
Artificial Intelligence 72 (1995) 139- 171

Artificial
Intelligence

Learning dynamics: system identification for
perceptually challenged agents

Kenneth Basye ‘,*, Thomas Dean b*i, Leslie Pack Kaelbling b*2
a Department of Mathematics and Computer Science, Clark Universiiy 950 Main Street, Worcester,

MA 01610, USA
’ Department of Computer Science. Box 1910, Brown University, Providence, RI 02912-1910, USA

Received September 1992; revised March 1993

Abstract

From the perspective of an agent, the input/output behavior of the environment in which it is
embedded can be described as a dynamical system. Inputs correspond to the actions executable
by the agent in making transitions between states of the environment. Outputs correspond to the
perceptual information available to the agent in particular states of the environment. We view
dynamical system identification as inference of deterministic finite-state automata from sequences
of input/output pairs. The agent can influence the sequence of input/output pairs it is presented
by pursuing a strategy for exploring the environment. We identify two sorts of perceptual errors:
errors in perceiving the output of a state and errors in perceiving the inputs actually carried out
in making a transition from one state to another. We present efficient, high-probability learning
algorithms for a number of system identification problems involving such errors. We also present
the results of empirical investigations applying these algorithms to learning spatial representations.

1. Introduction

System identification refers to inferring a model of the dynamics governing an agent’s
interaction with its environment. For instance, we might wish to infer a model of how

* Corresponding author. E-mail: kbasye@gamma.clarku.edu.
’ This work was supported in part by a National Science Foundation Presidential Young Investigator Award

IRI-8957601, by the Air Force and the Advanced Research Projects Agency of the Department of Defense
under Contract No. E30602-91-C-0041, and by the National Science foundation in conjunction with the
Advanced Research Projects Agency of the Department of Defense under Contract No. IRI-8905436.

2 This work was supported in part by a National Science Foundation National Young Investigator Award.

0004-3702/95/$09.50 @ 1995 Elsevier Science B.V. All rights reserved
SSDl0004-3702(94)00023-T

140 K. Btrsy YI d./Arrijkkr/ Inrrllipxce 72 (1995) 139-I 71

fluctuations in the output of a parts supplier affect production for a factory or how an
assembly robot interacts with the other devices in its work cell.

The inferred model might correspond to a system of differential equations, a set of

production rules, or a set of states and transition probabilities for a stochastic process.
The model is useful insofar as it enables the agent to predict consequences of performing

actions in its environment. Such predictions might be used in planning, spatial inference,
or diagnostic reasoning.

System identification has been studied in a variety of disciplines including control
theory, neural networks, and automata theory. We focus on learning representations of
environments that can be characterized as deterministic finite-state automata. There is
a large literature even on this restricted problem, a portion of which is summarized in
this paper. Our results address the effects of uncertainty on computational complexity.
Our objective is to produce learning algorithms that infer accurate models with high
probability in polynomial time when faced with noise in observing the inputs and

outputs that determine the agent’s interaction with its environment.

We are interested in how agents interact with their environments and, in particular, how
uncertainty in observation complicates such interactions. We have chosen to focus on
system identification as it appears to be critical in facilitating a wide range of interactions.
It is clear that system identification is a means and not an end; however, we believe
that studying system identification in isolation provides insight into many problems in
which such identification plays a supporting role. Our basic findings are that uncertainty

in observation is annoying and requires somewhat more bookkeeping but asymptotically
it is not that hard to cope with. However, learning is hopeless in environments lacking
any structure. Useful structure in the form of reasonably distributed landmarks or short

sequences of distinctive features makes learning relatively easy.
It is certainly possible to function adequately even optimally without the use of a

model. There are environments, however, in which having some sort of a model can

help enormously. Perhaps, the clearest example of the utility of a model is in learning
maps of large-scale space to support path planning. A dynamical model can also speed
up learning plans [221 by allowing an agent to simulate its actions and the environment’s
reactions. Clearly there are tradeoffs involved in learning dynamical models; exactly what
is worth learning will depend on the tasks of the agent. Again, we avoid addressing
those tradeoffs in this paper (but see [9]) in order to focus on basic issues in how
uncertainty in observation affects learning.

2. Modeling dynamical systems with automata

We model dynamical systems as deterministic finite-state automata (DFAs). Fig. 1
shows the state-transition graph for a DFA in which the inputs to the DFA are the
agent’s actions and the outputs from the DFA are the agent’s perceptual inputs. We are
interested in learning the discernible structure of real environments, where discernible
is defined in terms of the agent’s perceptual capabilities. Discernability does not require
that, from the information available in a state, the agent can uniquely identify that state,
but rather that there exists some sequence of actions and observations that can be used

K. Basye et al./Art$cial intelligence 72 (1995) 139-171 141

x

CJ :I:i. 1 0

x Y Y X

0 1
X

Fig. 1. An agent interacting with its environment.

by the agent to distinguish any two states.
For instance, the states of an automaton might correspond to the agent being in one

of many locations in an office building, in which locations correspond to junctions
where hallways meet. In this case, the observed outputs might correspond to the number
of hallways incident on a junction, and the inputs to actions for traversing incident
hallways. As another example, consider learning the structure of a voice-mail system.
Here the states might correspond to various menus and services, actions to keys pressed

by the user, and outputs to the announcements made at each state.
The DFA need not represent the whole of the agent’s interaction with its environment;

separate models could be used for different aspects of the interaction. We assume the
state space has been reduced to a manageable size by careful choice of perception and

action primitives. Actions are encapsulated abstract behaviors that serve to limit the
agent’s options for response in a given state. The set of possible observations is kept
small through the use of perceptual apparatus that act as filters, thereby introducing
equivalence relations on perceptual experiences.

Historically, AI researchers have kept the state space implicit, specifying only a set
of state variables or fluents. In our view, the agent’s observations need not correspond
to observations of state variables and, even if this is desirable, the set of states of the
automaton need not correspond to the cross product of the sets of values for all the state
variables. We see the world as consisting of a relatively small number of perceptually
distinguishable states. We admit that determining such state-space-reducing perception
and action primitives requires a great deal of insight into the problem, and we offer no
general advice on how to obtain such primitives. We claim, however, that without such

primitives, learning will be very difficult.
Even in the deterministic case, uncertainty arises due to the fact that the observa-

tions available in a state do not uniquely determine that state. In this paper, we are
particularly interested in stochastic sources of uncertainty. We allow there to be a noise
process that occasionally results in the agent observing something other than the true
output at a state or realizing one action while attempting to execute some other action.
Fig. 2 illustrates both sorts of errors. Our polynomial-time performance results apply
for quite extreme forms of uncertainty, but predict fairly poor performance in relatively

142 K. Basye et al. /Artificial Intelligence 72 (1995) 139-171

Fig. 2. Noisy observations of inputs and outputs.

benign environments. Our empirical investigations, however, indicate that our algorithms
perform much better than our current theoretical bounds predict for benign environments
of the sort we expect robots to encounter in the real world.

3. Formal model

In order to model system identification as inferring the structure of finite-state au-

tomata, we now introduce an extension of the familiar definition of finite-state automata.
Recall that there are two varieties of finite-state automaton; in both versions, output

follows some action, and the state reached by the action depends on the action taken
and the previous state. In the Moore model, output depends only on the state reached by
the action, whereas, in the Mealy model, output depends on both the previous state and

the action taken. Alternatively, one may think of the Mealy model as having outputs that
depend on the current state and the previous action. In terms of system identification,
which model is appropriate depends on the nature of the agent’s sensing systems and
in particular on whether sensations depend in some way on the previous action. We use
Moore automata for our model, which implies that our sensations for a given state are
the same regardless of how we got to that state.

In this model, we explicitly distinguish between the actual states and actions of the
automaton and the agent’s possibly erroneous view of them. Thus, in any given true state
of the environment, the agent observes a label, which may or may not be an accurate
reflection of the state.’ Similarly, an agent generates commands to the environment;
these commands have a nominal correspondence to real actions, but the corresponding
action is not always taken.

s It would be more technically correct to define an output alphabet for the automaton, give a function mapping

states to outputs, then describe how the outputs generate observable labels that are sometimes not correct. For

simplicity in the following treatment, we have chosen to collapse these processes into one, giving an account

of how states give rise directly to possibly erroneous labels.

K. Basye et al./Art$cial Intelligence 72 (1995) 139-l 71 143

In order to make use of probabilistic functions as a means of modelling uncertainly,
we introduce the following notation: for any finite set S, let

flf:s+ [OJl,~f(s)=l
s

the set of probability density functions (PDFs) over S.
The structure of the agent’s environment and its interaction with that environment is

specified by the tuple E = (Q, B, L, C, 6, q5, +k), where
l Q is a finite nonempty set of states,

l B is a finite nonempty set of basic actions,
l L is a finite nonempty set of observable labels,
l C is a finite nonempty set of executable commands,

l 6 : Q x B -+ Q, is the state transition function,

l 4 is the probabilistic observation function, 4 : Q --f FL, mapping each state into a
distribution over possible observed labels, and

l @ is the probabilistic action function, $: C --+ FB, mapping each executable

command into a distribution over possible actions.
We write IZ for /Ql. We write A = B* for the set of all finite sequences of basic

actions from B. We extend the state transition function 6 to such sequences in the usual

way by defining 6(q, A) = q, and S(q, ab) = 6(6(q, a), 6) for all q E Q, a E A, and
b E B, where A is the empty sequence. We write qa as shorthand for 6(q, a), the state

resulting from execution of sequence a from state q.
We assume that every action may be executed in every state, so the function 6 induces

a set E of labelled edges (41, b, q2) for every 41, q2 E Q and b E B. An automaton is
strongly connected if for any two states 41, q2 E Q, there is some sequence a E A such

that qla = q2.
We write q(a) to denote the sequence of outputs of length /al + 1 resulting from

executing the sequence a starting in state q, beginning with the output at state q. For

example, if a = bobI b2 . . . b,, then q(a) = (~(q),~(qbo),~(qbobl),. . .,$(qa)).
Q, B, and 6 specify the system itself apart from any agent. Note that the state transition

function is deterministic; we are concerned with worlds or systems that have a fixed
structure. The remaining elements represent the agent’s ability to observe and act in its
environment. When the agent reaches some state q E Q, it observes a label drawn from
the distribution d(q) . Similarly, when it is in state q and attempts to perform command
c, it performs an action drawn from the distribution $(c).

We assume that there is some “correct” observation at each state, and some “correct”
action for each command. It is therefore useful to distinguish between a “correct” action
or observation function and a “noisy” version of that function. We write d* (+*) for
a deterministic action (observation) function, which may be thought of as mapping
each state (command) to a PDF in which some element has probability 1. Clearly,
our inference procedures will have wider applicability if they require few assumptions
about the stochastic functions governing observation and action. However, we certainly
cannot expect to be able to learn in the presence of arbitrarily malicious noise. Instead,
we exclude such situations by assuming that observation and action functions behave

144 K. Busye et ul./ArtiJicinl intelligence 72 (1995) 139-I 71

correctly with probability above some threshold value and that the distributions governing
the errors made in the remaining cases are stationary (that is, they do not change during

the lifetime of the agent). In some cases, it is also necessary to impose additional
restrictions on the error distribution; these will be made explicit where they are required.

When each state has a different output under the correct observation function, we say
that the observation function is unique. While not all environments present agents with

unique observations, we shall see that unique observation functions provide additional
structure that allows agents to infer automata in the presence of stochastic forms of

uncertainty. Even in environments without unique observation functions, it may be the

case that some states have unique outputs. We refer to such states as landmarks. In order
to make use of landmarks the agent must not only be able to make a unique observation,
it must also be capable of determining that the observation made is unique, that is, be
capable of recognizing landmarks as landmarks.

When there are no landmarks, it becomes necessary to distinguish states by con-
sidering the outputs of sequences of states. In the following discussion, sequences of

outputs are understood to arise from deterministic observations, that is, from the obser-
vation function c$*. A sequence u E A is said to distinguish q1 and q2 if and only if

qt(a) + 92(a). Th e notion of distinguishability is extended to automata in the following
way: Mt and M2 are distinguishable if there is a state q of Mt (or MT) and some

action sequence a such that for all states q’ of M2 (or Ml), q(a) # q’(u). An automa-
ton is said to be reduced if, for all pairs of states q1 # q2 E Q, there exists an action
sequence that distinguishes them. The class of automata indistinguishable from a given

strongly-connected automaton M has a unique (up to isomorphism) reduced member
that is also strongly connected [161; this automaton has the minimum number of states.
We consistently assume that the environments we are attempting to learn are reduced,
since there would be no experiment we could perform that would tell us otherwise.
Note that this requirement does not mean there is one sequence that distinguishes all

pairs of states. However, if there is a single sequence a E A that distinguishes all non-
identical pairs of states, then a is called a distinguishing sequence for M. More precisely,
a E A is a distinguishing sequence if, for all q1 ,q2 E Q, ql(a) = 92(a) H q1 = q2.
The outputs resulting from the execution of a distinguishing sequence provide a unique

signature for each state in an automaton, but note that the signature for a given state
can only be determined by leaving the state, thus providing a way of knowing where
you were when you began executing the sequence. A homing sequence is a sequence
that provides a unique signature for the state reached at the end of its execution. More

precisely, a sequence a E A is a homing sequence for M if and only if for all 41, q2 E Q,
ql (u) = q2 (a) + qla = qza. Every distinguishing sequence is also a homing sequence,
because knowing where you were when you started executing the distinguishing se-
quence (which is the result of having executed the sequence) implies that you also
know where you are at the end of the sequence. Both distinguishing and homing se-
quences may be either preset or adaptive [111. An adaptive sequence is one in which
the next action in the sequence is determined by the previous outputs, thus it is really
a tree of actions whose branches correspond to possible outputs. A preset sequence is
fixed, and is executed “blindly,” without regard for the outputs along the way.

The usual definition for finite-state automata includes a start state, where the machine

K. Basye et al./Art@cial Intelligence 72 (1995) 139-171 145

is assumed to be prior to any actions. Some systems may have this feature, and if the
agent has the ability to return to this state at will, we say that it has a reset. For many

environments, however, the assumption of a reset is not realistic.

4. Theoretical results for the purely deterministic case

The main results of this paper are methods for learning automata in the presence
of stochastic input and observation functions. In order to put those results in context,

in this section we review some important previous results concerning the inference of
automata in the purely deterministic case.

Some writers have made a distinction between inferring an automaton that behaves
identically to the observed automaton and inferring an automaton that is isomorphic

to the observed automaton. For any sequence of input/output data, there is a trivial
automaton that agrees with the data that is constructed by building a chain of states as
long as the data. If multiple sequences are allowed, this construction can build a tree
with the start state as the root. For this reason, research has concentrated on finding the

smallest automaton (in terms of]Ql > that agrees with a given set of data. Moore [161
showed that if the input/output pairs are assumed to have come from a reduced, strongly

connected automaton, then inference of the smallest consistent automaton yields a result
that is isomorphic to the original automaton. Thus, in this case, behaviorally correct
inference and isomorphic inference are the same.

Gold [121 provides a method for inferring automata in the limit from their in-
put/output behavior. The algorithm samples the automaton by generating inputs and
recording the resulting outputs and periodically produces a description of the automa-
ton. Inference in the limit means that the sequence of descriptions produced by the
algorithm is guaranteed to converge on the description of the correct automaton eventu-
ally, but in this case there is no way to detect that this has happened. Gold’s algorithm
relies on the learner having the ability to reset the automaton to the initial state at any

time.
The general problem of inferring the smallest automaton consistent with a given

set of input/output pairs is NP-complete [1,131. Indeed, even finding an automaton
polynomially close to the smallest is intractable assuming P # NP [171.

Angluin [21, building on the work of Gold, provides a polynomial-time algorithm
for inferring the smallest automaton given the ability to reset the automaton and a
source of counterexamples. In this model, at any point, the algorithm can hypothesize

an automaton and the source of counterexamples indicates whether it is correct and, if
it is not, provides a sequence of inputs on which the hypothesized and actual automata

generate different outputs.
Rivest and Schapire [191 show how to make use of a homing sequence as a substitute

for a reset and how to dispense with both the reset and the source of counterexamples
in the case in which a distinguishing sequence is either provided or can be learned in
polynomial time [18,201.

Several researchers have approached learning finite-state systems using neural net-
works. For example, Servan-Schreiber et al. [211 used a recurrent network to learn

146 K. Busye et trl. /Artijkiul Intelligence 72 (I 995) 139-I 71

finite-state grammars, and Bachrach [31 used a neural net to implement one of the
Rivest and Schapire algorithms mentioned above. This work has not stressed perfor-
mance issues, nor has the issue of noise in inputs or outputs been considered.

5. Theoretical results for the stochastic case

In this section we provide polynomial-time algorithms for automata identification in

three different stochastic settings. In the first, we assume that there is no error in the
agent’s actions, but allow error in its observations of outputs. In the second, we assume
that observations of special landmark states are unique and perfect, but allow error in
the action function. In the final case, we allow error in both the observations and actions

of the agent, but impose the restriction that every state’s nominal label be unique.

5.1. Deterministic actions and stochastic observations

In this section, we consider a situation in which there may be no uniquely labelled

states. We show that by relying on a correct action function and knowledge of a distin-
guishing sequence, automata with non-unique observation functions can be learned even

when the output function is noisy.4

X1.1. Structural and interaction properties

Structurally, the requirements for this algorithm are quite weak: we require only that
the automaton to be learned be strongly connected. We thus avoid the possibility that
the agent becomes trapped in some part of the environment from which it cannot reach

other parts. We also assume that the agent knows some upper bound on the number of
states in the environment.

With regard to interactions, we assume that the agent moves deterministically, that is,

that execution of actions is perfect. Observations, however, are assumed to be noisy, with
the restrictions that the correct observation is made with probability greater than i and
that observations are independent events. Finally, we assume that the learner is provided
with a preset distinguishing sequence for the environment. For many man-made and
natural environments it is straightforward to determine a distinguishing sequence. For
example, in most office environments, a short sequence of turns will serve to distinguish
all junctions in the environment.

5.1.2. Algorithms

The algorithm we present here uses as a subroutine a procedure that moves the agent
in the environment, collecting statistics on the labels it observes. The procedure provides
as output a signature for the state reached at the end of the movement. Recall that a
homing sequence is one for which the output uniquely determines the state reached
at the end of the sequence and a distinguishing sequence is one for which the output

‘The work described in this section was carried out jointly with Dana Angluin and Sean Engelson, and is

described in more detail in [7 I

K. Basye et al./Artificial Intelligence 72 (199.5) 139-I 71 147

uniquely determines the state from which the sequence was begun. In an environment
with stochastic observations, homing sequences cannot be used because their signatures
will not, in general, be observed correctly. This algorithm makes use of a procedure,

called LOCALIZE, that, given a distinguishing sequence, achieves the effect of having
a probably correct homing sequence. That is, it terminates with the automaton in a

state and returns a signature for that state that is probably correct. The procedure is
parameterized in such a way that it can be run longer in order to guarantee correctness
with a higher probability.

We begin by explaining the LOCAL= procedure, and then show how it can be used
to learn environments with the properties discussed above.

The localization procedure works by exploiting the fact that movement is deterministic.

The basic idea is to execute the given distinguishing sequence repeatedly until the agent
is certain to be in a cycle, then execute it some number of times after that and collect

the output. By finding the period of the cycle of locations, we can separate the observed
outputs and use them as statistics on the outputs observed at each state. These statistics

can then be used to determine (with high probability) the correct outputs at each state
in the cycle, and hence to localize the agent by supplying the signature that would be

returned by the distinguishing sequence in the deterministic case for the state the agent
is in.

In order to determine the period of repetition of the walk with high probability, we

keep statistics for alternative hypotheses for the period of the cycle. After the walk,
these statistics are analyzed to determine with high probability the period of the cycle.

For an environment E with states Q = (41, q2, . . . , qn}, let m be the given upper
bound on IQ/. The set of outputs is L = {Eo, II,. . . , Zk}. Let Pji denote the probability
of observing symbol Zj given that the agent is in state qi. Let P denote a lower bound
on all the Tii for i # j.

Let s = blb2. . . blsl be a preset distinguishing sequence for & consisting of one or

more actions. For any integer i > 0, let si represent the sequence s repeated i times.
Let q(i) be the state reached after executing the sequence Pfi. The first m repetitions
are sufficient to guarantee that the agent is in a cycle. Thus, the sequence of states

4(O),q(l),qC9,. . . is periodic. Let p denote the least period of the cycle; this is the
value we wish to find.

As we execute the second part of the walk (after the 3”’ prefix), we keep track of our
position in the sequence, and keep statistics separately for each position. For each offset
e=o,..., IsI - 1, let d(i) be the state reached from q(i) by executing the first e actions
of s, that is, q(i)bl b2. . . be. For each e, the sequence &,d, q$, . . . is also periodic of
period p.

For each C, consider the sequence of (correct) outputs from the states d(i):

& = d*(q’(i)).

The output sequence

4&&P”, ,....

is also periodic, of some least period me dividing p. Since outputs are not necessarily
unique, we may have p > pt. However, because s is a distinguishing sequence, p will

148 K. Basye et al./Amjzcial Intelligence 72 (1995) 139-I 71

Table I
Sequences of visited states for QT = 4

Step # States visited

be the least common multiple (LCM) of all the pc’s. Thus, it would suffice to find each
of the values PJJ, and take their LCM. In fact, what we will do is to find (with high
probability) values qe such that p& divides qt and qe divides p, so that the LCM of the

q& is also p. We describe the procedure for the sequence qo, qi, 42,. . ; it is analogous
for the others.

Consider any candidate period rr 6 m, and let g = gcd(p, z-). For each 0 < i < T- 1,
consider the sequence of states visited every rr repetitions of s, starting with m + i
repetitions of s. This will be the sequence of states

Since q(i) is periodic of period p, this sequence visits each state of the set {q(i + kg) :
k = O,l,...,p/g- I} in some order, and then continues to repeat this cycle of p/g

states.
Table 1 shows an example with p = 6, rr = 4,g = 2. In this case, row r gives the

indices of the states visited by repeating s, starting from q(r), assuming that the cycle

of states visited by repeating s is qo, 91,. , qs.

In the special case 7r = p, shown in Table 2, each row r will consist exclusively of
visits to state q,.. It is this case that we wish to distinguish from the others.

We cannot observe the states themselves, but we can observe the labels at each state
the agent visits. The algorithm will repeat the distinguishing sequence s a total of JV
times, with N chosen to ensure that, with high probability, our observed frequencies are
close to the probabilities of the sampled distribution. For each candidate period r 6 m,

we form a table with r rows, numbered 0 to r- 1, and k columns, one for each possible
label ri. During the second part of the walk, we increment the table in row r, column j
each time we observe label l,,.

After the second part of the walk, we compute the frequency of each entry (label)
relative to the other entries in the same row. Let p = (P - i), the separation between

the lower bound on correct observation and 4. We use the value i + $p as a threshold.
When every row in the table for some r has a value that is above the threshold, the
table is said to be plausible. For each plausible table, we take the sequence of rr outputs
determined by the largest value in each of the r rows and find the minimum period r’
of the sequence. We find the LCM of all IT’; this is our candidate for p.

We now present the procedure in a precise manner.

Procedure Localize.
(1) For simplicity, we assume that all the possible outputs are known and correspond

to the integers 1,. , k. Build a table T(r, t, Y, j) of size m x 1st x m x k. Initialize

K. Basye et al./Art@cial Intelligence 72 (1995) 139-I7I

Table 2

Sequences of visited states for * = 6

149

Step # States visited

(2)

(3)

(4)

(5)

(6)

(7)
(8)

0 0 0 0 0 0 0

1 I 1 I 1 1 1 ..,

2 2 2 2 2 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4

5 5 5 s 5 5 5

all the table entries to zero. 5
Execute the sequence s“’ to ensure that the agent is in a closed walk that it will
continually traverse for as long as it continues to execute S. 6
Initialize the sequence counter R c 0 and the step counter c c 0.
Execute s at least N times, incrementing R after each time. After executing each
individual step, do the following:

(a) Let C = c mod IsI, and j be the label observed immediately following exe-
cution.

(b) Foreachn.=1,2,... , m - 1, increment the table entry T(G-, e, R mod 7rTT, j)
by 1.

(c) Increment the step counter: c t- c + 1.
Let

Initialize the period list C c {-}. For each 7r and each f!, consider the two-
dimensional table F(T, e, ., .). If, for each r < 7r, row r in this table contains

an element larger than i + isep, build the sequence of outputs of length n- by
taking the outputs corresponding to the large elements, at-g maxj F(q, f?, r, j) for

r=O,l,... , n- - 1. Find the period of this sequence and add it to L.

Let ZS7 be the LCM of all 7r’ E L.
Conclude that the agent is currently located at the last state before row r =
R mod 17 in the three-dimensional table F(I7, ., ., .), and return, as the hypoth-
esis for the correct outputs of the distinguishing sequence s from this state, the

sequence of outputs argmaxj F(nJ, r, j) for e = 0, 1, . . . , IsI - 1 concatenated
after the single output arg maxj F(IZ, 1 SI - 1, (r - 1) mod ZI, j) .

Table 3 shows the tables that resulted from a run of LOCALIZE in the environment
shown in Fig. 3. The distinguishing sequence given to the procedure was (bb). Recall
that T is the conjectured period length (number of executions of s), I is an index into
the sequence S, r is an index into the cycle of length r, and j is the observed label. We
can see that the tables for r = 2 and 7~ = 4 are all plausible. When r = 2 and C = 0,

5 If the labels are not known, then the table can be constructed incrementally, adding new labels as they are

observed.
6 Following Step 2, the next action should be the first action in s.

IS0 K. Btrsye rf (11. /Rrtijkicil lnrellijiencr 72 (I 99.5) 139-I 71

alb

Fig. 3. A simple environment with I short distinguishing sequence

Table 3

Tables built by LOCALIZE for the environment of Fig. 3

7r= I 7r=2 ??=3 ?r=4

j = 0 j=l j=O j=l j=O j= I j=O j=l

I = 0 26(0.52) 24(0.48)
0 0
0 0

0 0
I = I 44(0.8X) 6(0.12)

0 0
0 0
0 0

21(0.84) 4(0.16)
S(O.2) 20(0.8)
0 0

0 0
21(0.84) 4(0.16)
23(0.92) 2(0.08)
0 0
0 0

7(0.412) 10(0.588)

10(0.588) 7(0.412)
9(0..562) 7(0.438)
0 0
lS(0.882) 2(0.118)

16(0.942) l(O.0588)
13(0.812) 3(0.188)
0 0

ll(O.846) 2(0.154)
2(0.514) ll(O.846)
lO(O.833) 2(O.I67)
3(0.25) 9(0.75)
13(l) 0
12(0.923) l(O.0769)
S(O.667) 4(0.333)
ll(O.917) l(O.0833)

we have the sequence 01, which has period 2; for r = 2 and ! = 1, the period is 1; for
r = 4 and e = 0 the period is 2; and for n- = 4 and e = 1, the period is 1. The LCM of
this set of periods is 2, so Ilr = 2. In the example, the agent starts in qo, and so finishes
either in qo (R is even) or in q2 (R is odd). In the first case r = 0 and the signature
returned by the algorithm is that of qo: (000). In the other case I = 1 and the signature
is (010).

5.1.3. Analysis
A formal proof of the correctness of the algorithm and a proof of the complexity in

terms of the number of steps appears in a paper by Dean et al. [81. We cite the final
result concerning this complexity, and refer the reader to the paper for a complete proof.

Theorem 1. In order to provide a correct signature with probability 1 - E, LOCALIZE

must execute the distinguishing sequence s at least

8m2 2/sJkm3

m+ (2P- l)@ &

times. The number of steps taken is thus

K. Basye et al./Artifcial Intelligence 72 (1995) 139-171 151

Mm2
(P - $2

In

Recall that IsI is the length of the distinguishing sequence, m is an upper bound on the

number of states in the automaton, P > i is a lower bound on the probability of the
correct output from a state, k is the number of possible outputs, and E is a bound on
the probability that the procedure will fail.

The complete learning procedure which employs a distinguishing sequence s and
LOCALIZE as subroutine is relatively straightforward and hence only sketched here.
The detailed algorithm and proof of correctness is in [81. Suppose for a moment that
LOCALIZE always returns the agent to the same state and that the agent can always

determine when it is in a state that it has visited before. In this case, the agent can learn
the connectivity of the underlying automaton by performing what amounts to a depth-
first search through the automaton’s state transition graph. The agent does not actually

traverse the state-transition graph in depth-first fashion; it cannot manage a depth-first
search since, in general, it cannot backtrack. Instead, it executes sequences of actions
corresponding to paths through the state transition graph starting from the root of the
depth-first search tree by returning to the root each time using LOCALIZE. When, in the
course of the search, a state is recognized as having been visited before, an appropriate
arc is added to the inferred automaton and the search “backtracks” to the next path that

has not been completely explored.
The actual inference algorithm is more complicated because our localization procedure

does not necessarily always put the agent in the same final state and because we are not
able to immediately identify the states we encounter during the depth-first search. The

first problem is solved by performing many searches in parallel, one for each possible
(root) state that LOCALIZE ends up in. Whenever LOCALIZE is executed the agent

knows (with high probability) what state it has landed in and can take a step of the
depth-first search that has that state as the root node. The second problem is solved by
using a number of executions of the distinguishing sequence from a given starting state

to identify that state with high probability.
It can easily be shown that it is possible to learn an automaton with high probability

given a polynomial number of visits to a fixed starting state. LOCALIZE may not return
the agent to the same starting state every time, but in a polynomial number of times

executing LOCALIZE the agent will return to some state the required number of times.
Of course, the agent is never absolutely sure that it has returned to the same state, but the
agent can achieve any required probability of success in a number of steps polynomial
in the reciprocal of the probability and the other measures of problem size.

The requirement that a distinguishing sequence be provided seems unlikely to be
avoided in general. In particular, Dean et al. [8] show that learning such a sequence is
not possible in polynomial time for environments as general as those we are considering
here. Further, the results of Yannakakis and Lee [23] indicate that even computing
preset distinguishing sequences for general environments is hard, although they provide
an efficient way to compute adaptive distinguishing sequences. However, it is clear that
an adaptive sequence will not work in place of a preset one in the LOCALIZE procedure.

I.52 K. Bmye et al. /Artijiiciul Intelligence 72 (I 995) 139-I 71

The procedure relies on the ability to follow the sequence deterministically, so that it
is certain to be in the right states, even if it perceives incorrect outputs along the way.

With an adaptive sequence, correct movement would no longer be assured, since the
action to perform at any point would depend on the previous, possibly incorrect, output.

5.2. Stochastic actions and deterministic observations

A landmark environment is one in which certain states have unique labels that can be
detected as such. That is, not only are the labels unique, but one can think of the agent as
having a detector that allows it to determine whether or not an observed label is unique.

Although this seems to be a fairly strong condition, it is certainly something that people
are quite good at. Indeed, people select landmarks precisely because they are sure that
they present a unique aspect, and this surety comes without having examined all other

locations. For example, almost anyone would identify the Transamerica pyramid in San
Francisco as a good landmark, based on background knowledge of building styles that

assures them that it is unique in appearance. This ability amounts to having learned what
is unusual enough to count as a landmark; in this section we assume that agents have
this ability. The problem of how this ability is learned or programmed is an interesting

one, but is outside the scope of this work. ’

5.2.1. Structural and interaction properties

In addition to the landmark property, we assume that the environment to be learned is
reversible. This means that for every action that does not result in a self-transition, there
is another action that reverses the effect of the first. While the agent’s observation is

perfect, no restriction is made on the structure of the labelling other than the landmark
property. Thus, it is possible that all states that are not landmarks have the same label.
With regard to movement, we assume that the agent takes the intended action with
probability 13 > f , but allow any static distribution over actions that are in error. Finally,
we assume that the agent has perfect knowledge of the action that would reverse its last
action, that is, it knows perfectly from which way it arrived at its current location. We

call the latter requirement reverse movement certainty. We assume that the agent has
the ability to detect actions that will fail, that is, that will cause self-transitions. This
obviously implies that the agent will also know which actions will succeed, and how
many of these there are; we will sometimes refer to this as the degree of the state.

For convenience, we define D to be the subset of Q consisting of the landmark

states and I to be the subset of Q consisting of the non-landmark states. We define the
landmark distribution parameter, r, to be the maximum distance from any state in I to
the nearest landmark (if r = 0, then Z is empty and all states are landmarks). We say
that a procedure learns the local connectivity within radius r of some 4 E D if it can
provide the shortest path between 9 and any landmark within a radius r of 4. We say
that a procedure learns the global connectivity of an environment E within a constant

factor if, for any two states q1 and q2 in D, it can provide a path between q1 and q2

’ The work described in this section was carried out jointly with Jeff Vitter and is described in more detail

in 141.

K. Basye et al. /Art@icial Intelligence 72 (1995) 139-171 153

Fig. 4. A path found between landmarks A and D.

whose length is within a constant factor of the length of the shortest path between q1

and q2 in &. The path will be constructed from paths found between locally connected

landmarks (see Fig. 4).
Thus, we may summarize the agent’s capabilities as follows. The agent’s action

function is not perfect, but serves to move the agent in the intended direction more
than half the time. At each state, the agent knows what action to take to reverse the
last action taken, even if it was not the intended action. In addition, the agent knows
whether the state is a landmark, and if so, what its unique name is.

5.2.2. Algorithms

We begin by presenting a procedure that learns the local connectivity of an environ-
ment. We then show that the multiplicative error incurred in trying to answer global

path queries can be kept low if the local error can be kept low and that the transition

from a local uncertainty measure to a global uncertainty measure does not increase the
complexity by more than a polynomial factor. We conclude that it is possible to build a
procedure that directs exploration and map building so as to answer global path queries

that are accurate and within a small constant factor of optimal with high probability.
The procedure for learning local connectivity begins with a search of the environment

to locate all the landmarks. Once they have been found, the algorithm looks for short
(less than cr, where c > 2 is an integer) paths between landmarks. This process has

two phases: in the first, candidate paths are located, and in the second, these paths
are verified. The need for this two-stage process arises from the possibility that some
combination of movement errors could result in paths that appeared to connect two

landmarks, but that, in fact, did not. We show that by exploiting reverse certainty we
can statistically distinguish between the true paths and errors. By attempting enough
traversals, the procedure can ensure with high probability that the most frequently
occurring sets of directions corresponding to perceived traversals actually correspond to
paths in 1.

The learning algorithm can be broken down into three steps: a landmark identification
step in which the agent finds and identifies a set of landmarks, a candidate selection
step in which the agent finds a set of candidate paths in E connecting landmarks, and
a candidate filtering step in which the agent determines which of those candidate paths

correspond to actual paths in 1.
We now present the procedure for learning local connectivity.

Procedure Connect.
(I) (Landmark location) A uniform random walk is made in the environment and

landmarks encountered arc added to a list.
(2) For each landmark A in the list from step (I):

(a) For each sequence of directions of length cr, make multiple traversals of

the path defined by the sequence, starting from A, recording the intended
direction and reverse direction at each step. After each traversal, return to

A with a random walk. Add any path which reaches some other landmark
to the list of candidate paths.

(3) For each candidate path in the list from step (2), execute the path multiple

times, beginning at the landmark at the head of the list and comparing reverse

directions observed with those recorded for the path in step (2). Any failure in
these comparisons is a failed traversal. If the landmark is reached without failure,
the traversal is successful. if the landmark is not reached, return to the beginning
landmark with a random walk. For each path, maintain a count of successful
traversals.

(4) Return all paths from the list whose count from step (3) is above a threshold.

5.2.3. Analysis

We now state without proof (the detailed proof can be found in 161) a series of
lemmas leading up to the result that this algorithm is correct and has polynomial sample

complexity.

Lemma 2. For any FI > 0, the CONNECI‘ procedure learns the local connectivity

within cr qf each state in any lundmark environment with probability I - EI in time
polynomial in 1 /cl, 1 / (I - 28)) and the sire qf E, and exponential in cr.

Lemma 3. Let E be a landmark environment with distribution parameter r, and let c be

any integei; c > 2. Given a procedure that, ,for any ~1 > 0, learns the local connectivity

within cr of any landmark in & in time polJnomia1 in l/r, with probability I - ~1, it is

possible to learn the global connectivity of & with probability I - cR for any F~ > 0 in

time polynomial in I /F,~ and the size of the environment. Any global path returned as a

result will be at most c/ (c - 2) times the length of the optimal path.

Theorem 4. It is possible to learn the global connectivity of any landmark environment

with probability I - F in time polynomial in I/c, l/(I - 20), and the size of E, and
exponenfial in r.

Theorem 4 is a simple consequence of Lemmas 2 and 3. It has an immediate application
to the problem of learning the global connectivity of an environment where all the states
are landmarks. In this case, the parameter r = 0, and we need only explore paths of
length I in order to establish the global connectivity of the environment. Because each

K. Basye ef al./Art$cial Intelligence 72 (1995) 139-I 71 155

candidate path has length one, this process works even if there is no reverse certainty.

Corollary 5. It is possible to learn the connectivity of an environment E with only

distinguishable locations with probability 1 - E in time polynomial in 1 /E, l/l - 28,
and the size of G, even if there is reverse uncertainty.

The notion of global connectivity defined above does not require that the environment
be completely learned (i.e., to recover the structure of the entire environment). It is

assumed that the indistinguishable states are of interest only in so far as they provide
directions necessary to traverse a direct path between two landmarks. But it is easy
to imagine situations where the indistinguishable states and the paths between them

are of interest. For instance, the indistinguishable states might be partitioned further
into equivalence classes so that one could uniquely designate a state by specifying its

equivalence class and some radius from a particular global landmark (e.g., the bookstore
just across the street from the Chrysler building). In [5 J , we show how to modify the

above approach and try to completely learn the environment by first completely learning

local neighborhoods of each landmark.

5.3. Stochastic actions and observations

In this section, we consider the case in which there is error in both the agent’s actions
and observations. In order to provide an algorithm with polynomial sample complexity,
we are required to make restrictions on the environment. We present those restrictions,

then give the algorithm and sketch a proof of its correctness and complexity.

5.3.1. Structural and interaction properties

Recall that an environment is reversible if, whenever there is an action a leading from
41 to q2 and q1 Z q2, there is also a corresponding action from q2 to 91. Virtually
all navigational environments have this property. Even one-way streets normally have
corresponding parallel streets running in the opposite direction, providing an essentially
undirected environment. Here, we assume the environment is reversible, but make no

assumption that the agent knows the action that would reverse a given action.
The conductance of an environment is, informally, a measure of how many ways there

are to get from one part of the environment to another. If there are a lot of bottlenecks, it
is harder to learn the environment through random exploration. The algorithm presented

here will work on environments of any conductance, but the lower the conductance (the
more bottlenecks), the longer it will take.

We assume that the labelling of the environment is unique, so know that IQ1 < IL/
(the number of states is less than or equal to the number of labels) and for simplicity of
presentation we will assume that IQ] = IL1 and that for all i, label Ii is nominally correct
for state qi. Let Pi = q3(qi) (li) be the probability that the agent correctly observes label
li when it is in state qi. For i # j, let Pji = +(qi) (lj) be the probability that the agent
mistakenly observes label lj when it is in state qi. Finally, let P be a lower bound
on all probabilities of correct observation, Pi. It is intuitively apparent that the higher

1% K. Basw et 01. /ArtiJicicd Intelligenc~e 72 (1995) 139-I 71

the probability of correct observation is, the sooner the agent will be able to correctly
identify its underlying environment.

The relationship between commands and actions is analogous to that between labels
and states. We assume that IAl = ICI. Let 19; = +(c;) (a;) be the probability that the
agent correctly performs action a, when it executes command c;. Let 0 be a lower bound
on all the 8;. In addition, we assume that the action function fi is such that the agent

can choose commands in such a way as to choose actions uniformly, allowing the agent
to generate a random walk in the environment.

With regard to observation, we assume that the observation probabilities are rejlexive;
that is, for all i, j, P;i = P,. The agent is just as likely to mistake state qr for state q.i as

it is to mistake state 4; for state q;. As will be seen later, the point of this requirement
is to limit the frequency with which a given label can be seen in those states where the

observation is incorrect.

5.3.2. Algorithms

Given the restrictions from the previous section, the underlying structure of the envi-
ronment can be learned by a very simple algorithm. The result of the algorithm will be,
with high probability, an environment that is isomorphic to the original environment.

The algorithm uses a random strategy to explore the graph and records, for each pair
of labels, (l;, la). and each command, <Ji, the number of times that an observation of li
followed by performing c,~ resulted in an observation of lk. After enough exploration, a
graph can be extracted from these statistics. If lk is the most frequently observed label

after doing command ci when observing label 1,, then we assume that there is an edge
for action ai from state q, to state qk in the underlying graph.

More formally, the state-transition graph can be learned in the following way:

Algorithm CMFO (Choose Most Frequent Observation)

(1) For each command c E C, construct a two-dimensional table T, indexed in each
dimension by the labels in L.

(2) Initialize all of the entries of all tables to 0.
(3) Begin executing a uniform random walk in the environment. Whenever a transi-

tion is made from a state in which label 1; is observed to a state in which label

I,, is observed by using command c, increment the value of T,(1,) I,) .
(4) After n action steps, stop and return edge set E’ containing edge (qr, ah, qi) only

if T,,, (I;, li) > Tc,, (lj, lk) for all k not equal to j.

Fig. 5 shows the results of a sample run of this algorithm on a very simple graph. The
small tables specify the perception probabilities at each vertex; the large tables indicate,
for each action, the frequency of sequential label pairs. The underlying graph is encoded
by the largest element in each row of each table, which is in bold-face type.

5.3.3. Analysis

In this section we state specific conditions under which algorithm CMFO above suc-
ceeds and provide a bound on the number of observations the agent must make in order
to have a given confidence of identifying the entire graph correctly.

K. Basye et ul./Art@cial Intelligence 72 (1995) 139-171 157

Fig. 5. Results

(19 = 0.8).

of running the graph-identification algorithm in the simple environment shown for I ,000

In the following, we abuse notation slightly and let qi stand for the event of visiting
vertex qi, Zi for the event of perceiving label Zi, and so on; in addition, we let oqi stand
for the event of visiting qi as a result of executing some action and oli stand for the
event of perceiving li as a result of executing some action. The algorithm can be seen as
constructing estimates of the probabilities that a label Zj is seen after executing command

c, given that the label Zi was seen just prior; this probability is notated as Pr(oZj 1 Zi AC).
The observation probabilities depend on the details of the random walk being executed

by the agent. This will be addressed later in the proof.
An important quantity for bounding the necessary number of trials is the separation

of the probabilities Pr(0Z.j 1 Zi) and Pr(OZk 1 Zi), given that command c was executed. For
a particular i, j, and k, the separation is defined as si(j, k) = Pr(oZj / Zi) - h$ oZk 1 Zi) ; 8
for a given label i, si = si(j, k) where Zj is the “correct” successor Iabel to label Z; (that

is, that for action a corresponding to command c, 6(qi,a) = qj) and Zk is the most
likely incorrect successor label (that is, Zk is the label not equal to Z,i that maximizes
Pr(OZk 1 Zi)) ; a lower bound on all the si is written as s. If the value of s is high,
then we are much more likely to see “correct” transitions than to see “incorrect” ones.
For the CMFO algorithm to work correctly, we must guarantee that the separation is
always positive, so that no incorrect transition is more likely to be observed than the

corresponding correct one. The requirement that observation probabilities be reflexive
derives from this need. Consider the sum of the probabilities of making a particular

observation in error: Ci+k Pki. Without any other restriction, it is possible to construct
situations in which this is as high as IQ1 (1 - P), and in which positive separation is
impossible for all but unrealistically high values of P. The reflexivity requirement is one
of several possible requirements that eliminate such situations. In Section 6 we discuss

one set of noise models that satisfy this requirement.

s Because the separation is always with respect to a particular command, we suppress the parameter

throughout.

158 K. Basye et al. /Art&id intelligence 72 (1995) 139-171

We can characterize the number of observations required by the algorithm as a function
of the separation. The proof is omitted, but can be found elsewhere [6,141. It uses
Hoeffding’s inequality to show that after a large enough number of samples, it is very
likely that the observation with the largest sample frequency is also the observation with

the largest true frequency.

Lemma 6. lf the separation s is greater than 0, then the output of algorithm CMFO

is correct with probability at least 1 - E after each vertex has been visited at least N

times, where N is polynomial in l/s, l/.e, IQ/, and JAI.

We will use a random walk to explore the environment, so we must turn our attention
to the question of how long a walk is needed. Not only must we guarantee with high

probability that the states are all visited enough times, we must also be able to charac-
terize the distribution of state visitations, because it affects the transition probabilities,

and, hence, the separation.
A uniform random walk in the environment is one in which actions are also chosen

equiprobably; by our earlier assumption, the agent knows some distribution over com-
mands that allows this. We can describe the walk by a Markov process with transition

matrix R, defined by r,; = g//Al, where g is the number of edges in E from qi to q,t.

In a reversible environment, there are as many edges from qi to qj as there are from

q,j to qi, so R is symmetric; this implies that the columns, as well as the rows, sum
to 1, making the matrix doubly stochastic. Any matrix that is doubly stochastic has a
uniform stationary probability distribution [IO] ; that is, in the limit each state is visited
with probability l/jQl.

The next lemma concerns the rate at which the distribution of state visitations ap-
proaches the uniform stationary distribution. Let _?i(t) be the probability that the process
is in state qi at time t and let ri be the stationary probability of state qi. Define the
discrepancy, l,, to be the L2 norm of the difference between rr and X(t). This result is
a direct consequence of Mihail’s result [151 on the convergence of Markov chains.

Lemma 7. Let t be the number of time steps needed to guarantee that the discrepancy

between the state distribution at time t and its stationary distribution is less than 5, when

executing the process determined by the transition matrix R. Then t can be bounded

above by

where @ is the merging conductance of the process. It is defined by

@= min @(S),
ScQ:~q;~,~td~/=

where

K. Basye et al./Artijicial Intelligence 72 (1995) 139-171 159

Fig. 6. A plot of 1/(2OP* - 1) in the area of positive separation.

Now, we give a bound on the separation, assuming a bound on the discrepancy.

Lemma 8. Let & be an upper bound on the discrepancy after t steps, let z =
(1 + IQ/ fl> /(1 - IQ 1 fl), let P be a lower bound on the probability of making a
correct observation, Pi, and let 8 be a lower bound on the probability of taking a cor-
rect action, et. If the probabilities of making incorrect observations are reflexive, that
is, if tlx, y, PxY = PYx, then for all actions and all initial labels li, after a random walk
of length t,

(1) si>OifP>(l-~+J~~+88~-2~+1)/48,and
(2) St > P(28P - 1)/Z + P - 1.

Note that for a long enough walk it is reasonable to approximate z by 1, which yields
the simple requirement that P > l/m, this has the intuitively pleasing consequence
that 8, the lower bound on correct execution of commands, must be greater than i. In
this case, the separation is bounded below by 2t?P2 - 1, so the exploration complexity
of algorithm CMFO contains a factor of l/(20P2 - 1) . Fig. 6 shows a plot of this factor
for values of P and B from i to one in the area where the separation is positive. The
“plateau” area in the figure represents the portions of (P, 0) -space for which the bound
on the separation is negative.

Theorem 9. The output of the CMFO algorithm is correct with probability at least
(1 - s) (1 - ~2) after a uniform random walk of length polynomial in

P(2eP - i)iz + P - 1,

1/e, l/&2, I/@, IQl, and 1 Al, where P is the lowest probability of correct obser-
vation, 8 is the lowest probability of correct action, Cp is the conductance, z =

160 K. Bmyr et trl. /Artificicd Intulli~ence 72 (199.5) 139-I 71

(1 + IQldm 1 - IQlLm. ad (is an upper bound on discrepancy of the state dis-

tribution, whene\Ber

(I) P>(l-z+Jz2+88z-2z+1)/48,
(2) a uniform distribution on C induces a uniform distribution on A,

(3) Vx, y, C,, = PYX, and
(4) the environment is reversible.

6. Empirical results

In the following sections we develop a particular class of noise mode1 and present
results of empirical simulations of our algorithms from Sections 5.1 and 5.3. In both

cases, the results demonstrate that in automata representing plausible real-world environ-
ments, the actual number of samples needed is far less that predicted by the theoretical

results.

6.1. Noise models

Two of the results of Section 5 require that the probability of correct action be

above some threshold. Two others require that the probability of correct observation
be above some threshold. In addition, algorithm CMFO requires that the probability of
error be reflexive for observation. A large number of possible noise models satisfy these
constraints, and the choice of noise model will certainly affect the actual performance

of the algorithm. In our experiments, we have used one noise mode1 for actions, and

several different noise models for observations.
Our error model for actions is a simple uniform model. When an incorrect action is

taken, it is chosen uniformly at random from all incorrect actions. For observations, we
have developed a general class of noise models called similarity partition noise models.
Such a model is constructed as follows. The set Q of states is partitioned into subsets
Ql, Q2, . . , Qk. Intuitively, the elements of the partition represent sets of states that
look alike. Each state in a given partition, Q;, has an observation function that gives
the correct answer with probability P, and gives the label of some other state in the
partition with probability (1 - P)//Q,/. Th e uniform error mode1 is one special case of
this scheme; it occurs when the partition has only one element that covers all of Q.

6.2. Deterministic actions and stochastic observations

The polynomial functions we have shown to bound the performance of the algorithms
described in Section 5.1 are pessimistic. We now describe the results of experiments
with LOCALIZE that indicate that this is so. There are similar results for the complete

automaton inference algorithm provided in [8 1.
Our result requires environments with distinguishing sequences. We hypothesize that

many natural environments, and hallway environments in particular, possess short dis-
tinguishing sequences. To test this hypothesis, we constructed a variety of hallway
environments and determined the length of the shortest distinguishing sequence, assum-

K. Basye et al./Art$icial Intelligence 72 (199.5) 139-I 71 161

il.

111. iv

Fig. 7. Graphs for hallway environments.

ing that such a sequence existed. Fig. 7(i) depicts the state-transition graph for the fifth

floor of the Brown CS Department. Three other graphs typical of the ones that we used
in our experiments are shown in Figs. 7(ii) through 7(iv). The length of the shortest
distinguishing sequence for Fig. 7(i) is four. The lengths of the shortest distinguishing
sequences for Figs. 7(ii), 7(iii), and 7(iv) are two, three, and two respectively.

We generated a large number of graphs by starting with a d x d grid of locations and

constructing a graph of n edges by selecting II pairs of adjacent locations according to a
uniform distribution without replacement. The actions available at a location consisted of
movement in each of the four directions (i.e., N, E, W, S) along axes of the grid; if there
was not an edge in a particular direction, the action corresponded to a self-transition.

The labels for locations encoded the junction type (e.g., L-shaped or T-shaped) and
orientation (e.g., facing N, E, W, or S) for a total of sixteen labels, including the
degenerate label corresponding to a location with no adjacent corridors. A uniform error

model was used, so the probability that the agent observed the correct label was P and
the probability that it observed a label other than the correct one was k (1 - P) . For
fixed d with n in the range of d to d2, the length of the shortest distinguishing sequence
was nearly constant. For the graphs that we have looked at, the length of the shortest
distinguishing sequence seemed to increase roughly as the square root of the number of
states. Fig. 8 shows the length of the shortest distinguishing sequence as a function of
the number of states in the environment, averaging over sets of environments.

162 K. Btuye et al. /Arti$ciul Intelligence 72 (I 995) 139-I 71

10 20 30 40 50 60

Fig. 8. Length of the shortest distinguishing sequence as a function of the number of states in the environment.

80 -

20 40 60 80

Fig. 9. Percentage of correct state identifications for LOCALIZE as a function of the number of repetitions of

the distinguishing sequence.

The theoretical results indicate that for a DFA consisting of 21 states LOCALIZE

needs as many as 76206 steps for P = 0.8. In our simulations, however, LOCALIZE

is successful 100% of the time with no more than 50 steps using a distinguishing
sequence of length three. We also observed that the performance of LOCALIZE is largely
insensitive to P, continuing to perform with 100% accuracy having executed 50 steps
with P as low as 0.5. We believe this is largely due to the fact that errors are distributed
uniformly over the incorrect labels; it is straightforward to construct alternative error

K. Busye et d./Artijicial Intelligence 72 (1995) 139-171 163

Fig. 10. An abstract environment used to test the CMFO algorithm.

distributions that require a lot more work on the part of LOCALIZE. Fig. 9 shows a

graph of the percentage of correct state identifications for LOCALIZE running on the
environment of Fig. 7(i) as a function of the number of repetitions of the distinguishing

sequence. This graph typifies the performance of LOCALIZE running on the range of
graphs that we considered in our experiments.

6.3. Stochastic actions and observations

In this section, we consider the performance of the CMFO algorithm in simulation.

The environments used by the simulation are also constructed as abstract models of

hallway environments. These environments have four actions, corresponding to moving
North, South, East, and West. As before, actions that are not applicable for a given
location result in self-transitions. Fig. 10 shows the environment, called CZT 4, used in
our experiments; it models one floor of the Computer Science Department at Brown
University and has 21 states. The experiments were performed using a range of values
for the parameters P and 8.

With regard to the CMFO algorithm, the uniform error model is quite benign. This
is because uniform distribution over a large number of states virtually guarantees that
the most frequent observation will be correct. Indeed, under the uniform noise model,
increasing the size of the problem actually helps in this regard, although the increased

size also requires a longer walk to gather enough data. By using smaller partitions, more
pernicious noise models may be created. For example, by partitioning Q into pairs, a

significant competitor to the correct answer, in terms of frequency, is assured. It is easy
to see that all similarity partition noise models satisfy the reflexivity requirement stated
in the proof.

In these experiments, three different similarity partition error models were used. The
first error model was the uniform model, the second and third were more compli-
cated partitions based on the hallway structure of the environment. In these models,
locations were partitioned according to the type of junction they represented in the
world. For example, UT 4 has corner junctions, T-junctions and hall junctions. If the
agent is able to detect the type of a junction reliably, then its sensors will conform
to a noise model that partitions locations by junction type. Junction types may further
be partitioned by considering the orientation of the junction. For example, a corner
junction with South and West hallways might be distinguished from one with North
and East hallways. In the CZT 4 environment, the oriented junction-type partition re-

164 K. B~JZ et (11. /ArtiJiciol Intelligence 72 (1995) 139-I 71

sults in a number of singleton elements, but also results in a number of pairs and
triples.

h.3. I. Results

The experiments consisted of multiple runs of algorithm CMFO on the CIT 4 envi-

ronment. For each of the three error models, the algorithm was run in simulation with
different values for the probability of correct action, 0, probability of correct observa-
tion, P, and number of steps. In these simulations, each time the algorithm issued a

command, a random value from 0 to 1 was generated and compared against 0. If the

value generated was greater than 8, an random incorrect action was chosen uniformly
and executed, otherwise the correct action was executed. After each execution, a second
number was generated and compared against P. If the number generated was greater
than P, a random incorrect observation was returned from the similarity partition ele-
ment of the current state. Otherwise, the correct label of the current state was returned.
Values of 0 and P from 0.5 to I in 0.1 increments were used; the walk length was

varied from 1000 to 10,000. The walk length interval was chosen to give a range in
which the algorithm’s overall performance went from bad to nearly perfect. For each
combination of walk length, 8, and P, the algorithm was given 20 tries to construct a
map (50 tries per combination were used for the uniform error model).

Figs. 11-13 show the performance of algorithm CMFO on the UT 4 environment

with the uniform, oriented junction-type and unoriented junction-type error models, re-
spectively. Each figure shows that the algorithm’s performance improves steadily as
the uncertainty in action and in observation decrease and as the number of steps in-
creases. The figures also provide a comparison of the different error models. Although
the theorem guarantees the performance of the algorithm only when P > l/m, data
was collected with values of P and 0 beginning at i. In the case of the uniform
error model, complete success is obtained even for combinations of these parame-
ters that are disallowed by the theorem. This is a result of the benign nature of the
uniform noise model. In the oriented partition model, performance is very poor un-
til the requirements are met (in particular until P reaches l/a) because this model

comes much closer to the pessimistic assumptions used in the theorem. The unoriented
model performs much more closely to the uniform model, and this is attributable to
the fact that the partitions are large in this model, none smaller than size 6. In addi-
tion, the walk lengths used in the simulation were much shorter than those suggested
by the theorem, by roughly 2 orders of magnitude. The success of the algorithm on
shorter walks is due both to the factors just mentioned and to the looseness of a re-
sult concerning random walks used in our proof. Fig. 14 shows the data gathered in
a different form. Here, the number of steps (in thousands) needed by the algorithm
to infer a correct map in each of twenty trials is shown for different values of P and
8. The “plateau” areas of these plots represent areas in which the algorithm failed
to get twenty perfect answers with less than 10,000 steps. Comparison of these fig-
ures with Fig. 6, reproduced in the bottom right plot, shows that these failures are
not unexpected; they occur in a region that may have very low or negative separa-
tion.

K. Basye et al./Art#cial Intelligence 72 (1995) 139-171

1

165

e = 0.6

e = 0.7 e = 0.8

e = 0.9 e = 1.0

Fig. 11. Number of successes plotted as a function of p and the walk length for different values of 0 for
algorithm CMFO on the CIT 4 environment with uniform error model.

9 = 05 9 = 0.6

P 1 P

.5
20

15

0

9 = 0.7 9 = 0.8

e = 0.9 e= 1.0

Fig. 12. Number of successes plotted as a funcuon of /> and the walk length for different values of 0 for

algorithm CMFO on the CfT 4 environment with the oriented junction-type similarity partition error model.

K. Busye et d/Artificial Intelligence 72 (1995) 139-171 167

6 = 0.5 t' = 0.6

e = 0.7 0 = 0.8

steps

e = 0.9 e = 1.0

Fig. 13. Number of successes plotted as a function of p and the walk length for different values of 0 for

algorithm CMFO on the CIT 4 environment with unoriented junction-type similarity partition error model.

168 K. Basye et crl./Art~$cicd Intelligence 72 (1995) 139-I 71

CIT4 Unoriented CIT4 Oriented

CIT4 Uniform l/s
Fig. 14. Number of steps for first 100% success (N = 20) plotted as function of P and the walk length
for different values of ~9 for algorithm CMFO on the CIT 4 environment with three similarity partition error
models; the bottom right plot is the 1 /s factor from Theorem 2.

6.4. Application to a real mapping system

In the earlier analyses, simplifications were made for the sake of mathematical
tractability. For example, we assume independent observation and movement errors
and ignore sources of systematic error. Despite these simplifying assumptions, we be-
lieve that our models are relevant to a variety of interesting tasks and environments.
Our simulations were based on the problem faced by mobile robots in learning about
their spatial environment. In this section we briefly describe a real system for robotic
map building based on the CMFO algorithm from Section 5.3; more detail is available

elsewhere [61.
Recall that the CMFO algorithm required, in addition to several structural features, a

nominally unique output at each state which whose observation probability was above
some threshold. This requirement was satisfied by combining information about orien-
tation, junction type and position at each location. The robot used was equipped with

K. Basye et al./Art$cial Intelligence 72 (1995) 139-171 169

eight sonar transducers and an odometer which were used to generate this information.
Robust high-level movement procedures were implemented as combinations of simpler
traversal strategies; these procedures were used as the algorithm’s actions. The robot’s
sensing and movement procedures were designed to operate in common hallway envi-
ronment such as that corresponding to the CIT 4 simulation environment. The CMFO

algorithm was modified slightly from the version presented above; these modifications
allowed more efficient exploration and avoided taking actions which could be predicted
to fail.

The goal of the modifications and development of sensing and movement strategies
was to allow correct identification of the environment using a number of steps well
below the number required by the analysis of Section 5.3, on the order of a small

constant times the number of states in the environment. This goal was achieved; The
robot successfully built models using 3]Q] steps.

7. Discussion and open problems

The system identification problems discussed here can be thought of as points in
a large space of such problems, each with its own set of structural and interaction

properties. Our goal in this work has been to provide solutions to several representative
problems from a portion of this space characterized by noisy inputs and/or outputs. Our
interest in this part of the space derives directly from our interest in solving identification
problems in the real world, where such noise is unavoidable.

These results provide indications about which problems might be realistically ap-
proached with current robotic systems. For example, although we have not provided
direct comparisons of the complexity of the problems explored here, both our theoret-
ical and empirical results suggest that having nominally unique labels is an enormous
advantage. The robotic system described earlier was designed with this knowledge in
mind. With regard to problems involving spatial exploration, there may be other assump-
tions that can be made which allow even better results.

The solutions to problems involving non-unique outputs generally involve sequences,
in particular distinguishing sequences. Gill [111 provides a way to construct preset
distinguishing sequences when they exist, but these may have length exponential in the
number of states and the algorithm requires a complete description of the automaton.
Yannakakis and Lee [231 show that the problem of determining whether an automaton
has a preset distinguishing sequence is PSPACE-complete, but also give an efficient,
constructive algorithm for determining whether an automaton has an adaptive distin-
guishing sequence. As regards uncertainty in perception, the following two important
questions remain to be resolved.

l Suppose distinguishing sequences exist and observation and movement are uncer-
tain? Are adaptive sequences still easy to find?

l Suppose the agent is given an adaptive distinguishing sequence. Is it easy to identify
the underlying automaton with observation and movement uncertainty?

I70

8. Conclusions

This paper investigates algorithms for agents to identify the input/output behavior
of the dynamical system corresponding to their environment. In our model, the system
is represented as a deterministic linite automaton with a relatively small number of

states and actions. While we admit that the real world cannot be modeled by such
automata to any high degree of predictive accuracy, expediency requires and nature has
provided the means of simplifying the huge amounts of data available to our senses.

Biological systems appear to be equipped with robust perceptual and motor routines
that serve to abstract and considerably reduce the complexity of the real world. We
believe that, lacking such routines, learning is impossibly hard. In addition, our approach

does not require an agent to learn one automaton to represent the full range of its
interaction with the environment; rather, different aspects of that interaction would be
modeled with different automata. We claim then that, given appropriate perceptual and
action routines, it makes sense to model system identification in terms of inferring

automata.

In this paper, we address the problem of dealing with the inevitable errors that oc-
cur in perception and movement, Given our model, we show that errors in perception
that do not affect movement are rather easy to contend with if the goal is polynomial-

time, high-probability approximation. A genera1 method of dealing with errors in both
observation and movement without any means of establishing ground truth as a basis

for filtering hypotheses has so far eluded us. We have, however, provided algorithms
that work for the case in which there are landmarks distributed throughout the envi-
ronment and the agent has some means of determining how it got somewhere without
necessarily knowing where it came from. We have also provided algorithms for the
case in which all states have unique signatures but both observation and movement are

noisy.
In additional to our theoretical results. we have performed extensive experimental

studies that indicate that, for a class of relatively benign but nevertheless realistic en-
vironments, our bounds are quite conservative. Ultimately, we are seeking algorithms
that can learn a high-probability approximation to the correct, underlying environmental
model in time some small constant factor of the size of the underlying mode1 even in

the presence of occasional errors. In our work on real mobile robots, we are approaching
that goal.

Acknowledgments

Dana Angluin and Sean Engelson provided insights and corrections to the algorithm
and proof of Section 5.1. Oded Maron and Evangelos Kokkevis also participated in
discussions of these algorithms and provided helpful simulation results. Jeffrey Vitter
participated in the development of the landmark algorithm. Philip Klein provided useful
pointers to the literature of random walks in graphs. Several anonymous reviewers also
provided helpful suggestions.

K. Basye et al./Art@cial Intelligence 72 (1995) 139-l 71 171

References

[1 I D. Angluin, On the complexity of minimum inference of regular sets, Inf: Control 39 (1978) 337-350.
]2] D. Angluin, Learning regular sets from queries and counterexamples, I$ Comput. 75 (1987) 87-106.
131 J.R. Bachrach, Connectionist modeling and control of finite state environments, Tech. Report 92-6,

Department of Computer and Information Science, University of Massachusetts at Amherst, Amherst,

MA (1992).

141 K. Basye, T. Dean and J.S. Vitter, Coping with uncertainty in map learning, in: Proceedings IJCAI-89,
Detroit, MI (1989).

151 K. Basye, T. Dean and J.S. Vitter, Coping with uncertainty in map learning, Tech. Report CS-89-27,
Department of Computer Science, Brown University, Providence, RI (1989).

I61 K.J. Basye, Aframework$tr map construction, Ph.D. Thesis, Department of Computer Science, Brown
University, Providence, RI (1992).

[71 T. Dean, D. Angluin, K. Basye, S. Engelson, L. Kaelbling, E. Kokkevis and 0. Maron, Inferring finite
automata with stochastic output functions and an application to map learning, in: Proceedings AAAI-92,
San Jose, CA (1992).

181 T. Dean, D. Angluin, K. Basye, S. Engelson, L. Kaelbling, E. Kokkevis and 0. Maron, Inferring finite

automata with stochastic output functions and an application to map learning, Tech. Report CS-92-27,

Department of Computer Science, Brown University, Providence, RI (1992).

19] T. Dean, K. Basye, R. Chekaluk, S. Hyun, M. Lejter and M. Randazza, Coping with uncertainty in a
control system for navigation and exploration, in: Proceedings AAAI-90, Boston, MA (1990).

I 10 I W. Feller, An Introduction to Probability Theory and its Applications (Wiley, New York, 3d ed., 1970).
revised printing.

I II] A. Gill, State-identification experiments in finite automata, Inf Comput. 4 (1961) 132-154.

I 121 E.M. Gold, System identification via state characterization, Automatica 8 (1972) 621-636.

I 131 E.M. Gold, Complexity of automaton identification from given sets, IY$ Control 37 (1978) 302-320.
I 141 L. Kaelbling, K. Basye and T. Dean, Learning labelled graphs from noisy data, in: Proceedings Seventh

Yale Workshop on Adaptive and Learning Systems (1992)

I 151 M. Mihail, Conductance and convergence of Markov chains: a combinatorial treatment of expanders,

in: Proceedings 31st ACM Symposium on Foundations of Computer Science (1989).
I 161 E.E Moore, Gedanken-experiments on sequential machines, in: Automata Studies (Princeton University

Press, Princeton, NJ, 1956) 129-153.

I 171 L. Pitt and M.K. Warmuth, The minimum consistent DFA problem cannot be approximated within any

polynomial, in: Proceedings 21st Annual ACM Symposium on Theoretical Computing (1989).
I 181 R.L. Rivest and R.E. Schapire, Diversity-based inference of finite automata, in: Proceedings 29th ACM

Symposium on Foundations of Computer Science (1987).
[191 R.L. Rivest and R.E. Schapire, Inference of finite automata using homing sequences, in: Proceedings

2lst Annual ACM Symposium on Theoretical Computing (1989).
1201 R.E. Schapire, The design and analysis of efficient learning algorithms, Tech. Report MIT/LCS/TR-493,

MIT Laboratory for Computer Science (199 I)
I21] D. Servan-Schreiber, A. Cleeremans and J.L. McClelland, Learning sequential structure in simple

recurrent networks, in: D. Touretzky, ed., Advances in Neural Information Processing Vol. 1 (Morgan

Kaufmann, San Mateo, CA, 1989).

[221 R.S. Sutton, Integrated architectures for learning, planning, and reacting based on approximating dynamic
programming, in: Proceedings Seventh International Conference on Machine Learning (1990).

I23 1 M. Yannakakis and D. Lee, Testing finite state machines, in: Proceedings 23rd ACM Symposium on
Theoretical Computing (199 1).

