 
the current or recent time (such as a clock reading). Of course, the designer or another 
outside observer might have this knowledge from an aerial point of view. But down on 
the ground, the world is immediately tangible in indexical forms. Requiring an agent 
to represent the world in objective terms, then, would impose a wholly unnecessary 
epistemological burden, as well as requiring that knowledge that is actually independent 
of objective information (like the right way to core an apple, which operates regardless 
of what county one inhabits or what month it is) must be formulated in unnecessarily 
cumbersome ways, quantifying over the possible places and times rather than in indexical 

terms. 
Formalizing indexical knowledge accurately, though, presents significant challenges. 

Many of these pertain to time. Events can have a range of complex relationships to “now” 

and to various “thens”, and Lesperance and Levesque develop a fairly sophisticated 

logic of time that permits a wide variety of types of partial knowledge to be expressed 
accurately. They are also able to express a wide variety of “knowledge preconditions” 
for action. A simple example is that you cannot call me on the phone without knowing 



38 PE. Agre/Artificial Intelligence 72 (1995) 1-52 

my number. A more complex example is that you cannot reliably place a letter in my 
mailbox if you are only aware of being “here”, as opposed to being on my front step. 

The logical formalism that Lesperance and Levesque have developed is meant, as 
they explain, solely as an account of the “knowledge level” of indexical and objective 

reasoning. That is, they do not provide any account of how these forms of reasoning 
might be realized in hardware. It would be a mistake to assume that an agent would 
have to manipulate a mass of symbolic formulae corresponding to those in Lesperance 
and Levesque’s paper. Instead, it is possible that their formalism is best employed by 
the designer as a tool for analyzing (and, of course, designing) an agent’s patterns of 
reasoning. Before this possibility can be realized, though, it will be necessary to explore 

the computational properties of the formalism and the ways that it can be fitted to 
particular classes of machinery. Simple and straightforward realizations of their theory 
will of course be possible through the use of general-purpose logical theorem-proving 
programs. This approach is most likely impractical, though, and more sophisticated 
kinds of physical realization will probably require the logic to be adjusted in various 

ways. Research in this area is bound to produce an expanded understanding of the 
computational properties of various forms of situated reasoning. 

4.11, Lyons and Hendriks 

Lyons and Hendriks present an architecture for the automatic incremental synthesis of 
agents that participate in complex, structured interactions with their environments. Their 
research is founded upon a formal framework for the characterization and analysis of 

agent-environment interactions. The basic idea is to model the agent and environment 
as interacting mathematical automata. Each automaton is assembled from a vocabulary 
of basic computing elements, and the behavior and interaction of agent and environment 

can be modeled in terms of the trajectories followed by these automata as they evolve 
according to a fixed set of formal rules. This approach allows one to make precise a 
long list of important questions about interaction, most particularly whether the interac- 
tion will eventually converge to a specific desired state. Although the method is only 
as powerful as the proof techniques for demonstrating such conclusions within it, it 
stands as one of the most thoroughly worked out frameworks for analyzing qualitatively 
complex interactions. 

In their paper, Lyons and Hendriks employ their automata-theoretic formalism to 
motivate the design of a system for controlling industrial robots as they engage in 
complex assembly tasks. Their architecture has two components, a “reactor” that employs 
a fixed circuit-structure to control the robot’s moment-to-moment interaction with its 
environment, and a “planner” that is capable of incrementally adding to the reactor’s 
structure so as to extend its behavioral repertoire. The automata-theoretic formalism 
provides Lyons and Hendriks with a principled basis for designing a language that a 
programmer can use to represent “dynamics” of interaction. A robot can “participate” in 
one of these dynamics just in case it can sense particular kinds of situations, and take 
particular actions in them, that will guarantee that the joint agent-environment system 
will evolve in a particular way. 
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This is a different and more complex concept than the traditional notion of “executing 
a plan to achieve a goal”. First of all, Lyons and Hendriks take for granted that only 
a certain proportion of the action in the world will be controllable by the agent (for 
example, through the movement of its limbs). Secondly, the “planner” does not envision 
a definite sequence of actions and world-states through which the “execution” will travel. 
Instead, it specifies a potentially large and complex space of possible trajectories whose 
destinations can be sufficiently influenced through the adoption of particular action 
policies that can be physically realized by the reactor, through the particular kind of 
machinery of which the reactor is made. 

4.12. Rosenschein and Kaelbling 

Rosenschein and Kaelbling present a view of representation and control based on 
the theory of situated automata. They observe that AI ideas about representation have 
frequently been based on mathematical logic, or upon notations that can be formalized 
in logical terms. Unfortunately, these ideas have traditionally been accompanied by 
specific architectural commitments, according to which knowledge is formulated through 
structures modeled on the techniques of symbolic programming. Thought, in this view, 
is a matter of the explicit computational manipulation of these symbolic structures 
by mechanisms such as theorem-proving programs. The extreme inefficiency of most 
such schemes has cast shadows on formal logic as a research tool in AI. Rosenschein 
and Kaelbling point out, however, that the basic point of logic is not architectural but 
semantic: it is a formal means of sorting out the meanings of representational elements, 
with no inherent commitments about the manner in which these elements are physically 
realized. 

Pursuing this observation, Rosenschein and Kaelbling present an agent synthesis 
methodology in which the machinery being generated is unusually simple and straight- 
forward. They present a logical formalism that allows them to represent the workings of 
a specific, wholly traditional class of digital machinery. The representational elements 
here are not symbolic structures but values in registers and on wires. Logical formal- 
ization permits the designer to give a precise account of the meanings of individual 
elements in terms of their correspondence to the world, and logical notation provides 
the basis for a set of languages for specifying the machinery for newly designed agents. 
The resulting circuitry need not be specified in complete detail. To the contrary, the com- 
pilers for these languages can perform a wide variety of manipulations on the logical 
forms and circuitry representation, and these manipulations can be proven to preserve 
the intended meanings of the computations because of the clear formal semantics of the 
underlying logical formalism. 

The devices that are synthesized through Rosenschein and Kaelbling’s methods are 
embodied agents whose activities take place across time. The authors point out that 
this is quite a different picture from the traditional notion of “solving a problem” by 
mapping a single, isolated input onto a single, isolated output. Instead, the picture is 
more like that of control theory, with a continual stream of inputs and a continual 
stream of outputs-in this case, tied to a discrete digital clock. The logic includes 
operators that can represent the relationships between values on adjacent ticks of this 
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clock, thereby making it possible to reason in a principled way about the meanings 
of computational processes that unfold over a series of time units. A further valuable 
step would be to employ these methods to formalize the time-structures of activity 
in particular kinds of environments, in which strong guarantees might become possibfe 
regarding the correspondences between time-extended computations inside the agent and 
time-extended processes occurring in its surroundings. 

4. I.?. Schoppers 

Schoppers presents an architecture that combines a modal logic of time and belief 
with a control-theoretic philosophy of an agent’s relationship to its environment. Rather 
than engaging in complex symbolic reasoning on-line, Schoppers’ program compiles 
a sensorimotor decision tree that interacts with a variety of asynchronously operating 
subsystem controllers within a robot. One of these subsystems monitors the information 

available from the various sensors and maintains a consistent set of beliefs. This approach 

permits the agent to take advantage of complex dynamics within its relationship to its 
environment, intervening with specific corrective actions only when these dynamics are 
not headed for desired states. It also affords a high degree of parallelism in the agent’s 
execution. as well as considerable resilience in the face of unexpected perturbations. 

A reformulation of traditional AI ideas within a control-theoretic vocabulary leads 

Schoppers to lresh perspectives on a variety of AI issues. His point of departure is the 
observation that it is impossible to guarantee any sort of iron-clad coupling between the 

agent’s internal states and the world outside. Instead, the agent can rely upon a variety of 
factors to ensure that it remains adequately coupled to the world. These include physical 
inertia, which ensures that incorrect actions undertaken based on transiently mistaken 
perceptions or deductions about the world cannot do too much harm before they are 

corrected. They also include the structure of the space around the agent, with its strong 
locality effects, so that the agent will necessarily get a better look at any object that 
it is in a position to affect. The result is a distinctive system modularity that focuses 
on managing the agent’s relationship to its environment rather than upon dictating a 
predetermined sequence of actions. 

Schoppers applies his architecture to the control of a rescue robot operating in space. 
It would be valuable to apply Schoppers’ framework to environments with more and 

different types of interactional regularities, such as those involving interaction with 
artifacts and real-time cooperative interaction with other agents. Future research could 
characterize in more detail the loose coupling between robot and environment that is 
recognized by Schoppers’ approach. 

4.14. Shoham ad Tennenholtz 

Shoham and Tennenholtz explore in mathematical terms the conditions under which 
large numbers oi‘ simple agents can bc programmed to avoid colliding with one an- 

other. They observe that strategies li)r programming such agents can be arrayed along 
a continuum, from one extreme at which the programmers specify detailed paths for 
each individual agent, to another extreme ;II which the agents engage in negotiations of 
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unbounded complexity. In the middle region between these extremes are a wide variety 
of possible “social laws” that might guide agents’ actions. While the agents themselves 
might develop these social laws through systematic reasoning or incremental evolution, 

Shoham and Tennenholtz focus on the problem of off-line methods for designing these 

laws. 
Their paper develops in two stages. In the first stage, they consider at length a 

particular case study, in which the agents attempt to avoid colliding while traveling 
in a grid. The challenge is to define a social law that permits the designers to prove 
mathematically that the agents will reach their goals without colliding. This is difficult 
when the designers have limited knowledge of the precise arrangement of the agents 

upon the grid. In the second part of their paper, Shoham and Tennenholtz sketch a 
general formalism for proving things about social laws. In particular, they explore the 
computational complexity of the automatic synthesis of provably correct social laws 

for large numbers of agents. Although this problem is unsurprisingly intractable in the 
general case, they specific various conditions under which it can be made tractable. 

Shoham and Tennenholtz’s paper occupies a distinctive place among the papers in 
this special double volume. It is the only paper to deal with large numbers of agents, 
and with the use of customs to provide reliable structure in agents’ interactions with 
the world. Nonetheless, their paper fits comfortably with the others in the sense that 

their agents are embodied. Their bodies are surely primitive, but it does matter to the 
definition of the problem, and to the proofs of correctness, that the agents have locations, 
occupy space, and have limited perceptual and motor capabilities. The social laws that 
Shoham and Tennenholtz specify for the agents traveling on the grid require the agents 
to use the space in specific ways by moving about in relatively conventional patterns. In 
particular, their proofs require them to characterize these emergent patterns of movement 
in enough detail to demonstrate that they converge. Their paper is thus a simple example 
of the ways in which interactional customs can provide reliable structure. The agents 

need not be able to prove that their social laws are adequate; they need only follow 

those laws. 
Future research along these lines might explore the ways in which agents can impro- 

vise their interactions with one another. It would probably be impractical to posit agents 
which invent completely innovative ways of interacting every time they encounter one 
another; customs, after all, have the important computational benefit of making these 
kinds of impossibly open-ended reasoning processes unnecessary. Yet customs do evolve 
with time, and agents do improvise their interactions in a variety of ways, from incre- 
mental optimizations to private deals (both formal and informal) among small numbers 
of agents who deal with one another regularly. Although human beings clearly engage 
in a great deal of this sort of thing, computational research should probably begin with 

simple cases and work upward. 

4.15. Webber et al. 

Webber and her colleagues describe a project to build an system that can animate the 
movements of a human figure as it follows instructions written in English. Instructions, 
Webber et al. point out, differ in numerous ways from computer programs, as well as 
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from the symbolic structures that AI has long referred to as “plans”. The interpretation 
of instructions appears to be conditioned by the situation in which the instructions 

are given. This context dependence of instructions is reflected as well in the linguistic 
forms commonly found in instructions, for instance in users’ manuals for machines, and 
Webber et al. adduce numerous examples from the naturally occurring instructions that 

they have studied. 
These insights have numerous implications for research on computational theories of 

interaction and agency. They illustrate one sense in which the “higher-level” functions 
of language use and symbolic reasoning must interact with the “lower-level” functions 

of sensorimotor interaction. In particular, they suggest that the conventional modularity 
that separates the interpretation of linguistic meaning from motor skills might have to 
be rethought. They also suggest the significant role of pragmatics-features of language 
that relate to the situation of language-use-in the situated interpretation of instructions. 
Finally, they force clear thinking about notions such as intentions and expectations that 

are central to cognitive theories of action. 
As this ambitious project develops, it will no doubt encounter other features of 

language and thought that relate to agents ’ interactions with their environments. The 
expectations upon which people rely in interpreting instructions are cultural, in the sense 
that different cultures organize their concepts about action and interaction in different 
ways. Interactions between people can presuppose a wide and very subtle range of 
shared background understandings, for example when the participants in an interaction 

are members of the same profession, and thus possess a shared vocabulary and a shared 
experience of training, or members of the same family or circle of friends, and thus 
possess a shared background of references to things that have happened in the past. A 
difficult challenge is to understand the senses in which these phenomena are grounded 
in embodied activities. 

4.16. Whitehead and Lin 

Whitehead and Lin explore a number of algorithms for learning to engage in serially 

ordered behavior within the technical framework of reinforcement learning. Historically, 
of course, reinforcement learning has a close association with the behaviorist school of 
psychology that the founders of artificial intelligence sought to overcome. Whitehead and 
Lin are not nearly behaviorists, but their work is clearly part of an alternative tradition 
within AI. Whereas the main stream of AI research focused on complex cognitive 
processes internal to agents, other work retained a focus upon agents’ interactions with 
their environments. Behaviorists took this focus to extremes, arguing that it was pointless 
or meaningless to posit internal cognitive processing. But their search for means of 
explaining behavior based on sequences of stimuli and responses, guided through the 
learning process by positive and negative reinforcement, counterbalances explanatory 
principles based wholly on internal processing. 

The architectures that Whitehead and Lin explore do not maintain complete world 
models. To the contrary, they maintain very simple representations of the world that 
are grounded in sensorimotor experience. As a result, it becomes necessary for their 
architectures to actively interpret their available sensory input in functional terms. The 
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agent must actively decide which available stimuli to pay attention to, and it must learn 
which of these stimuli is likely to permit the agent to accurately predict the degree of 
“payoff’ which its actions will receive. A stimulus that has low predictive value in a 
particular situation is most likely capable of being generated by things in the world with 
differing functional significance% with the result that it does not provide information 

that allows the agent to choose correctly among possible actions. A stimulus that has 
high predictive value, on the other hand, is probably generated by those things in the 
world whose states are relevant to the agent’s decisions. This deep idea connects the 
indexicality and active nature of perception with the practicalities of learning from 
limited information. 

The most immediate difficulty with this proposal is that it requires the agent’s ac- 

tions to be functions of its immediately available inputs. Whitehead and Lin therefore 
extend their analysis to architectures that can maintain limited types of internal state. In 

contrast once again to architectures that assume that a complex internal model is kept 

up to date, the authors explore much simpler schemes in which the architecture itself 
synthesizes state elements which assist it in predicting payoffs. The result is a notion 

of internal representation tied to the meaningful aspects of the agent’s interactions with 

the world. 
This model obviously requires much further development before it can undertake more 

complex tasks. One aspect of this development might be a more extensive analysis of the 

structures in the world that permit the algorithms to work well or poorly. The synthesis 
of internal states tied to functionally significant properties of the agent’s sensorimotor 
interactions is a powerful idea, and it might work best when dealing with artifacts whose 
functional states are meant to be readily distinguishable, or in environments which have 

been heavily marked with indications of their normal roles in customary forms of activity. 
In such settings, the synthesis of internal states might be channeled in comprehensible 

ways, corresponding not simply to the objective structure of the environment but to the 

structure of the agent’s involvements in it. 

5. Case study 

An informal review of research that I conducted with Ian Horswill [6] will provide 

an instructive case study in the themes of this special double volume. This research 
explores one of the ways in which cultural artifacts support activity by simplifying 

computational tasks that would otherwise be extremely complex. Its ideas are embodied 
in a computer program called Toast that acts as a short-order cook, cooking a continual 
stream of breakfast dishes by interleaving the various actions. It does so without having 
to construct any symbolic plans, perform any search, or engage in any explicit reasoning 
about the future. It can do so because certain properties of the artifacts of cooking 
tend to reduce the computational complexity of decisions about what to do next-or at 
least to permit simple strategies such as “find something that needs doing and do it” to 

provably converge to certain kinds of goals. The point is not that all activity is like this, 
either inside or outside the kitchen, but to indicate some of the ways in which structures 
in the world can simplify computational problems. 
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5.1. Model of action 

One place to begin the story is with the assumptions of the classical planning literature. 
This literature takes a definite stand on the nature of action. Although some authors have 
explored the consequences of relaxing or complicating one or more of these assumptions 
by certain increments (for example, by introducing probabilities or concurrency), this 
underlying model of action continues to anchor the literature by providing a set of 
default assumptions for new projects. The model begins with the idea of “actions” and 
“situations” as discrete entities, so that the effects of an action can be represented in 

terms of the transition from one clearly defined situation to another. The result, of 
course, is that the agent’s actual and potential activities can be represented in terms of 

the possible routes through a directed graph whose vertices correspond to situations and 
whose arcs are labeled with the actions which can lead from one situation to the next. 

A great deal of planning research is concerned, implicitly or explicitly, with the 
structure of this graph. This structure is affected by many things, most prominently the 
agent’s repertoire of actions, the representation scheme employed to identify the possible 
actions and dissect the possible situations in the world, and the structure of the world 
itself. If an agent is going to take actions in the world by executing a plan, that plan 
must be guaranteed (at least probabilistically) to trace a path through the graph that 
arrives at a desired end-point from a given beginning-point-or, more precisely, from 
any beginning-point that is consistent with whatever knowledge the agent has about the 

beginning-point. Whether, and how efficiently, it should be possible to discover such 

a plan will depend on the structure of the state graph (large or small, high or low 
branching factor, clear landmarks, etc.) and on the ways in which the structure of the 
graph can be exploited in designing algorithms to search it. 

Investigation of the computational properties of the state-space graph structure, though, 
is conceptually independent of the idea of a plan or the idea of activity as plan-execution. 
The upshot of our research is that the world includes structures that permit a great deal 
of action to be conducted through simple forms of improvisation without the necessity 
of explicit plan-construction. It is sometimes necessary to engage in symbolic reasoning 
about the future, of course, and to make representations of action to help guide future 
activities. But we would like to suggest that these more complex forms of reasoning 
about action are delimited and controlled to a substantial extent by the structures in the 
world that support simpler forms of moment-to-moment action choice. 

Our domain, once again, is that of cooking breakfast in a short-order restaurant, and 

I wish to make clear our intentions in choosing this domain. Cooking is an attractive 
domain (cf. [ 32,471) because it is fairly complicated but still routine, has fairly well- 
defined properties but regularly admits of uncertainty and surprise, and has plainly been 
organized in customary ways to allow action to be driven in large part by vision (cf. 
[4,8,48] ). We do not claim to analyze all of the complexities of actual breakfast- 
cooking, of course (cf. [ 341) . Rather, we formalize the activities of cooking breakfast 
for purposes of our analysis using the formal methods of the classical planning literature. 
In employing these methods our purpose is not to endorse the assumptions that underlie 
them, but rather to demonstrate how the research process points beyond them. Finally, 
our goal is not to invent a sophisticated new architecture for making breakfast, but 
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rather to discover structures within the domain that make the invention of sophisticated 
architectures unnecessary. The real work, in other words, is taking place at the designer’s 
level, in the “aerial view”, discovering regularities that can permit an agent operating at 
the “ground level” to get along with relatively simple policies. 

To explore the structure of cooking world, we elaborate the traditional formal frame- 
work by using an object-centered representation of action. The objects in question are 
those found in cooking tasks, such as pots and pans, tools and utensils, and materials 
such as food ingredients. The agent’s actions all pertain in some way to these objects: 
moving them, transforming them, mixing them, cleaning them, and so forth. The state 
of the world can be decomposed into the states of these objects and a small number 
of possible relationships among them. The states of an egg, for example, can include 
being intact, being broken, being beaten, and being cooked. A bowl can be filled, 
empty-and-dirty, and empty-and-clean. 

These descriptions of states obviously fail to capture all of the properties that the 
objects could possibly have. The formalization of these actions is analogous to the 
model of actions employed by a classical planning program: each possible action has 
a set of preconditions and a set of effects. The difference is that these preconditions 
and effects must be expressed in terms of the properties and relationships of objects. 
The action of cleaning a given spoon, for example, has no preconditions at all, since it 
makes sense to clean a spoon regardless of what state it is in; the effect of this action 
is to move the spoon into the “clean” state. The action of beating an egg with a fork 
in a bowl has the preconditions that the fork be clean (if the set of states is more 
elaborate, of course, the fork can be in the state of being dirty-with-beaten-egg, so that 
the egg-stirring fork need not be cleaned after each episode of stirring), that the egg 
be broken, and that the broken egg be located in the bowl; its effects are that the egg 
moves into the “beaten” state, the fork moves into the “dirty” state, and the beaten egg 
remains in the bowl. 

Much of the formalism, then, concerns the states of objects. In particular, the state of 
the world at any given moment will consist in large part of the states of all objects. As 
with any conventional formalism, it would be possible to generate a graph structure that 
contains all of the possible world-states and the actions that can be taken to move from 
one world-state to the next. If the kitchen contains a large number of objects, of course, 
this graph will be enormous because of the large number of actions that can be taken at 
any moment and the huge number of possible combinations of individual object-states. 

The enormity of this graph obviously conceals a great deal of structure within it. This 
becomes evident if we represent the state-space graph in another, object-centered way. 
If we neglect for the moment the relationships among objects, we can view each object 
as having its own state graph. The structure of this graph will depend on what type of 
object it is, so that the graph for eggs has one structure, which might include states 
corresponding to “intact”, “broken ” “beaten”, and “cooked”; and the graph for forks , 
will have another structure, which might have the states “clean” and “dirty”. Given such 
graphs for each type of object, the state space of the whole world can be understood as 
the cross-product of the state-space graphs for each individual object. In fact, the whole 
world’s state-space graph is a subset of this much larger cross-product graph, since it 
only includes actions that can actually be taken with the objects that are present. A 
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world without forks, for example, will include no state-transitions in which eggs are 

beaten. 
This idea of decomposing state graphs by interpreting them as the products of graphs 

for individual objects has already been introduced by Hare1 [ 34,351, who refers to his 
notation for these graphs as statecharts. Simply representing planning problems within 
such a notation, of course, does not change their inherent complexity. If the problem of 
identifying a correct plan within a given graph is unsolvable or intractable in the search 
space corresponding to the product graph then it is equally unsolvable or intractable when 
the graph is drawn in a different way. The purpose of the object-centered state-graph 
formalism, then, is not simply to reveal the implicit structure of domains like making 

breakfast as they are already defined, but also to provide a language within which 
to express additional structures that might be discovered within them. Such additional 
structure might transform cooking breakfast from a computationally difficult domain 
into a much more straightforward one. 

Additional structure can indeed be found in the domain by categorizing the state- 
graphs for the types of objects actually found in kitchens. Let us consider two major 

categories, which might be called tools and materials. Informally speaking, materials 
include items of food like eggs. cups of water, and pats of butter. Tools include things 
like forks and spatulas which arc primarily used to do things to materials. Every tool 

has a distinguished state in which it is clean, dry, and ready to use. Materials tend to 
have original, raw states. and they tend to pass through a series of further states as 
things are done to them with tools. Tools, furthermore, can be cleaned at any time, 

regardless of what state they arc in, without the necessity of invoking other objects that 
might be in inconvenient states themselves. If a sponge or brush is used to clean a tool, 
then it will always be available und in a suitable state. These two categories, tools and 
materials. cover a large proportion of the objects found in kitchens, and their properties 
arc much more specific than tho worst, most complex state graphs and actions that might 
be imagined in the abstract. 

5.2. Fornmlisn~ 

Given these intuitions, let us outline a simple formalism for domains that involve 
objects and actions. Such a domain will have a set of object types. (The term “object” 
can be used instead when the context makes clear that one is speaking of an object type 
and not a particular concrete object.) Each object type has an associated state graph, 
which is a finite directed graph whose vertices are called states and whose arcs are 
called operations. Note that the “operation” is the arc itself, not a label on the arc. Each 
operation is thus unique and is not shared by different object types. The domain will 

also have a set of action types, each of which has an associated set of operations drawn 
from the graphs associated with the domain’s object types. For example, the action type 
of beating an egg might have two operations, corresponding to the egg’s transition from 
“broken” to “beaten” and the fork’s transition from “clean” to “dirty”. 

Let us say that an action is focused if it consists of a single operation (that is, if it 
involves a single object). A state in a given object type’s state graph is free if it can 
be reached from any other state in that graph using only focused operations. A tool, 
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then, is an object with at least one free state in its state graph. Each tool will have a 
distinguished free state, its normal state. An example of a normal state is “clean”. 

Given a set of tool types, it becomes possible to define a material. The basic idea is 
that one uses clean tools to do things to materials. A tool action is an action involving 
some finite number of tools (most commonly one tool), and possibly also one object 
class which is not a tool. A normal tool action is a tool action in which the actions 
involving tools require that those tools originate in their normal states. A material is an 
object with an acyclic state graph which includes a particular, distinguished state, the 
raw state, from which any other state in the graph can be reached purely by means of 
normal tool actions. The material might have other operations in its state graph besides 
the ones included in normal tool actions. 

A cooking task is a task which has these four properties: 
l all of the objects are tools and materials, 

l enough tools exist to perform each of the actions required by each type of material, 
l every instance of material starts out in its raw state, and 

l the goal is to move some of the materials, all of which are instances of different 
material types, into other particular states. 

Informally, it is possible to solve a cooking problem by repeatedly applying a simple 
policy: 

l Choose a material that has a goal state but is not yet in it. 
l Determine its current state, look up in a table which state it must pass through next 

in order to reach its goal state, and then look up in another table a normal tool 
action that is capable of affecting this necessary state change. 

l Inspect the list of tool types required by this action. If the world contains a tool in 

its normal state for every one of these tool types then employ these tools to execute 
the action, thus causing the material and all of the tools to potentially change their 

states. 
l If there exists a tool type in the required action that does not correspond to any 

tool in the world which is currently in its normal state, then choose one of these 

problematic tool types. 
q Choose a tool of this type. Determine its current slate, look up in a table which 

state it must pass through next in order to reach its goal state, and then look up 
in another table a focused action that can effect this necessary state change. Then 

take that action. 
It is easy to see why this simple policy works. Each action either moves a material 

toward its goal state or moves a tool toward its normal state. When every tool is in its 
normal state (if not before), it becomes possible to move a material toward its goal 
state. Since every material type’s state graph is finite, it is possible to calculate the total 
number of state transitions that the materials mentioned in the goal must go through. 
Likewise, since every tool type’s state graph is finite as well, it is possible to place 
an upper bound on the number of state transitions that the tools in the world must go 
through in order for an action upon a material to become possible. Since every action 
reduces one of these quantities, since the total distance of the materials from their goals 
necessarily decreases whenever all of the tools are in their normal states, and since no 
action ever increases the total distance of the materials from their goals, it follows that 
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the materials with goal states will eventually reach them. 
This argument obviously relies on a large number of simplifying assumptions. For 

example, relations among objects have not been taken into account and objects cannot 
be mixed together or split into pieces. As well, it has been assumed that no object can 
be committed to a purpose over a long period, thus temporarily making it incapable of 
being used for any other purpose. The major category of objects for which this latter 
condition holds are “containers” such as cups, plates, bowls, frying pans, and stove 
burners. This category also includes clamps and vises, though very few other kitchen 

implements. The major pitfall associated with containers is running out of them, and 
the key to avoiding this pitfall is simply to have enough of them at hand. If enough 
of them are not available then it will become necessary to engage in some type of 
scheduling. Potentially complex plan-construction thus has its place, but analysis of the 
world’s structure can isolate this place to a relatively small corner of the total activity. 
(The intuition here is similar to that of the algorithms for efficient constraint satisfaction 

presented by Dechter and Pearl [ 18 ] .) Other simplifications can likewise be remedied 
by a judicious combination of appeals to structure in the world and limited extentions 
to the architecture. My purpose here, though, is not to develop the formalism in enough 
detail to accommodate these possibilities-or even to thoroughly vindicate its usefulness. 
Instead, I wish to present them as an instance of the ideas in this special double volume. 
Referring back to the discussions in Section 2, let us consider these in turn. 

l Aerial and ground views. The whole formalism of states, actions, tools, materials, 
and so forth is part of the designer’s aerial view, not the agent’s ground view. The 

agent can employ a simple policy that involves looking up certain information in 
tables, and the designer can prove that this policy will always lead to a correct 
outcome, if not necessarily an optimal one. 

l Structure in the world. The domain of cooking breakfast was discovered to have 
some useful kinds of structure that could assist an agent in choosing actions in 
a simple way. This structure can be viewed as an abstraction hierarchy, with the 
actions on tools forming one layer of abstraction and the actions on materials 
forming another layer. The model can obviously be generalized to several layers of 
abstraction [ 441. 

l Located in the practices. The “structure in the world” was not located in the 
objects (the tools and materials) all by themselves. Instead, it was located in the 
objects together with a customary set of practices for using them. It is conceivable 
that another culture might employ eggs and forks and spatulas in wholly different 
activities with different computational properties. The proofs here depended on 
these objects being used in the ways that are familiar from the simplest recipes in 
American kitchens. 

l Looking for structure. The search for this structure was motivated by the great 
computational complexity of unconstrained plan-construction problems, and in par- 
ticular by the enormous search spaces that planning methods face in most realistic 
domains. This structure compensates for the difficulty of searching huge spaces by 
ensuring that the necessary spaces are small, and indeed that subgoal interactions 

are so constrained that search becomes unnecessary. 
l Convergence. The proof of correctness is precisely, in computer science terms, a 
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proof of convergence. It proceeds along the lines of classical program correctness 
proofs using progress functions that can be demonstrated to move continually 
toward the goal state of zero. 

l Cultural support. The structure in the world is not a simple matter of physics but is 
located largely in artifacts such as tools. As Vygotsky suggested (see the account 
of Vygotsky’s ideas above), the people who invented the artifacts of cooking 
effectively rendered concrete a type of knowledge for simplifying tasks without 
requiring everyone in future to understand this knowledge in any explicit way. 

6. Conclusion 

This introduction has sketched an emerging method of computational research on 
interaction and agency. It has placed this method in the context of a variety of other 
fields and it has illustrated them through summaries of the articles and a case study. The 
shape of future research in this area cannot be predicted in detail, this being the nature 
of research. The precedents offered by the papers in this double volume, though, do 
make clear that research on computational theories of interaction and agency provides a 
fertile territory for the cross-pollination of a wide variety of different fields, each with 
its own conception of interaction and its own models of agency. Changing the metaphor, 
perhaps the continuation of the trend will help to transform artificial intelligence from a 
self-contained discipline to a kind of interdisciplinary switchboard for the construction 
of principled characterizations of interaction between agents and their environments. 

Acknowledgements 

The electronic mail archive for this project contains over 4000 messages totaling nearly 
five megabytes (not including manuscripts). Clearly the editors ought to acknowledge 
the contributions of numerous individuals and organizations, and they are happy to do so. 
Danny Bobrow and Mike Brady supported the project over a long period. Approximately 
sixty referees wrote well over 300 pages of exceptionally useful comments on the 
manuscripts. The American Association for Artificial Intelligence and Philips Research 
Laboratories New York provided grants to support the Workshop on Computational 
Theories of Interaction and Agency at the University of Chicago in February 1993, in 
which the authors assembled to discuss early drafts of their papers. We wish to thank 
the University of Chicago Computer Science Department’s AI Group for acting as our 
hosts for this workshop, and Tim Converse for coordinating the local arrangements. 
Finally, the authors themselves gracefully acceded to numerous requests for revisions 
and considerable delays in the mechanics of the editorial process. We hope that they 
and the reader will benefit from the result. 

References 

I I] RE. Agre, The symbolic worldview: Reply to Vera and Simon, Cogn. Sci. 17 ( 1) (1993) 61-69. 



SO PE. Agre/Artifcial Intelligence 72 (1995) 1-52 

121 P.E. Agre, Interview with Allen Newell, Artif. lntell. 59 (1-2) (1993) 415-449. 

[ 31 P.E. Agre, The soul gained and lost: Artificial intelligence as a philosophical project, Stanford Humanities 

Review, to appear. 

[ 4 I PE. Agre and D. Chapman, Pengi: An implementation of a theory of activity, in: Proceedings AAAI-87, 

Seattle, WA (1987) 196-201. 

15 1 PE. Agre and D. Chapman, What are plans for?, in: P Maes, ed., Designing Autonomous Agents: Theory 

and Practice from Biology to Engineering and Back (MIT Press, Cambridge, MA, 1991). 

161 PE. Agre and 1. Horswill, Cultural support for improvisation, in: Proceedings AAAI-92, &n Jose, CA 

(1992). 

[ 7 1 J. Allen, J. Hendler and A. Tate, eds., Readings in Planning (Morgan Kaufmann, San Mateo, CA, 

1990). 

181 D.H. Ballard, Animate vision, Artif: fntell. 48 ( 1) ( 1991) 57-86. 

191 R.D. Beer, Intelligence as Adaptive Behavior: An Experiment in Computational Neuroetholagy 

(Academic Press, Boston, MA, 1990). 

1 IO) R.A. Brooks, Intelligence without representation, Art% Intell. 47 ( 1-3) ( 1991) 139-160. 

I 1 1 I P. Bourdieu, Outline af a Theory af Practice, translated by Richard Nice (Cambridge University Press, 

Cambridge, England, 1977) Originally published in French in 1972. 

[ 12 1 R.J. Brachman and H.J. Levesque, The tractability of subsumption in frame-based description languages, 

in: Proceedings AAAI-84, Austin, TX ( 1984) 34-37. 

[ 13 j V. Braitenberg, Vehicles: Eqeriment.s in Synthetic Psychology (MIT Press, Cambridge, MA, 1984). 

I 141 D. Chapman, Planning for conjunctive goals, Art@ Intell. 32 (3) ( 1987) 333-377. 

[ 15 1 D. Chapman, Vision, Instruction. and Action (MIT Press, Cambridge, MA, 1991 ). 
[ 16 1 H.H. Clark and D. Wilkes-Gibbs, Referring as a collaborative process, Cngnitia,t 22 ( 1) ( 1986) I-39. 

[ 17 1 J.L. Comaroff and S. Roberts, Rules and Proresses: The Cultural Lqtc afDispute in an African Context 

(University of Chicago Press, Chicago, 198 I). 

I181 R. Dechter and J. Pearl, The anatomy of easy problems: a constraint-satisfaction formulation. in: 

Proceedings IJCAI-85, Los Angeles, CA ( 1985) 1066- IO72. 

[ 19 1 G.L. Drescher. Made-Up Minds: A Canstructivist Approach ro Arrijnial Inte//igence (MIT Press, 

Cambridge, MA, 199 I ) 
1201 H.L. Dreyfus, What Computers Can’t Do: A Critrque ofArtificial Reason (Harper and Row, New York, 

1972). 

I21 1 Y. Engestrom. Learning by Expanding ( Orienta-Konsultit Oy, Helsinki, 1987). 

122 1 R-E. Fikes and N.J. Nilsson, STRIPS: a new approach to the application of theorem proving to problem 

solving, Arttf Intell. 2 (3) ( 197 1) 189-208. 

I23 I R-E. Fikes, PE. Hart and N.J. Nilsson, Learning and executing generalized robot plans, Artif Intell. 3 

(4) (1972) 2.51-288. 

I24 I R.E. Fikes, PE. Hart and N.J. Nilsson, Some new directions in robot problem solving, in: B. Meltzer 

and D. Michie, eds., Machine Intelligence 7 (Wiley, New York, 1972). 

[25 I R.J. Firby, An investigation into reactive planning in complex domains, in: Praceedings AAAI-87, Seattle, 
WA (1987) 202-206. 

1261 M.S. Fox and S. Smith, ISIS: A knowledge-based system for factory scheduling, Expert Syst. 1 ( 1) 
( 1984) 25-49. 

1271 M.R. Genesereth and N.J. Nilsson, Logical Foundations af Artificial Intelligence (Morgan Kaufmann, 
Los Altos, CA, 1987). 

128 I M.P. Cieorgeff and A.L. Lansky, Reactive reasoning and planning, in: Pmceedings AAAI-87, Seattle, WA 
( 1987) 677-682. 

129 1 J. Goody, The Logic of Writing and the Organization of Society (Cambridge University Press, Cambridge, 

England, 1986). 

I30 I B.J. Grosz and C.L. Sidner, Plans for discourse, in: P.R. Cohen, J. Morgan and M.E. Pollack, intentions 

in Cammunicution (MIT Press, Cambridge, MA, 1988). 

I 3 1 J N. Gupta and D. Nau, On the complexity of blocks-world planning, Art8 Intell. 56 (2) ( 1992) 223-254. 

I32 ] K.J. Hammond, T. Converse and C. Martin, Integrating planning and acting in a case-based framework, 
in: Pmceedings AAAI-90, Boston, MA (1990. 



FE. Agre/Artificial Inielligence 72 (1995) I-52 51 

1331 S. Hanks and D. McDermott, Modeling a dynamic and uncertain world I: Symbolic and probabilistic 
reasoning about change, Artif: Intell. 66 ( I ) ( 1994) l-55. 

1341 C. Hardyment, From Mangle lo Microwave: The Mechanization of Household Work (Polity Press, 

Oxford, England, 1988). 

135 J D. Harel, Statecharts: A visual formalism for complex systems, Sci. Cornput. Program. 8 (3) (1987) 
23 l-274. 

[ 36 j D. Harel, On visual formalisms, Commun. ACM 31 (5) ( 1988) 514-530. 

(37 J H. Haste, Growing into rules, in: J. Bruner and H. Haste, eds., Making Sense: The Child’s Construction 
of the World (Methuen, London, 1987). 

1381 PJ. Hayes, In defense of logic, in: Proceedings IJCAI-77, Cambridge, MA (1977) 559-565. 

[ 391 M. Heidegger, Being and Time, translated by J. Macquanie and E. Robinson (Harper and Row, New 

York, 1961). Originally published in German in 1927. 
140) J. Hendler, ed., Planning in uncertain, unpredictable, or changing environments, proceedings of the 

AAAl symposium at Stanford, University of Maryland Systems Research Center Repott SRC TR 90-45 

(1990). 

] 4l] G.E. Hinton and D.S. Touretzky, Symbols among the neurons: details of a connectionist inference 

architecture, in: Proceedings IJCAI-85, Los Angeles, CA ( 1985) 238-243. 

I42 1 H.A. Kautz and E.P.D. Pednault, Planning and plan recognition, AT & T Tech. J. 67 ( I ) ( 1988) 25-4 I. 

[43] D. Kirsh, Today the earwig, tomorrow man?, Artif. fntell. 47 (l-3) (1991) 161-184. 

[ 441 C.A. Knoblock, Automatically generating abstractions for planning, Artif Intell. 68 (2) ( 1994) 243-302. 
[45] N. Kushmerick, S. Hanks and D.S. Weld, An algorithm for probabilistic least-commitment planning, in: 

Proceedings AAAI-94, Seattle, WA ( 1994). 

[ 46 ] C.G. Langton, ed., Artificial Life II: Proceedings of the Workshop on the Arnficial L$e, Santa Fe, NM 

(1990). 
I47 1 AL. Lansky and D.S. Fogelsong, Localized representations and planning methods for parallel domains. 

in: Proceedings AAAI-87, Seattle, WA ( 1987) 240-245. 

] 48 ] J.H. Larkin, Display-based problem solving, in: D. Klahr and K. Kotovsky, eds., Corrz@~ Infinmation 
Processing: The lmpacr of Herbert A. Simon (Erlbaum, Hillsdale, NJ, 1989). 

[ 491 K.S. Lashley, The problem of serial order in behavior, in: L.A. Jeffress, ed., Cerebral Mec~harrisrrr in 

Behavior: The Hixon Symposium (Wiley, New York, 195 1). 

[SO] B. Latour, Visualization and cognition: Thinking with eyes and hands, Know/edge and Sociery: Studies 
in the Sociology of Culture Pasr and Present 6 ( 1986) I-40. 

[ 5 I 1 J. Lave, Cognirion in Practice: Mind, Mathematics, and Culture in Everyday Lge (Cambridge University 

Press, Cambridge, England, 1988). 

1521 D. Man; &ion (Freeman, San Francisco, CA, 1982). 

1531 M.T. Mason, Mechanics and planning of manipulator pushing operations, Inr. J. Rob. Res. 5 (3) ( 1986) 

53-71. 

[ 541 H.R. Maturana and F.J. Varela, The Tree of Knowledge: The Biological Roots of Human Understanding 
(New Science Library. Boston, MA, 1987). 

1551 D. McAllester and D. Rosenblitt, Systematic nonlinear planning, in: Proceedings AAAI-9I, Anaheim, 

CA (1991) 634-639. 

1561 

I571 

I581 

1591 

1601 

161 I 

I621 

M. Merleau-Ponty, PhenomenologyofPerceprion. translated from the French by Colin Smith (Humanities 

Press, New York, 1962). 

G.A. Miller, E. Galanter and K.H. Pribmm, Plans and the Sfructure of Behavior (Holt, New York, 
1960). 

A. Newell, Unified Theories of Cognition (Harvard University Press, Cambridge, MA, 1990). 

A. Newell and H.A. Simon, GPS: A program that simulates human thought, in: E.A. Feigenbaum and 

J. Feldman, eds., Computers and Thought (McGraw-Hill, New York, 1963) 279-296. 

D. Newman, P Griffin and M. Cole, The Construction Zone: Working for Cognitive Change in School 
(Cambridge University Press, Cambridge, England, 1989). 

S.B. Ortner, Theory in anthropology since the sixties, Comparative Studies in Society and History 26 

(1) (1984) 126-166. 
D.W. Payton, J.K. Rosenblatt and D.M. Keirsey, Plan guided reaction, IEEE Trans. Syst. Man Cybern. 
20 (6) (1990) 1370-1382. 



52 PE. Agre/ArfiJcial Intelligence 72 (1995) I-52 

[ 63 ] .I. Piaget, The Construcrion of Reality in the Child, translated by Margaret Cook (Basic Books, New 

York, 1954). 
[64] M.E. Pollack, The uses of plans, Arfif. Intell. 57 ( 1) ( 1992) 43-68. 

165 1 Z.W. Pylyshyn, ed., The Robot’s Dilemma The Frame Problem in Artificial InieBigence (Ablex, 

Norwood, NJ, 1987). 
[ 661 M.R. Quillian, Semantic memory, in: M. Minsky, ed., Semantic Information Processing (MIT Press, 

Cambridge, MA, 1968). 
1671 M.H. Raibert. Running with symmetry, Inr. J. Rob. Rex 5 (4) (1986) 3-19. 
[ 68 1 S.J. Rosenschein and Leslie Pack Kaelbling, The synthesis of digital machines with provable epistemic 

properties, in: J. Halpem, ed., Proceedings Conference on Theoretical Aspects of Reasoning About 

Knowledge, Monterey, CA ( 1986). 
169 1 E.D. Sacerdoti, Planning in a hierarchy of abstraction spaces, Art$ Infell. 5 (2) ( 1974) 115-135. 

1701 M. &hoppers, Universal plans for reactive robots in unpredictable environments, in: Proceedings IJCAI- 

87, Milan, Italy (1987) 1039-1046. 
[ 7 1 1 H.A. Simon, Administrative Behavior: A Study of Decision-Making Processes in Administrative 

Organization (Macmillan, New York, 2nd ed., 1957). 

[ 721 L.A. Suchman, Plans and Situated Actions: The Problem of Human-Machine Communication 

(Cambridge University Press, Cambridge, England, 1987). 

1731 J.A. Toth, Review of Kenneth Ford and Patrick Hayes, eds., Reasoning Agents in a Dynamic World: The 
Frame Problem Artif Intel/.. 73 ( 1995), to appear. 

[ 741 F.J. Varela and P. Bourgine, eds., Toward a Practice of Autonomous Systems: Proceedings of the First 
European Conference on Artificial Life (MIT Press, Cambridge, MA, 1992). 

175) F.J. Varela, E. Thompson and E. Rosch, The Embodied Mind: Cognifive Science and Human Experience 
(MIT Press, Cambridge, MA, 1991). 

1761 L.S. Vygotsky, Mind in Sociefy: The Development of Higher Psychological Processes, M. Cole, V. John- 

Steiner, S. Scribner and E. Souberman, eds. (Harvard University Press, Cambridge, MA, 1978). 

Originally published in Russian in 1934. 
1771 D.S. Weld, Reasoning about model accuracy, Artif In/ell. 56 (2) ( 1992) 255-300. 

[ 781 D.E. Whitney, Historical perspective and state of the art in robot force control, Inf. J. Rob. Res. 6 ( 1) 

(1987) 3-14. 
[ 791 W.A. Woods, What’s in a link?, in: D.G. Bobrow and A. Collins, eds., Represenfation and CInderstanding: 

Studies in Cognirive Science (New York, Academic Press, 1975). 
[ 80 1 J. Yates, Confrol through Communication: The Rise of System in American Management (Johns Hopkins 

University Press, Baltimore, MD, 1989). 


