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Abstract-Rates of particle and gas transport to rough surfaces from turbulent flows can be related to the 
collection efficiencies of the individual roughness elements. Transport to the fully rough surfaces is rapid so 
the (average) concentration is nearly constant from the main flow into the roughness layer, and the rate 
limiting step is deposition to the roughness elements. Expressions for the deposition rate can be derived using 
filtration theory, modified to take into account the high Reynolds number flow around the elements. Data 
from the literature on particle and gas transport to blades of artificial grass can be correlated using the 
nondimensional variables of filtration theory. The correlation is satisfactory over more than nine orders of 
magnitude of the deposition variable and shows proper limiting forms in the small and large particle size 
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NOMENCLATURE 

difference between the transfer coefficient for 
mass and momentum to the roughness sub- 
layer, w(h)~~~~ U - u(b)/~* ; 
constant defined by equation (3.32); 
constant in equation (2.1), equal to 0.2 [6] ; 
particle diameter [pm] ; 
particle diffusion coefficient [cm’ s- ‘1; 
stream function giving stagnation region 
velocity field ; 
first and second derivatives offrespect to I?; 
nondimensional particle density, equation 
(3.20); 
gravitational acceleration [cm SC’]; 
constant in equation (2.14); 
characteristic height of individual pro- 
trusions [cm] ; 
nondimensional height, fru,Jv; 
mass flux [g crnmz s- ‘I; 
defined by equation (3.7); 
equivalent sand roughness ; 
effective rate constant defined in equation 
(2.4) [s-r]; in equations (3.10) and (3.11) it 
describes the variation of the stream function 
with X away from the stagnation point; 
defined by equation (3.13); 
integer number in equation (3.31); 
particle density [g cm _ “1; 
free stream value of tl, equation (3.18) 

Cg=n31; 
Prandti number, or ratio between the carrier 
gas kinematic viscosity and the diffusivity D 
(or the heat diffusivity for heat transfer). For 
mass transfer problems the Schmidt number 

* Present address: Department of Mechanical Engineer- 
ing, Yale University, Box 2159 YS, New Haven, CT 06520, 
U.S.A. 

SC is generally employed instead of Pr; 
defined by equation (2.9); 
particle radius [pm] ; 
characteristic length of the obstacle’s cross- 
section. For the artificial grass of refs. [5,8] 
(R = 0.5 cm) it is the blade width [cm] ; 
Reynolds number for the flow around the 
obstacle, R U ,/v; 

vertical area of protrusions available per unit 
volume for deposition [cm- ‘I; 
mean velocity along the flow direction 
[cm s- ‘1; 
turbulent friction velocity based on the wall 
shear Z, and the fluid density p, (T/P)“’ 
[ems-‘1; 
fluid velocity within the boundary layer of a 
single cylindrical fiber in the direction paral- 
lel to the wall, equation (3.1) [cm s- “1; 
velocity far from the single fiber in the flow 
direction [cm s- ‘I; 
particle deposition velocity, reported in ref. 
[5] [cm s-l]; 
particle gravitational settling speed, gr 
[ems-‘1; 
fluid velocity within the boundary layer of a 
single cylindrical fiber in the direction nor- 
mal to the wall [cm s- ‘I; 
vapor concentration ; 
nondimensional coordinate parallel to the 
obstacle, equation (3.12); 
nondimensional coordinate normal to the 
obstacle, equation (3.15); 
height normal to the rough plate [cm]. 

Greek symbols 
f-3 gamma function ; 
s thickness of momentum boundary layer 
” [cm]; 
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eddy diffusivity [cm’s_ ‘3 ; 
collection efficiency, defined in equation 
(3.4); also viscous length, equation (3.5); 
high Reynolds number particle deposition 
parameter, defined in equation (3.17); 
fluid kinematic viscosity [cm’ s- ‘I; 
particle relaxation time, related to D by 
Einstein’s formula D = kTT/m, where k is 

Boltzmann’s constant, T the absolute tem- 

perature and mp the particle mass [s] ; 
nondimensional particle deposition func- 
tion, equations (3.22) and 3.28); 
deceleration parameter describing the in- 

viscid velocity field close to the stagnation 
point (3.1) [s-‘1. 

1. INTRODUCTION 

THIRD is much interest in the rates at which pollutants 

(particles or gases) are transported from the atmos- 
phere to the ground. Yet our understanding of the 
underlying phenomena is so limited that the recent 
review by Sehmel [l] concludes that the available 

experimental data show a scattering of three and four 
orders of magnitude for deposition velocities of par- 
ticles and gases respectively. To reduce this un- 
certainty, we consider the problem of mass transfer 
from turbulent flows to a certain class of rough surface 
as an appropriate model for the atmosphere-ground 
interface. In this study, we make use of the consider- 
able engineering literature on transport to rough 

surfaces. 
Soon after Nikuradse’s [2] experiments on turbu- 

lent flows over sand-roughened surfaces, the concept of 

the ‘equivalent sand roughness’ was introduced as a 

practical tool to correlate friction data. Since then, 
rough wall problems have been most commonly 
described from a macroscopic (or phenomenological) 
point of view: rather than studying surface micros- 

copic structures and their relation to the flow field, 
engineers have tended to measure a single macroscopic 
overall property, the ‘surface equivalent sand rough- 
ness’ k,. A number of authors have sought a more 
fundamental way to approach the problem, trying to 
relate the total drag (or heat and mass fluxes) observed 
on rough surfaces to the individual transport rates to 
each of the protruding elements. Indeed, the micro- 
scopic line of attack t is a most natural one : for instance, 
the fact that the friction coefficients on plates and 
channels are Reynolds numbers independent for fully 
rough flows (those in which the roughness elements 
penetrate into the fluid far beyond the viscous sub- 
layer) is often explained by the dominance of the 
Reynolds-number-independent form of drag of in- 
dividual protrusions over the total drag. Yet, when one 
makes a momentum (or mass) balance on the basis of 

t From here on this more fundamental point ofview will be 
called ‘microscopic’ as opposed to the macroscopic or 
phenomenological equivalent sand roughness approach. 

this microscopic model, the results are often un- 
satisfactory. The early work of Schlichting [3], which 
is still one of the best examples of this approach, is 
characteristic of some of the frustrating aspects of the 
microscopic method. Schlichting measured friction 
coefficients for six different protrusion shapes at 
various concentrations, and compared the resulting 
individual drag coefficients of his roughness elements, 

extracted from the total drag of the rough plates, with 
the known values under isolated conditions. He ob- 
tained some qualitative agreement, but the inferred 
drag coefficients varied substantially as a function of 

roughness concentration (over an order of magnitude 
in some of the cases), showing larger friction factors 

than expected from the drag of individual protrusions 
for small densities, and smaller values for high con- 
centrations of roughness elements. Unfortunately, 45 
years later, in spite of some notable attempts [4] the 
situation has not improved much: we still lack a 
reliable method of predicting friction coefficients from 
the microscopic structure of rough surfaces. The fluid 
motion around those many obstacles with strong 
spatial inhomogeneities, very high turbulence inten- 
sities and large separated regions has been too com- 
plex to describe microscopically. The situation for the 
transport of vapors and heat to rough surfaces is 
similar. Attempts to relate the rate of mass transfer to 
single roughness elements with the total mass captured 
on the rough surface have lead to order of magnitude 
agreement but not to accurate predictions [5]. The 
complexity of the problem offers little hope of produc- 
ing completely successful microscopic theories of 
transport phenomena to rough surfaces; however, the 
order of magnitude agreement achieved thus far 
suggests that our knowledge of transport efficiencies to 
single elements might be useful to correlate overall 

transport efficiencies to rough surfaces. Indeed, Yag- 
lom and Kader [6] have succeeded in correlating a 
fairly large number of vapor and heat diffusion data to 
fully rough surfaces for the case of densely packed 
roughness elements of various forms. Although the 
physical model they used does not specifically in- 

corporate single protrusion capture efficiencies, it is 
easily shown (Section 2) that the nondimensional 
group playing a major role in their correlation is 
precisely the Stanton number for mass or heat transfer 
to single roughness elements. 

In this paper we show that the rate of mass transfer 
to fully rough surfaces is closely related to the ‘single 
element capture efficiencies’ for a more complex sys- 
tem than that studied by Yaglom and Kader 161, 
namely, the turbulent deposition of particles to grass. 
For this purpose we will first introduce the high 
Reynolds number form of Friedlander’s [7] theory for 
the deposition of particles to solid obstacles by 
diffusion and interception, and use it to correlate the 

wind tunnel measurements of Chamberlain [8]. It will 
be seen that the available data collapse into a single 
curve when plotted in terms of the similarity variables 
suggested by the theory. The proposed correlation is 
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successful over more than nine orders of magnitude for 
the nondimensional particle deposition velocity (even 
beyond the expected limits of validity), covering par- 
ticle sizes from 32 to 0.08 pm and a range of friction 
velocities. 

2. TRANSPORT OF VAPORS TO ROUGH SURFACES 

2.1. Introduction 
Many experimental and theoretical studies have 

been made of the turbulent transfer of heat and mass to 
rough surfaces in channels and tubes. Much of this 
work was reviewed by Yaglom and Kader [6]. They 
have been able to correlate an important subclass of 
the data in rather simple terms, and proposed a model 
for the hydrodynamic structure of the roughness 
sublayer which led them to an expression for the mass 
(heat) transfer resistance across this sublayer that 
agrees rather well with a large number of data for the 
case of closely packed 3-dim. roughness elementst. 
The model proposed predicts a sublayer transport 
resistance proportional to 

h +1:2 (~~2’3 _ b’) 
(2.1) 

where h+ = ~~~~~? is the nondimensional form of the 
characteristic protrusion height h, U* is the friction 
velocity for the turbulent flow, and v is the fluid 
kinematic viscosity. Pr is the Prandtl number, or ratio 
between v and the molecular diffusivity of heat (mass), 
and b’ is a small constant. The model includes no 
dependence on shape and spacing between roughness 
elements because the data were not sufficient to assess 
systematically this effect and little was known of the 
hydrodynamic structure of the roughness sublayer. 
But this situation has changed recently, based pri- 
marily on fundamental studies of turbulent flows over 
rough surfaces at a very different scale, in the atmos- 
pheric boundary layer in and above plant canopies. 
The recent review of Raupach and Thorn [lo] has been 
an important step towards a synthesis between the 
engineering and the atmospheric scales. Raupach and 
Thorn [lo] do not cite previous studies at the engineer- 
ing scale but they refer to their own remarkable wind 
tunnel-experiments [l l] in which the hydrodynamic 
structure of the roughness sublayer is partially un- 
veiled. Those data show a weak variation of the mean 
velocity within the roughness sublayer, which does not 
extrapolate to zero as the bottom wall is approached, 
contradicting the assumption of the Yaglom and Ka- 
der [6] model (Section 2.2). Thus, in Section 2.3, we 
shall introduce the alternative ‘filtration model’ (not 
new in the atmospheric literature [12]) for mass (heat} 
transfer, which will lead naturally to the Yaglom and 
Kader group h+ ’ ‘2 PI-‘,~ governing the transfer re- 
sistance across the roughness sublayer. Our approach 

i Although the agreement for 2-dim. roughness elements 
was much less satisfactory, Kader and Yaglom [9] have also 
found correlations valid for this type of roughness. Here we 
will be concerned only with the 3-dim. type, most often 
occurring in nature. 

does not result in absotute predictions but provides 
certain correlation parameters; it may easily be exten- 
ded to study the capture of particles including inertial 
and interception effects [13]. 

2.2. The Yaglom and Kader model [6] 
The physical model which leads Yaglom and Kader 

to the successful expression (2.1) for the mass transfer 
resistance across the roughness sublayer was based on 
the early ideas of Levich [14]. Making a sound 
assumption on the form of the eddy viscosity coef- 
ficient, Levich integrated the streamwise momentum 
conservation equation assuming a constant value for 
the shear stress, and obtained the expression 

u = u&h (2.2) 

where z is the distance from the wall for the mean 
velocity within the roughness sublayer for the case of 
walls with small concentrations of protrusions. From 
equation (2.2) Levich [14] showed that the thickness 
of the boundary layer (at the wall, below the roughness 
elements) varies as h +1’2, in agreement with equation 
(2.1). But for the closely packed roughness case 
considered by Yaglom and Kader, equation (2.2) is in 
clear disagreement with the data El l] which show that 
u changes weakly within the roughness sublayer. Even 
if a linear variation with z were compatible with 
experiments, u would not extrapolate to zero close to 
the wall (ref. [ll], pp. 39&391) but to a value 
comparable to the velocity at z = It. Therefore 
equation (2.2) is not confirmed by experiments, and (as 
discussed by Levich [ 141) both Levich’s model and the 
Yaglom and Kader extensions of it are not applicable 
to densely packed roughness elements. 

Much of the area available for heat and mass 
transport to walls covered with closely packed rough- 
ness elements is not at the bottom wall, but at the 
protrusions themselves. Since the convective motion is 
much more intense around them than at the bottom 
layer, a large fraction of the transfer of heat or matter 
would be expected to occur at the roughness elements. 
Accordingly, they may be viewed as heat or mass 
‘sinks’ volumetrically distributed within the flow field, 
and the transport process may be modeled as 
routinely done in gas filtration [13f. Filtration models 
have been used previously to study the transport of 
heat and mass [12, 151, or momentum [lo] within 
vegetation canopies. Here we show that the idea is also 
applicable at the much-smaller engineering scale stud- 
ied by Levich, and provides a theoretical justification 
for Yaglom and Kader’s successful correlation (2.1). 

First, let us consider a single roughness element 
immersed in a stream with an imposed velocity field 
equal to the one prevailing in the roughness sublayer. 
Let us also assume that the vertical and horizontal 
dimensions of the object are comparable, of the order 
h. Then the fluid velocity around the protrusion is 
characterized by a Reynolds number of the order h +, 
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which for fully rough walls is much larger than unity 
[ 161. Accordingly, one may use boundary layer theory 
to describe the transfer of matter and heat to the 
element, and the thickness of the momentum boun- 
dary layer 6, near the protrusion leading edge is of the 
order of h/h+ ’ 2, much smaller than h. Thus, even if the 
free stream turbulence intensity is of order unity (based 
on forest, and also wind tunnel measurements [173) 
the scale of the eddies is large compared to 6,, and the 
initial boundary layer developing around the pro- 
trusion is iaminart. Accordingly, we may use the 
rather extensive literature for heat and mass transfer to 
solid bodies immersed in a fluid. (Indeed, the weak 
variation of p with z makes it acceptable to use data 
from experiments at uniform upstream velocity.) Then 
we define a local capture efficiency or Stanton number 
for a single protrusion 

q = __.L 
u(z)wp 

(2.3) 

based on the local mass flux j”, the mean incoming 
velocity u(z) and w, the difference between the value of 
the condensing species concentration far from the 
obstacle and at the wall. (Provided the latter value is 
independent of z, this constant shift preserves the form 
of the mass conservation equation.) For convenience, 
at every surface strip at a height z, j” is averaged 
horizontally and rj is only a function of z. Now, given a 
rough surface with a density of individual roughness 
elements such that the mean area per unit volume 
available for deposition at a height z is S(z), the mean 
effect of the roughness may be approximated by a mass 
sink 

dw 
~~1 = - q(z) ii(z) S(z) w(z) 5 - Kw. (2.4) 
dr _ 

If we adopt a turbulent diffusion coefficient c and 
assume fully developed conditions (independent of x 
and r on the average) the mass conservation equation 
for the diffusing species may be written as 

(2.5) 
dz L‘ ’ dz_l 

(D is the molecular diffusion coefficient in the mixture) 
with boundary conditions 

W(l?) = IL’, (2.6) 

f A similar phenomenon occurs for the Iaminar boundary 
layer developing around an airplane wing in the turbulent 
atmosphere, or around a gas turbine blade in the highly 
turbulent stream of gases coming from the combustion 
chamber. The free stream turbulence has an effect on the 
boundary layer development around the protrusion because 
it precipitates tts transition to turbulence, but this influence is 
only moderately important, because the transfer rates in the 
laminar and turbulent portions are comparable (ref. [16], Fig. 
12. I8 ). The direct effect of free stream turbulence on the heat 
transfer to the laminar part amounts to an 80l/,enhancement 
(ref. [ 181 Figs. 4 and 18) for a cylinder in cross flow, and free 
stream turbulence levels above 2”,, 

w(0) = 0. (2.7) 

Rather than solving equation (2.5) with a particular 
model for 8 and K, it is convenient first to make some 
order of magnitude remarks: E is of the order of 

I: - hu, (2.8) 

thus, much larger than D for gases (because hC >> 1, 
D/v < 1) except near a bottom layer of thickness v/u.+. 
Then, the only relevant nondimensional parameter 
entering the problem is 

Q = ~~f~*. (2.9) 

But Q = ~u~~/u* = qSh, and for the most favorable 
case of a very dense packing of roughness elements, Sh 
is of the order of unity. Thus, in general, Q < n, and 
because for high h+ the capture efficiency for vapors is 
small (as h +I/‘) the result is 

Q << 1. 

Accordingly, the concentration profile w(z) is weakly 
modified by the sink (Kw) and, like u(z), may be 
expected to vary weakly with z within the roughness 
sublayer. Thus, since the total mass flux to the 
protrusions is given from equation (2.5) by 

h 

j” = 
s 

pKwdz (2.10) 
0 

we approximately have 

j” - Kphw(h) (2.11) 

where R is a mean value of K in the region 0 < z < h. 
This expression accounts only for the vapor collected 
on the roughness elements, not at the bottom wall, but 
the important point here is that the flux .j” is pro- 
portional to K and thus to the single protrusion 
capture efficiency. But for laminar diffusion at high 
Reynolds numbers, rj is of the order of Re-‘,’ Pr- 2’3 : 
for instance, for a sphere [19] 

q = 0.6 Rem’ 2 Pr-2,’ (2.12) 

while for a bed of spheres the behavior is identical, with 
a coefficient three times larger (1.82). Now, since Re is 
based on a characteristic length of the order of h and a 
characteristic velocity of the order u*, it is itself of the 
order of h’, and the mass transfer resistance across the 
roughness sublayer is 

where hS - 1 for closely packed roughness elements. 
Thus we obtain a roughness sublayer resistance pro- 
portional to h + ’ ” Pr2 3. This expression differs from 
equation (2.1) in that it involves the group Pr2.3 rather 
than (Pr”” - b’) as in the Yaglom and Kader formula. 
But, given the small value of b’ adopted by those 
authors, (b’ = 0.2) the difference is small. 

In conclusion, the filtration model predicts a mass 
transfer rate proportional to the singleelement capture 
efficiency q, which in the region of diffusive deposition 



Aerosol and gas deposition to fully rough surfaces 1729 

8-I 

Id 

Id 

B-l 

12 

IO 

8 

6 

4 

2 

0 

I I I r i t I I I > 

a /’ 
212 

A Pb A ,’ ’ D 

/’ 
o H,O I 

/’ , 
r’ 

/’ 
/ ’ d 

, I , 
4’ 

o e’ 
AS’ 

5-o 
r 

0 o/ 
I 

1 1 I I t I I I a 
0 20 40 60 80 100 I20 140 160 180 200 

FIG. l(a). Mass transfer resistance. coefficient 

in the roughness sublayer of artificial grass. Data from ref. [5] for deposition of Pb”’ and evaporation of 
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FIG. l(b). Extension of Fig. l(a) to include the data from [8] 
on Aitken nuclei deposition to the same surface with artificial 

grass. 

has the same form as Yaglom and Kader’s successful 
correlation. However, the agreement is qualitative 
because our model yields 

pwou, =i Gh+“z P,.2:3 
.,I 

.I 
(2.14) 

with G depending linearly on the concentration of 
roughness elements, while Yaglom and Kader obtain 

pw(h)u & = 0,55h+‘:Z(pr2,3 VI - 0.2) + 9.5 (2.15) 
.I 

which not only shows a large constant shift of 9.5 over 
our prediction, but where the constant 0.55 is inde- 

pendent of the density of protrusions (rather than 
linear) at large densities. Furthermore, the values 
of the constant G which we infer from equations 
(2.11) and (2.12) based on conditions reported by 
Chamberlain [20] for two different walls roughened 
with hemispherical elements are close to 1 and 3 
respectively comparing poorly with the experimental 
value 0.55. On the other hand, thevalue G = 0.55 given 
in ref. [6] is far from being universal. This may be seen 
for instance in Fig. l(a) in which we plot mass transfer 
resistance measurements to artificial grass from [5]. 
Although the data for both, H,O and Pb212 (with 
values of Pr of 0.625 and 2.78 respectively [5]) fall 
approximately on a single curve when plotted versus 
the group h ’ I,2 Pr2 ‘3, the corresponding slope is now 
G = 0.054, an order of magnitude smaller than would 
be expected from equation (2.15). This is not surprising 
because the range of application of the Yaglom and 
Kader correlation is limited to protrusions with si- 
milar heights and widths. Our model is not so 
constrained because an equation of the type (2.12) 
applies to bodies such as spheres or cylinders provided 
that the Reynolds number is based on the transverse 
dimension R rather than k. The use of R ieaves the 
conclusion of [6] unchanged since R 2 h, but alters the 
application to Chamberlain’s artificial grass for which 
the ratio h/R was 15. Indeed, in terms of the variable 

Pr2 3 (2.16) 

suggested by our model, the slope of Fig. 1 (a) increases 
(by a factor of d15) to become 0.21, much closer to the 
value of 0.55 found by Yaglom and Kader. Thus, 
consistent with our approach, it is appropriate to use 
the group (2.16) rather than h+ ’ * Pr2 ’ in future work. 



Our retention of the latter factor in Figs. t(a) and (b) 
serves to facilitate comparison with ref. [6]. 

The range of values of h+ covered in Fig. Ifa) is 
con~~~~~ab~e, but onty two values of Pr are invofved, 
limiting the validity of our conclusions to molecular 
diffusion in gases (the same restriction applies to the 
data studied ky [c;l). FortunatefyS ~arn~~~~ [X] has 
afso Xl%SXiFed the fate of ~~~~~tj~~ of Aitken m&i 
(with Pr = 1.5 x X14f lo the same a&i&d grass surface, 
These data are plotted in Fig. I (b) together with the 
vapor transport data, and fall along the same fine B- i 
= 3 -i_ 0.054h” z Pi.2’3 which passes thraugh the 
vapor diffusion data of Fig. I(a). This provides the first 
indication of the wide range ofvalidity of the filtration 
model predictions, though it wauld be ~~te~est~ng to 
test it afso for the case of iarge Pram&l rrumber 
diffusion In ‘liquids. The momentum transfer properties 
for this type of rough surfaces are also unusual: the 
equivalent sand roughness k, is some ten times greater 
than the actual height h for Charn~r~a~I~~s artificial 
grass in contrast wiib the usual behavior for surfaces 
with dertsety packed b~~~e~e~nts where It and k, are 
close t-0 each other. In most engjneer~~~ situationsI 
with sparsely distributed roughness, k, is around 30 
times smatler than h. 

The validity of equation (2. i if r~~~t~~~~ the total 
mass flux to a rough wall with the single element 
collection efficiency q is not, in principle, restricted to 
~~~u~~~n~~ deposition; it is then worth testing its 
usefuiness v&en other rnech~~~~ms such as inertia, 
interception, ~~~tF~~tat~~ or ~~~~t~t~~~~~ kmes, etC, 

as present. 

Some of the best data on mass transfer to rough 
surfaces have been obtained by Charn~~l~~~ [S, 8,203 
both in the field and the wind tunnel, over a variety of 
roughness elements (wavy, bluff, or ~~~~sstike), for 
vapor and particle deposition, and for a wide range of 
friction v&cities. Furthermore, Charn~~r~~~n*s [20] 
diffi&xt measurements to surfaces with ordered rough- 
ness elements played a major role in the development 
of the successful correlation (2.15) for vapor de- 
position, so it is natural to test a new model of partick 
deposirion to surfaces ?&h ordered protrusions 
against the data in @I]. Resides their precision and the 
wide margin of parameters covered, thuse data have 
the additional interest of applying not only to grassy 
land, bum tu a variety of cultivated or rmtural plant 
canopies. 

From the theoretical side, most often ~~t~rceptio~ 
effects start affecting particle diffusion before inertia 
sets in. Besides, the theory of particle ~~pos~~~on on 
single fibers by the simultaneous action of diffusion 
and interception is well developed and agrees satisfac* 
toriiy with low Reynolds number experiments f7, 13, 
21j/. ThereFore it IS a~~~o~r~a~e to adapt ~rje~~a~der~~ 
[7J d~~us~o~ and ~~ter~~t~on treatment lo the high 

Reydds number conditions ~r~a~~i~g iu me experi- 

ments, and to compare it with the data. This program 
is developed in the folIowing subsections (3.2) and 
(3.3). 

3.2. Single element pwticie capture by di$usfon ancl 
interception cu large Reynolds numbers 

For simpEcity we witf choose a 2-&m. geometry 
c~~~ond~~ to the flow normal to a ~~u~~~d~ of 
~~i~~ shape. The arigin of coord~at~ is taken at 
the stagnation point, and the y axis is normal to the 
surface at every paint, y being zero at the surface. 
Generalization to 3-dim. geometries is trivial, and 
leaves the main conclusions [equation (3.22)] 
unchanged. 

The high Reynoi~s number velocity field in the 
inviscid region ctose to the stagnation point is given by 
Schlichting ref. [la]. pp U-89) 

(u, v) = (OJX, 40~) (3.1) 

and within the VisCOuS kyi?F 

u = ~~~~~~~ f3.2f 

k‘ = - (~~~~~~~~~~~ (3.3) 

where q is the no~d~me~s~~na1 viscous length 

(3.13) 

For large Reynolds numbers, the function I< de- 
pends on the particular shape of the obstacle, and can 
be cafcutated by standard methods of boundary layer 
theory ref IIS]_ p. 154). Then, the equation expressing 
co~~~at~on of the pasticie densit,v n is. in the lxxm- 

dafy trtjter a~~ro~~rnat~on, 
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and defining the nondimensional vertical length based 
on the particle radius rP, 

Y = y/r, (3.15) 

it becomes 

with 

(3.17) 

This equation must be solved with the standard diffu- 
sion-interception boundary conditions [7] 

n=n, for Y-, y_, (3.18) 

n = 0 at Y = I. (3,191 

The solution for any given obstacIe [K(X) fixed] is 

n/n, = F(X, Y. [if (3.20) 

and the average mass iIux to the obstacle is 

(3.21) 

where by the symbol $I we mean integration along the 
cylinder perimeter. Then, ihe group~~~/~~~~) depends 
only an the parameter p 

(3.22) 

Equation (3.22) genera&es Friedlander’s [7] result to 
the large Reynolds number case. Notice that the 
deposition variablej”r,/(n,D) obtained here is identical 
with its low Reynolds number counterpart. Also, 
realizing that the Reynolds number in our case is 

we have 

Re 1 0&/v (3.23) 

which is related with the corresponding low Reynolds 
number parameter 

b)Rr<< I - (r,,/R) Re’j3 (v/D)l 3 (3.25) 

through the weakly-varying factor Re’” 

!J - Re1’6 ttrh,,~. (3.26) 

Interestingly enough, the new parameter 11 has been 
used previoudy to correlate fittration eMiciencies on 
purely empirical grounds [22, 2I]. 

3.3. Comparison with experiments 
Figure 2(a) shows the data of Chamberlain [S] on 

particle deposition over artificial grass using the 
similarity variables suggested by the above theory, 

We have used the reported particle deposition velocity 
nS in @ace ofj”&. The characteristic length R chosen is 
the transverse dimension of the strips forming the 
artificial grass elements, R = 0.5 cm. For the Reynolds 
number we have adopted the value Re = 2.3u,Rjv 
based on the mean streamwise velocity 2.3u, measured 
at the top of the simulated blades [5] and D has been 
calculated from equations 2,3,4 and 5 of ref. [7]. It is 
clear that all the data collapse into a single curve over 
the wide range of parameters explored by Chamber- 
lain : the data include six different particle sizes (32,19, 
5, 2, I and 0.08 .um diameter) at three values of the 
friction velocity (f40,70, and 35 cm s- ’ I3 as well as six 
more points w*ith lycopodium spores $32 pm dia. at six 

. U =14Ocm/s 

106- 
OLYCOPODIIJM P, 

FIG. 2(a). Nondimensional particle deposition velocity to 
artificial grass as a function of the deposition parameter. Data 
from ref. [8], corrected (black symbols) and uncorrected 
(white symbols) for gravitational settling. Two broken lines 
(---) with slopes 3 and 1 (corresponding to the interception and 
diffusion asymptotic regions) are drawn through the data. 
The solid line (-) shows, as a reference, the single fiber 
collection efficiency at the stagnation point ofan infinite strip 
normat to the unseparated potential flow. U, = 2.3~4,~ R = 
0.5 cm = strip width. The fycopodium experiments (0) were 
carried out over a wider range of vahzes of P, than the other 

particles. 
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different friction velocities (146, 120, 84, 73, 44 and 
28 cm s- ‘f. For comparison purposes, we have also 
drawn the theoretical curve corresponding to the 
deposition to a single fiber at the stagnation point 
where the function K(X) is 

EC(X) = kX (3.27) 

and X is close to zero. Then the function ‘-P in equation 
(3.22) can be obtained anaIytically [7] to yield 

j”r, _ 
Dn, - 

ev(-p3) 
. (3.28) 

exp( - p3c3)d5 

The asymptotic behavior of Y(g) is (in terms of the 
gamma function F) 

p -+ 0, Y --t p/I’(4/3) (diffusional limit) (3.29) 

I* -+ Y_-, Y -+ 3/13 (interception limit) (3.30) 

while in the region where B is of order unity, the 
transition can be described very accurately by sum- 
ming a series 

Y(p) = pexp(-p3) 
i- 

(_p)3m -1 
F(4/3) - p m$O (3m + l)m! 

I 
(3.31) 

The asymptotic behavior for large p requires a slope 
of three in a log-log plot, which is accurately followed 
by the data. The expected slope for lower values of p is 
unity ; this is also followed reasonably well, though we 
cannot be certain because only three of Chamberlain’s 
points fall in this region, all of them for a single particle 
size, which was measured with less precision than the 
remaining points in the data. A quantitative com- 
parison requires relating the deceleration rate para- 
meter o (entering into the definition of p) with the 
known variables U I (= 2.3~~) and R appearing in our 
plot. For the potential flow around an obstacle one 
generally has 

w = bU,/R (3.32) 

where the constant b depends on the body geometry. A 
number of values are reported by Fuchs [23]. We have 
selected b = 2, corresponding to a flat strip normal to 
the incident (unseparated) stream, though any other 
value of order unity would be equally reasonable 
because the flow is not potential, normal to the strip, 
nor unseparated. 

In spite of the considerable shift between the data 
and the reference theoretical curve, this qualitative 
agreement over more than nine orders of magnitude of 
the deposition variable is impressive. Moreover, the 
vertical shift between theory and data is signi~cantly 
less than shown in the figure if we consider that : 

(1) The theoretical line represents the single blade 
efficiency while the data refer to total surface de- 
position. The former should therefore be increased by 
a factor of 4.2, the surface area of the grass per unit 
horizontal area. [Based on data for cylinders, where 
the back separated face contributes roughly as much as 

the front laminar region for heat transfer (ref. [16], Fig. 
12.18) we have assumed that the front and the back 
sides of the strips are equally efficient mass sinks.] 

(2) The theoretical line ignores free stream turbu- 
lence effects, which are known to enhance diffusive 
deposition rates [ 181. This effect cannot be predicted in 
the interception region because no data are available, 
and 110 existing theory can explain the observed free 
stream turbulence effects, not even in the relatively 
simpler diffusion region [18]. Nonetheless, intercep- 
tion deposition increases as the 312 power of the 
instantaneous free stream velocity U, whose mean 
value is certainly larger than U”, 2. Therefore, this effect 
alone should account for an increase by a factor of 2 or 
3 in interception at the large turbulence levels present. 
If these corrections for area and turbulence are taken 
into account, the predicted deposition velocity based 
on single element theory falls about one order of 
magnitude below the data in Fig. l(a). 

Figure 2(b) expands Fig. 2(a) to include the vapor 
deposition data of [S], previously shown in Figs. l(a) 
and (b). This extends the region of validity of the 
correlation to fifteen orders of magnitude of the group 
(rgrp/D), from relatively large particles to molecular 
dimensions. We have used for rp the values 2.66 x lo- * 
and 5.62 x IO-‘cm for H,O and Pb212 respectively, 
based on the Chapman-Enskog expression for the 
diffusion coefficients of perfectly reflecting hard 
spheres. This form of representation is not the most 
appropriate for the diffusion of vapors, as the data do 
not strictly fall into a single curve for values of u,r,/D 
less than 10d5, but they nearly do so, and the figure 
shows the gradual transition from vapor to particle 
behavior. 

As a reference, we also plot the data of Chamberlain 
[X] in Fig. 3 in the more standard form, particle 
deposition velocity l:* vs particle diameter d,. Only the 
data for ~1% = 70 cm s _ L are shown, as the other behave 
in a similar way. The characteristic minimum in the 
submicron range is clear, though with only one point 
in the diffusion region. Note that the deposition 
velocities for lycopodium and ragweed particles are 
very close to each other (for all three values of u.,J This 
anomaly is also visible in Fig. 2(a), where the three 
ragweed data points fall systematically to the left of the 
remaining points. Ragweed thus behaves as it it were 
effectively larger than it really is, in qualitative agree- 
ment with Chamberlain’s observation [8] that “the 
pollen grains are spherical, but the surfaces are covered 
with warts a few microns in height” These “warts” 
would not affect inertial or diffusive effects signi- 
ficantly, but would certainiy modify the effective 
diameter of the particles for interception. Therefore, 
the “ragweed shift” is consistent with the interception 
mechanism. 

3.4. Inertial efects 

Another interesting aspect of the proposed cor- 
relation is that it works beyond the expected limits of 
validity, as significant inertia1 effects would be expected 
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Frc, 2(b). Extension of Fig. Ita} to include the data from r& 
[S] on vapor diffusion to artificial grass. N&c the smooth 

transition from gas to particle deposition behavior. 

for the two larger particle sizes. The critical Stokes 
number marking the onset ofinertia corresponds to wz 
= $, T being the particle relaxation time. But for the 
case of lycopodium spores at II* = 140cms-‘, we 
obtain 

mi=b92.5 

(again we have taken b = 2, U z = 2.35, R = 0.5 cm), 

t 1 I -I 

bJ 

/ 

Ftc; 3. Particle deposition velocity 6~~ as a function of particle 
diameter &. Data for artificial grass [g] ; u, = 70cm s- ‘. 
Broken iines correspond to the asymptatic behavior : cg - 

@/Yf~ 3; Gg - a;. 

Frr,. 4. Particie deposition vefocity uu corrected (a) and 
uncorrected (0) for the gravitational settling speed LX,, as a 
function of the friction velocity IL+. Data for lycopodium 
particles [S]. The broken line drawn through the data shows 

the 3/2 power dependence expected from interception. 

which is well supercritical. Yet no inertial effects are 
seen from the data: Figure 4 shows a plot of the 
particle deposition velocity (corrected and uncorrected 
for the gravitational settling) against the friction 
velocity, and it may be seen that the dependence is 

3.2 c* - u, 

as expected from interception. The inertial deposition 
rates should depend more strongly on u*. This fact 
may be due to bounce off, to the channeling of the 
stream between the different strips, to the high in- 
terception deposition rates which overshadow the 
inertial con~~bution~ or possibly to all these phenom- 
ena acting together. In any case, it is unlikely that the 
correlation will remain valid for higher particle sizes or 
wind velocities. 

Rates of transport of heat and mass to rough 
surfaces are related to the transport rates to single 
roughness elements. An exact relationship was not 
found but an approximate analysis suggests that rough 
wall deposition data might be successfully correlated 
using parameters borrowed from single element de- 
position theories, and we have shown that this is the 
case for vapor and particle transport. For the case of 
vapors, this can be demonstrated by noticing that the 
group Pr2j3 h+ 1 ‘2, used previously to correlate a 
considerable number of heat transfer data, is directly 
related to the high Reynolds number heat transfer 
coefficient of single eiements. For the case of particles, 
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we have developed a theory of deposition by diffusion 
and interception at high Reynolds numbers, consistent 
with the correlation principle when compared with 
data for particle capture by artificial grass : those data 
fall into a single curve when plotted in terms of the 
nondimensional variables suggested by the theory, and 
also show the same asymptotic behavior expected from 
single element capture in both the diffusion and the 
interception range. Surprisingly, the correlation holds 
beyond the expected limits of validity, in the region 
where we would expect considerable inertial effects. 
The observed capture rates are more than an order of 
magnitude higher than calculated from single element 
theory possibly due to the neglect of the high turbu- 
lence intensities within the roughness region. The 
dominant role played by the interception effect seems 
nonetheless well established for particle sizes from 
1 pm to 20 or 30pm. This result, if confirmed more 
generally, would permit approximate predictions of 
particle deposition velocities over the wide intercep- 
tion region in terms of a single constant C characteris- 
tic of each type of surface 

2. 

3. 

4. 
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8 

9 

10 

11 

rg = C, + Cu: ’ r,“, (4.1) 

The mechanism of deposition of large (d, > 1 pm) 
particles to such rough surfaces differs signi~cantly 
from the mechanism for transport to smooth surfaces 
[24]. For smooth surfaces, particle transport occurs by 
turbulent diffusion from the gas mainstream; the final 
deposition occurs by an inertial mechanism. For rough 
surfaces, particle transport from the gas mainstream 
into the roughness elements also occurs by turbulent 
diffusion. However, the final deposition takes place by 
filtration in the roughness elements; for the range of 
variables reported here, the interception mechanism 
was dominant. 

12 

13 

14 

15 

The present work has dealt only with fully rough 
surfaces. A natural extension with promising engineer- 
ing appIications would be to study the hydrodynami- 
cally smooth limit. In this case, the roughness elements 
are small compared to the thickness of the viscous 
sublayer and a significant increase in particle capture is 
achieved at no cost in pressure drop [25]. Under these 
circumstances, the filtration model should be expected 
to work also, although the flow around the protrusions 
would be characterized by a small value of the 
Reynolds number. 

16. 

17 

18. 

i9. 

20. 

21. 

Acknowledgements-We wish to thank Dr A. C. Chamberlain 
and Dr C. I. Davidson for their helpful comments on the 
manuscript. This work was supported in part by EPA Grant 
CR-807864-01. The contents do not necessarily reflect the 
views and policies of the Environmental Protection Agency. 

22. 

23. 

24. 

REFERENCES 25. 
1. G. Sehmel, Particle and gas dry deposition: a review, 

Atmos. Enriron. Id,98331012 (1980). 

J. Nikuradse, Laws of flow in rough pipes, NACA TM- 
1292 (1950). 
I-f. ~hlicht~g, Ex~rimental investigatjons on the prob- 
lem of surface roughness, NACA-TM 823 (1937). 
M. J. Lewis, An elementary analysis for predicting the 
momentum- and heat-transfer characteristics of a hy- 
draulically rough surface, Truns. Am. SOL.. Me&. Eqr.>. 
Series C, J. Heat Transfer 97, 249 (1975). 
A. C. Chamberlain, Transport of gases to and from grass- 
like surfaces. Pro<. R. Sot. A29B. 236265 (1966); J. 
ShrefRer, Appt. Met. 15, 744-46 (‘1976) and Brutsaert, 
Boundary-Luger Metereoi 16, 365-88 (1979). 
A. M. Yaglom and B. A. Kader, Heat and mass transfer 
between a rough wall and turbulent fluid at high 
Reynolds and Peclet numbers, J. Fluid Mrch. 62, 
601-623 (1974). 
S. K. Friedlander, Particle diffusion in low speed flows, J. 
Co~~oi~~ interface Sci. 23, I57- 164 (1967). 
A. C. Chamberlain, Transport of lycopodium spores and 
other small particles to rough surfaces, Proc. R. Ser. 
A296,45-70 (1966). 
B. A. Kader and A. M. Yaglom, Heat and mass transfer 
from a wall with parallel roughness ridges, Int. J. Heat 
Mass Transfer 20, 345-357 (1977). 
M. R. Raupach and A. S. Thorn, Turbulence in and above 
plant canopies, Amt. Rec. Fluid Me&. 13.97-129 (1981). 
M. R. Raupach, A. S. Thorn and 1. Edwards, A wind 
tunnel study of turbulent flow close to regularly arrayed 
rough surfaces, Boundury-Layer Metereol. 18, 373-397 
(1980). 
C. I. Davidson and S. K. Friedlander, A filtration model 
for aerosol dry deposition: application to trace metal 
deposition from the atmosphere, J. Ge(~~~7~.~. Res. 83, 
234332352 (1978). 
S. K. Friedlander, Smoke, Dust and Haze. John Wiley, 
New York (1977). 
V. G. Levich. Physicochemica/ H,vdrodynamics, Section 
30. Prentice-Hall, New Jersey (1967). 
W. G. N. Slinn, Predictions for particle deposition to 
vegetative canopies, submitted to Atmos. Environ. (1980); 
W. G. N. Slinn, Wuter, Air and Soil P(~~~~fi~fl7,513-543 
(1977), and D. H. Bathe, Armas. Ewirot~. 13, 1681-1687 
(1979). 
H. Schlichting, Boundary Layer Theory, 6th edn. 

McGraw-Hill, New York (1968). 
M. M. Pimenta, R. J. Moffat and W. M. Kays, The 
turbulent boundary layer: an experimental study of the 
transport of momentum and heat with the effect of 
roughness, Rep. HMT-21, Dept. of Mech. Eng., Stanford 
University (1975). 
J. Kestin, The effect of free stream turbulence on heat 
transfer rates in Admnces in Heur Trumfer, Vol. 3, pp. 
l-33. Academic Press, New York (1966). 
R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport 
P~e~orne~u, p. 409. John Wiley, New York (1960). 
A. C. Cham~rlain, Transport of gases to and from 
surfaces with bluff and wave-like roughness elements, Q. 
J. Royal Met. SM. 94, 318332 (1968). 
K. W. Lee, Filtration of submicron aerosols by fibrous 
filters, Doctoral thesis, Dept. Mech. Eng., University of 
Minnesota, Minneapolis (1977). 
S. K. Friedlander, Theory ofaerosol filtration, [ml. Enqng 
Chem. SO, 1161-1164 (1958). 
N. A. Fuchs, The ~~ec~ui~jcs oj” Aerosols, p. 169. Per- 
gamon Press. New York (1964). 
S. K. Friedlander and H. F. Johnstone, Deposition of 
suspended particles from turbulent gas streams, Ind. 
Enunu Chem. 49. 1151-1156 (1957). 
A. C.“Wells and A. C. Chamberlain, Transport of small 
particles to vertical surfaces, Br. J. Appi. Phw. 18, 
179331799 (1967). 



Aerosol and gas deposition to fully rough surfaces 1735 

DEPOT D’AEROSOL ET DE GAZ SUR LES SURFACES PLEINEMENT RUGUEUSES: 
MODELE DE FILTRATION POUR DES ELEMENTS EN FORME D’AILETTE 

Rksumti-Des flux de particules et de gaz transport& sur les surfaces rugueuses par des ecoulements 
turbulents peuvent dtre relies a des efficacitts de collecte desdlements individuels de rugositi. Le transport sur 

les surfaces pleinement rugueuses est si rapide que la concentration (moyenne) est proche dune constante 
entre le coeur de l’ecoulement et la couche rugueuse et le caractere limitant le flux est le depot sur les elements 
rugueux. Des expressions pour les flux deposes peuvent etre obtenues en utilisant la theorie de la filtration 
modifiee pour tenir compte des grands nombres de Reynolds autour des elements. Des donnCes de la 
littirature sur le transfert de part&ties et de gaz ii des plaquettes de gazon artiticiel peuvent &tre represent&s 
en utihsant des variables adimensionnelles de la theorie de la filtration. La formule est satisfaisante surplus 
de neuf ordre de grandeur de la variable de depot et elle montre des formes iimites convenant aux domaines 

des pet&es et des grandes dimensions de particules. 

DIE ANLAGERUNG VON AEROSOLEN UND CASEN AN RAUHIGKEITSFL~~HEN: EIN 
FILTRATIONSMODELL FUR HALMFORMIGE ELEMENTE 

Zusam~nfas~n~--Die Geschwindigkeiten des Teilchen- und G~stransports aus turbu~enten Str6m~~gen 
an RauhigkeitsflLhen lassen sich mit den Auff~gwirknngsgraden der einzelnen Rauhigkeit~lemente in 
Verbindung bringen. Die Bewegung zur Rauhigkeitsoberflache hin verlauft schnell, so da6 die (mittlere) 
Konzentration zwischen Hauptstromung und Rauhigkeitsschicht fast konstant ist und die 
Bewegungsgeschwindigkeit durch die Anlagerung an die Rauhigkeitselemente begrenzt wird. Aus der 
Filtrat~onstheorie k&men Ausdriicke fur die Anlagerungsgeschwindjgkeit abgeleitet werden, die jedoch 
modifiziert werden mussen, urn die hohe Reynolds-Zahl der Striimung an den Ebmenten zu 
berticksichtiaen. Aus der Liter&m ktlnnen Daten iiber die Teilchen- und Gasbewegung an kiinstliehen 
Grashalmen ausgewertet werden, wobei dimensionslose Griit?en aus der Filtrationstheorie eingesetzt werden 
kBnnen. Die Korrelation ist iiber mehr als neun ~r6~nordn~gen der Variablen, die die Anlagerung 
bestimmt, zufriedensfe~~end und zeigt richtige Grenzuerte in den kleinen und groSen 

Tei~chen~~~nbereic~en. 

OCAXAEHME A3PO30JlR M I-A3A HA llIEPOXOBATblX FIOBEPXHOCTJIX. 
~~,~bTPA~~OHHA~ MOAEJIb AJlrt WIEMEHTOB B QOPME Y3KMX HJIACTMH 

hHOTWiS--CKOpOCTb iRpt%iOCil ‘IQCTHII II rasa w3 ‘ryp6yne~T~oro IIOfOKa K IIIepOXo5aTblM 
IIOBepXIIOCTsM MONKHO CBR3aTb C K03~(t)IIIIIIeHTaMA IiX 3aXaaTa OTAeJIbHbIMA 3JIeMeHTaMA IIIepOXOsaTO- 

CTH. DepeHOC ‘IaCTMU I4 ra3a K IIOJIHOCTbM IUepOXOBaTbIM IIOIIepXHOCTRM IIpOnCXOJIUT HaCTOJIbKO 

6bICTp0, ‘IT0 IIX (Cpe,WIa) KOHUeHTpaUWI OXa3bIBaeTCR IIOYTM; nOCTOaHHO& 80 BCeli 06BaCTn of 
O~HO~HO~O ~OTOK~ no CXOR mepo~oaaTocrn. CKOpOCTb nepenoca 3aMennseTca B cranmi ocawcireutlrt 
qacTnu ffa 3neMeeTax mepoxo5aTocTn. k%nTeHCnBHOCTb OCaXLteHMR MOmHO OnBCaTb C IIOMOIUbm 

t$,iinbrpaunonnofi Teop55, yqnrbreammeii 605bmUe YIic.5a PeiirIonbnca npn 06TeKanHn 3neb4eUTo5 
IIOTOKOM. AaHHbIe, OUy6n~KOaaHHble B pane pa607 5JIs ~CKyC~BeHHO~ TpaBhI, MOXHO 0606WiTb 

C nOMQIUbIO 6e3pWMepHbIX IIe~MeHHbIX ~~nbTpaunOnH0~ TeopKe. 06o6ma~maa 3aBNCuMOCTb 
y~o5~eTEopnTe~bHo,Et aUaIIa3oHe UInpnHOii 6onee 5eBITIf nOp%IKOB. OrIACbI3aeT semisuuy oca)tXaetimb 

KpoMe TOfO. OHa ITpa5KAbKO 5e5eT Ce65 I3 IIlYWIe,?btibiX CJIy%iIIX 6onbmnx II MaJIbIX saCTIm. 


