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Abstract—Rates of particle and gas transport to rough surfaces from turbulent flows can be related to the
collection efficiencies of the individual roughness elements. Transport to the fully rough surfaces is rapid so
the (average) concentration is nearly constant from the main flow into the roughness layer, and the rate
limiting step is deposition to the roughness elements. Expressions for the deposition rate can be derived using
filtration theory, modified to take into account the high Reynolds number flow around the elements. Data
from the literature on particle and gas transport to blades of artificial grass can be correlated using the
nondimensional variables of filtration theory. The correlation is satisfactory over more than nine orders of
magnitude of the deposition variable and shows proper limiting forms in the small and large particle size

ranges.

NOMENCLATURE

B!, difference between the transfer coefficient for
mass and momentum to the roughness sub-
layer, wih),u,/j" — u(b)u,;

b, constant defined by equation (3.32);

b, constant in equation {2.1), equal to 0.2 [6];

d particle diameter [um];

D, particle diffusion coefficient [cm?s™'];

£ stream function giving stagnation region
velocity field;

[, f", first and second derivatives of f respect to n;

F nondimensional particle density, equation
{(3.20);

g. gravitational acceleration [ems™?];

G, constant in equation (2.14);

h, characteristic height of individual pro-
trusions [cm];

h*, nondimensional height, hu,/v;

j//,  mass flux [gem2s™'];

k, defined by equation (3.7);

equivalent sand roughness;

K, effective rate constant defined in equation
(2.4) [s™*]; in equations (3.10) and (3.11) it
describes the variation of the stream function
with X away from the stagnation point;

K’,  defined by equation (3.13);
integer number in equation (3.31);

n, particle density [gem ™%];
e, free stream value of n, equation (3.18)
[gem™7];

Pr, Prandti number, or ratio between the carrier
gas kinematic viscosity and the diffusivity D
(or the heat diffusivity for heat transfer). For
mass transfer problems the Schmidt number

_ * Present address: Department of Mechanical Engineer-
ing, Yale University, Box 2159 YS, New Haven, CT 06520,
USA.

Ugs

Ugs

Sc is generally employed instead of Pr;
defined by equation (2.9);

particle radius [um];

characteristic length of the obstacle’s cross-
section. For the artificial grass of refs. [5, §]
(R = 0.5cm} it is the blade width [cm];
Reynolds number for the flow around the
obstacle, RU _/v;

vertical area of protrusions available per unit
volume for deposition [cm™'];

mean velocity along the flow direction
[ems™'];

turbulent friction velocity based on the wall
shear 7, and the fluid density p, (v/p}*?
[ems™'];

fluid velocity within the boundary layer of a
single cylindrical fiber in the direction paral-
lel to the wall, equation (3.1) [ems™*];
velocity far from the single fiber in the flow
direction [cms™!];

particle deposition velocity, reported in ref.
[5] [ems™'];

particle gravitational settling speed, gt
[ems™'};

fluid velocity within the boundary layer of a
single cylindrical fiber in the direction nor-
mal to the wall fems™'];

vapor concentration;

nondimensional coordinate parallel to the
obstacle, equation (3.12);

nondimensional coordinate normal to the
obstacle, equation (3.15);

height normal to the rough plate [cm].

Greek symbols

ra
5%
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gamma function;
thickness of momentum boundary layer

fem];
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g, eddy diffusivity [cm*s™!];

7, collection efficiency, defined in equation
(3.4); also viscous length, equation (3.5);

U, high Reynolds number particle deposition
parameter, defined in equation (3.17);

v, fluid kinematic viscosity [em?s™'];

T, particle relaxation time, related to D by
Einstein’s formula D = kTt/m, where k is
Boltzmann’s constant, T the absolute tem-
perature and m,, the particle mass [s];

¥, nondimensional particle deposition func-
tion, equations (3.22) and 3.28);
, deceleration parameter describing the in-

viscid velocity field close to the stagnation
point (3.1) [s~!].

1. INTRODUCTION

THeRE is much interest in the rates at which pollutants
(particles or gases) are transported from the atmos-
phere to the ground. Yet our understanding of the
underlying phenomena is so limited that the recent
review by Sehmel [1] concludes that the available
experimental data show a scattering of three and four
orders of magnitude for deposition velocities of par-
ticles and gases respectively. To reduce this un-
certainty, we consider the problem of mass transfer
from turbulent flows to a certain class of rough surface
as an appropriate model for the atmosphere-ground
interface. In this study, we make use of the consider-
able engineering literature on transport to rough
surfaces.

Soon after Nikuradse’s [2] experiments on turbu-
lent flows over sand-roughened surfaces, the concept of
the ‘equivalent sand roughness” was introduced as a
practical tool to correlate friction data. Since then,
rough wall problems have been most commonly
described from a macroscopic (or phenomenological)
point of view: rather than studying surface micros-
copic structures and their relation to the flow field,
engineers have tended to measure a single macroscopic
overall property, the ‘surface equivalent sand rough-
ness’ k.. A number of authors have sought a more
fundamental way to approach the problem, trying to
relate the total drag (or heat and mass fluxes) observed
on rough surfaces to the individual transport rates to
each of the protruding elements. Indeed, the micro-
scopic line of attacktis a most natural one: for instance,
the fact that the friction coefficients on plates and
channels are Reynolds numbers independent for fully
rough flows (those in which the roughness elements
penetrate into the fluid far beyond the viscous sub-
layer) is often explained by the dominance of the
Reynolds-number-independent form of drag of in-
dividual protrusions over the total drag. Yet, when one
makes a momentum (or mass) balance on the basis of

+ From here on this more fundamental point of view will be
called ‘microscopic’ as opposed to the macroscopic or
phenomenological equivalent sand roughness approach.

this microscopic model, the results are often un-
satisfactory. The early work of Schlichting [3], which
is still one of the best examples of this approach, is
characteristic of some of the frustrating aspects of the
microscopic method. Schlichting measured friction
coefficients for six different protrusion shapes at
various concentrations, and compared the resulting
individual drag coefficients of his roughness elements,
extracted from the total drag of the rough plates, with
the known values under isolated conditions. He ob-
tained some qualitative agreement, but the inferred
drag coefficients varied substantially as a function of
roughness concentration (over an order of magnitude
in some of the cases), showing larger friction factors
than expected from the drag of individual protrusions
for small densities, and smaller values for high con-
centrations of roughness elements. Unfortunately, 45
years later, in spite of some notable attempts [4] the
situation has not improved much: we still lack a
reliable method of predicting friction coefficients from
the microscopic structure of rough surfaces. The fluid
motion around those many obstacles with strong
spatial inhomogeneities, very high turbulence inten-
sities and large separated regions has been too com-
plex to describe microscopically. The situation for the
transport of vapors and heat to rough surfaces is
similar. Attempts to relate the rate of mass transfer to
single roughness elements with the total mass captured
on the rough surface have lead to order of magnitude
agreement but not to accurate predictions [5]. The
complexity of the problem offers little hope of produc-
ing completely successful microscopic theories of
transport phenomena to rough surfaces ; however, the
order of magnitude agreement achieved thus far
suggests that our knowledge of transport efficiencies to
single elements might be useful to correlate overall
transport efficiencies to rough surfaces. Indeed, Yag-
lom and Kader [6] have succeeded in correlating a
fairly large number of vapor and heat diffusion data to
fully rough surfaces for the case of densely packed
roughness elements of various forms. Although the
physical model they used does not specifically in-
corporate single protrusion capture efficiencies, it is
easily shown (Section 2} that the nondimensional
group playing a major role in their correlation is
precisely the Stanton number for mass or heat transfer
to single roughness elements.

In this paper we show that the rate of mass transfer
to fully rough surfaces is closely related to the ‘single
element capture efficiencies’ for a more complex sys-
tem than that studied by Yaglom and Kader [6],
namely, the turbulent deposition of particles to grass.
For this purpose we will first introduce the high
Reynolds number form of Friedlander’s [ 7] theory for
the deposition of particles to solid obstacles by
diffusion and interception, and use it to correlate the
wind tunnel measurements of Chamberlain [8]. It will
be seen that the available data collapse into a single
curve when plotted in terms of the similarity variables
suggested by the theory. The proposed correlation is
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successful over more than nine orders of magnitude for
the nondimensional particle deposition velocity {even
beyond the expected limits of validity), covering par-
ticle sizes from 32 to 0.08 um and a range of friction
velocities.

2. TRANSPORT OF VAPORS TO ROUGH SURFACES

2.1. Introduction

Many experimental and theoretical studies have
been made of the turbulent transfer of heat and massto
rough surfaces in channels and tubes. Much of this
work was reviewed by Yaglom and Kader [6]. They
have been able to correlate an important subclass of
the data in rather simple terms, and proposed a model
for the hydrodynamic structure of the roughness
sublayer which led them to an expression for the mass
(heat) transfer resistance across this sublayer that
agrees rather well with a large number of data for the
case of closely packed 3-dim. roughness elementst.
The model proposed predicts a sublayer transport
resistance proportional to

h*12 (P23 — by (2.1)

where ¥ = hu_/v is the nondimensional form of the
characteristic protrusion height h, u, is the friction
velocity for the turbulent flow, and v is the fluid
kinematic viscosity. Pr is the Prandtl number, or ratio
between v and the molecular diffusivity of heat (mass),
and b' is a small constant. The model includes no
dependence on shape and spacing between roughness
elements because the data were not sufficient to assess
systematically this effect and little was known of the
hydrodynamic structure of the roughness sublayer.
But this situation has changed recently, based pri-
marily on fundamental studies of turbulent flows over
rough surfaces at a very different scale, in the atmos-
pheric boundary layer in and above plant canopies.
The recent review of Raupach and Thom [10] has been
an important step towards a synthesis between the
engineering and the atmospheric scales. Raupach and
Thom [10] do not cite previous studies at the engineer-
ing scale but they refer to their own remarkable wind
tunnel-experiments [11] in which the hydrodynamic
structure of the roughness sublayer is partially un-
veiled. Those data show a weak variation of the mean
velocity within the roughness sublayer, which does not
extrapolate to zero as the bottom wall is approached,
contradicting the assumption of the Yaglom and Ka-
der [6] model (Section 2.2). Thus, in Section 2.3, we
shall introduce the alternative ‘filtration model’ (not
new in the atmospheric literature [ 12]) for mass (heat)
transfer, which will lead naturally to the Yaglom and
Kader group h*!?2 Pr?”® governing the transfer re-
sistance across the roughness sublayer. Our approach

t Although the agreement for 2-dim. roughness elements
was much less satisfactory, Kader and Yaglom [9] have also
found correlations valid for this type of roughness. Here we
will be concerned only with the 3-dim. type, most often
occurring in nature.
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does not result in absolute predictions but provides
certain correlation parameters; it may easily be exten-
ded to study the capture of particles including inertial
and interception effects [13].

2.2. The Yaglom and Kader model [6]

The physical model which leads Yaglom and Kader
to the successful expression (2.1) for the mass transfer
resistance across the roughness sublayer was based on
the early ideas of Levich [14]. Making a sound
assumption on the form of the eddy viscosity coef-
ficient, Levich integrated the streamwise momentum
conservation equation assuming a constant value for
the shear stress, and obtained the expression

(2.2)

u = u,zfh

where z is the distance from the wall for the mean
velocity within the roughness sublayer for the case of
walls with small concentrations of protrusions. From
equation (2.2), Levich [14] showed that the thickness
of the boundary layer (at the wall, below the roughness
elements) varies as A+ !, in agreement with equation
(2.1). But for the closely packed roughness case
considered by Yaglom and Kader, equation (2.2} is in
clear disagreement with the data [11] which show that
u changes weakly within the roughness sublayer. Even
if a linear variation with z were compatible with
experiments, ¥ would not extrapolate to zero close to
the wall (ref. [11], pp. 390-391) but to a value
comparable to the velocity at z = h. Therefore
equation (2.2)is not confirmed by experiments, and (as
discussed by Levich [ 14]) both Levich’s model and the
Yaglom and Kader extensions of it are not applicable
to densely packed roughness elements.

2.3. The filtration model

Much of the area available for heat and mass
transport to walls covered with closely packed rough-
ness elements is not at the bottom wall, but at the
protrusions themselves. Since the convective motion is
much more intense around them than at the bottom
layer, a large fraction of the transfer of heat or matter
would be expected to occur at the roughness elements.
Accordingly, they may be viewed as heat or mass
‘sinks” volumetrically distributed within the flow field,
and the transport process may be modeled as
routinely done in gas filtration [ 13]. Filtration models
have been used previously to study the transport of
heat and mass [12, 15}, or momentum [10] within
vegetation canopies. Here we show that the idea is also
applicable at the much-smaller engineering scale stud-
ied by Levich, and provides a theoretical justification
for Yaglom and Kader’s successful correlation (2.1).

First, let us consider a single roughness element
immersed in a stream with an imposed velocity field
equal to the one prevailing in the roughness sublayer.
Let us also assume that the vertical and horizontal
dimensions of the object are comparable, of the order
h. Then the fluid velocity around the protrusion is
characterized by a Reynolds number of the order h*,
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which for fully rough walls is much larger than unity
[16]. Accordingly, one may use boundary layer theory
to describe the transfer of matter and heat to the
element, and the thickness of the momentum boun-
dary layer d, near the protrusion leading edge is of the
order of h/h™!'2, much smaller than h. Thus, even if the
free stream turbulence intensity is of order unity (based
on forest, and also wind tunnel measurements [17])
the scale of the eddies is large compared to §,, and the
initial boundary layer developing around the pro-
trusion is laminart. Accordingly, we may use the
rather extensive literature for heat and mass transfer to
solid bodies immersed in a fluid. (Indeed, the weak
variation of x with z makes it acceptable to use data
from experiments at uniform upstream velocity.) Then
we define a local capture efficiency or Stanton number
for a single protrusion

?’] e o (23)

u(zywp

based on the local mass flux j”, the mean incoming
velocity u(z) and w, the difference between the value of
the condensing species concentration far from the
obstacle and at the wall. (Provided the latter value is
independent of z, this constant shift preserves the form
of the mass conservation equation.) For convenience,
at every surface strip at a height z, j” is averaged
horizontally and  is only a function of z. Now, given a
rough surface with a density of individual roughness
elements such that the mean area per unit volume
available for deposition at a height z is 5(z), the mean
effect of the roughness may be approximated by a mass
sink

d“J = — y{z) u(z) S(z) w(z}) = — Kw.

dr |.
If we adopt a turbulent diffusion coefficient ¢ and
assume fully developed conditions (independent of x
and v on the average) the mass conservation equation
for the diffusing species may be written as

d dw

—|:(D + 8)-—"1:| = Kw
dz dz

(D is the molecular diffusion coefficient in the mixture)
with boundary conditions

2.4}

(2.5)

wh) = w, (2.6)

T A similar phenomenon occurs for the laminar boundary
layer developing around an airplane wing in the turbulent
atmosphere, or around a gas turbine blade in the highly
turbulent stream of gases coming from the combustion
chamber. The free stream turbulence has an effect on the
boundary layer development around the protrusion because
it precipitates its transition to turbulence, but this influence is
only moderately important, because the transfer rates in the
laminar and turbulent portions are comparable (ref. [ 16], Fig.
12.18). The direct effect of free stream turbulence on the heat
transfer to the laminar part amounts to an 80% enhancement
(ref. [18] Figs. 4 and 18) for a cylinder in cross flow, and free
stream turbulence levels above 2%,

J. FERNANDEZ DE LA Mora and S. K. FRIEDLANDER

w(0) = 0. 2.7

Rather than solving equation {2.5) with a particular
model for ¢ and K, it is convenient first to make some
order of magnitude remarks: ¢ is of the order of

£~ hu*

(2.8)

thus, much larger than D for gases (because h* » 1,
D/v < 1) except near a bottom layer of thickness v/u,.
Then, the only relevant nondimensional parameter
entering the problem is

g = Khfu,. (2.9)

But Q = nuSh/u, ~ nSh, and for the most favorable
case of a very dense packing of roughness elements, $h
is of the order of unity. Thus, in general, Q < g, and
because for high A* the capture efficiency for vapors is
small (as h**1/2) the result is

Q« 1

Accordingly, the concentration profile w(z) is weakly
modified by the sink (Kw) and, like u(z), may be
expected to vary weakly with z within the roughness
sublayer. Thus, since the total mass flux to the
protrusions is given from equation (2.5) by

L]
= j pKwdz (2.10)
0
we approximately have
J" ~ Kphwih) (211

where K is a mean value of K in the region 0 < z < h.
This expression accounts only for the vapor collected
on the roughness elements, not at the bottom wall, but
the important point here is that the flux /7 is pro-
portional to K and thus to the single protrusion
capture efficiency. But for laminar diffusion at high
Reynolds numbers, # is of the order of Re ™12 pr—23:
for instance, for a sphere [19]

#=06Re 12 pPr-23 (2.12)

while for a bed of spheres the behavior is identical, with
a coefficient three times larger (1.82). Now, since Re is
based on a characteristic length of the order of hand a
characteristic velocity of the order u,, it is itself of the
order of h*, and the mass transfer resistance across the
roughness sublayer is

u wih) o4 ptiz p,.lsi

Iz SnU (2.13)

where hS ~ 1 for closely packed roughness elements.
Thus we obtain a roughness sublayer resistance pro-
portional to h™*2 Pr?3_ This expression differs from
equation (2.1) in that it involves the group Pr*” rather
than (Pr* — b')asin the Yaglom and Kader formula.
But, given the small value of b’ adopted by those
authors, (b = 0.2) the difference is small.

In conclusion, the filtration model predicts a mass
transfer rate proportional to the single element capture
efficiency #, which in the region of diffusive deposition
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FiG. 1{a). Mass transfer resistance coefficient
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FiG. 1(b). Extension of Fig. 1(a) to include the data from [§]
on Aitken nuclei deposition to the same surface with artificial
grass.

has the same form as Yaglom and Kader’s successful
correlation. However, the agreement is qualitative
because our model yields

pwihu,

P

— Gh+1;2 Pr2;’3

(2.14)

with G depending linearly on the concentration of
roughness elements, while Yaglom and Kader obtain

pw(hu,,

=055h112(Pri? —02) + 95  (2.15)

which not only shows a large constant shift of 9.5 over
our prediction, but where the constant 0.55 is inde-

pendent of the density of protrusions (rather than
linear) at large densities. Furthermore, the values
of the constant G which we infer from equations
{2.11) and (2.12) based on conditions reported by
Chamberlain [20] for two different walls roughened
with hemispherical elements are close to 1 and 3
respectively comparing poorly with the experimental
value 0.55. On the other hand, the value G = 0.55 given
in ref. [6] is far from being universal. This may be seen
for instance in Fig. 1{a) in which we plot mass transfer
resistance measurements to artificial grass from [5].
Although the data for both, H,O and Pb*'? (with
values of Pr of 0.625 and 2.78 respectively [5]) fall
approximately on a single curve when plotted versus
the group h* 12 Pr?3, the corresponding slope is now
G = 0,054, an order of magnitude smaller than would
be expected from equation (2.15). This is not surprising
because the range of application of the Yaglom and
Kader correlation is limited to protrusions with si-
milar heights and widths. Our model is not so
constrained because an equation of the type (2.12)
applies to bodies such as spheres or cylinders provided
that the Reynolds number is based on the transverse
dimension R rather than k. The use of R leaves the
conclusion of [ 6] unchanged since R ~ h, butalters the
application to Chamberlain’s artificial grass for which
the ratio #/R was 15. Indeed, in terms of the variable

v
suggested by our model, the slope of Fig. 1(a)increases
(by a factor of \/15) to become 0.21, much closer to the
value of 0.55 found by Yaglom and Kader. Thus,

consistent with our approach, it is appropriate to use
the group (2.16) rather than k™ 12 Pr? 3 in future work.

(2.16)
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Qur retention of the latter factor in Figs. 1{(a) and (b)
serves to facilitate comparison with ref. [6].

The range of vatues of h* covered in Fig. Ha}is
considerable, but only two values of Pr are involved,
limiting the validity of our conclusions to molecular
diffusion in gases {the same restriction applies to the
data studied by [6]). Fortunately, Chamberlain {8] has
also measured the rate of deposition of Aitken nuclei
{with Pr = 1.5 x 10*} 10 the same artificial grass surface.
These data are plotted in Fig. I {b} together with the
vapor transport data, and fall along the same line B~*
= 3 4 0.0545%12 Pr?” which passes through the
vapor diffusion data of Fig. 1{a). This provides the first
indication of the wide range of validity of the filtration
model predictions, though it would be interesting to
test it also for the case of large Prandtl number
diffugion in Hiquids. The momentum transfer properties
for this type of rough surfaces are also unusual: the
equivalent sand roughness k, is some ten times greater
than the actual height & for Chamberlain’s artificial
grass, in contrast with the usual behavior for surfaces
with densely packed bluff elements where hand k, are
close to each other. In most engineering situations,
with sparsely distributed roughness, &, is around 30
times smaller than k.

3. TRANSPORT OF PARTICLES TO ROUGH BURFACES

31, buroduction

The vatidity of equation (2.11} relating the total
mass flux to a rough wall with the single element
collection efficiency # is not, in principle, restricted to
diffusional deposition; it is then worth testing ity
usefulness when other mechanisms such as inertia,
interception, electrostatic or gravitational forces, ete.
are present.

Some of the best data on mass transfer to rough
surfaces have been obtained by Chamberlain [5, 8, 20]
both in the field and the wind tunnel, over a variety of
roughness elements (wavy, bluff, or grasslike), for
vapor and particle deposition, and for a wide range ol
friction velocities. Furthermore, Chamberlain’s [20]
diffusion measurements to surfaces with ordered rough-
ness elements played a major role in the development
of the successful correlation (2.15) for vapor de-
position, so it is natural to test a new model of particie
deposition to surfaces with ordered protrusions
against the data in [20]. Besides their precision and the
wide margin of parameters covered, those data have
the additional interest of applying not only to grassy
land, but to a variety of cultivated or natural plant
canopies.

From the theoretical side, most often interception
effects start affecting particle diffusion before inertia
sets in. Besides, the theory of particle deposition on
single fibers by the simultancous action of diffusion
and interception is well developed and agrees satisfac-
torily with low Reynolds number experiments {7, 13,
217, Therefore it is appropriate to adapt Friedlander's
[7] diffusion and interception treatment Yo the high
Reynolds number conditions prevailing in the experi-

}. FERNANDEZ DE LA MORa and 8. K. FRIEDLANDER

ments, and to compare 1t with the data. This program
is developed in the following subsections (3.2} and
{3.3).

3.2. Single element particle capture by diffusion and
interception at large Reynolds numbers

For simplicity we will choose a 2-dim. geometry
corresponding to the flow normal to a bluff body of
arbitrary shape. The origin of coordinates is taken at
the stagnation point, and the y axis is normal fo the
surface at every point, y being zero at the surface.
Generalization to 3-dim. geometries is trivial, and
leaves the main conclusions [equation (3.22)]
unchanged.

The high Reynolds number velocity field in the
inviscid region close to the stagnation point is given by
Schlichting ref. [16], pp. 87-89)

(U, V) = {wx, ~uy) 3.1
and within the viscous laver
U = oxf'(n) 32)
V= — (v} 2 fln) (33
where # is the nondimensional viscous length
0= Y/t (34)
and the near wall behavior of the function fis
fin) = Ly’ 35
rooi (1! o
with
k = {0} = 1.2326. 37

Therefore, sufficiently close to the stagnation point
U = wxkn, {38}
Vo — Yvw)t P ket (39

In the region close o the wall, provided the flow
has not separated and before transition to turbulence,
equations (3.8) and (3.9} can be generalized away from
the stagnation point to give

U = oRK{XH (3.10)
V= — a2 KX, (311

where we have nondimensionalized x with the obstacle
characteristic length R

X =x/R {312}
and alse
dK
U Ry 313
K Ix {3.13)

For large Reynolds numbers, the function K de-
pends on the particular shape of the obstacle, and can
be calculated by standard methods of boundary layer
theory ref. [ 16], p. 154). Then, the equation expressing
conservation of the particle density # is, in the boun-
dary layer approximation,
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&*n o . 0n
- DE}—-Z— + (uK;16~X — 3 K'(vw) 5; =0 (3.14)
and defining the nondimensional vertical length based
on the particle radius r,,

Y = y/r, (3.1%)
it becomes
’53—.3- i’* - 2}(?% + KW% =0 (3.16)
with
s LY 5 32
W= gb—rp {co/vy>*. 3.17)

This equation must be solved with the standard diffu-
sion~interception boundary conditions [7]

{3.18)
3.19)
The solution for any given obstacle [ K{X) fixed] is

n=n, for Y- x,

n={_ at¥Y=1

nn. = F{X, Y, 1) (3.20}
and the average mass flux to the obstacle is
én oF
5£D ;} dx SQ—»] ax
oy D Y
T R 8 bn, Je¥Y L (3.21)

JE v
9€ dx p #} dx

where by the symbol § we mean integration along the
cylinder perimeter. Then, the group j'r,/(Dn,) depends
only on the parameter u

.

F ¥
Dn

= ¥{u). (3.22}

€

Equation (3.22) generalizes Friedlander’s [ 7] result to
the large Reynolds number case. Notice that the
deposition variable jr,/(n.D) obtained here is identical
with its low Reynolds number counterpart. Also,
realizing that the Reynolds number in our case is

Re ~ oR%v (3.23)
we have
i~ ZREZEDNS (324)

which is related with the corresponding low Reynolds
number parameter

(W)gecct ~ (ro/R) Re* P (v/D)* (3.25)
through the weakly-varying factor Re'*®
B~ Re”é (ﬂ)Re«l' (3~26)

Interestingly enoungh, the new parameter u has been
used previously to correlate filtration efficiencies on
purely empirical grounds [22, 217.

1731

3.3. Comparison with experiments

Figure 2(a) shows the data of Chamberlain [8] on
particle deposition over artificial grass using the
similarity variables suggested by the above theory,

- _
Jro/(Dng) vs %_Rel 2 (y/D) 3,

We have used the reported particle deposition velocity
v, in place of "/n,. The characteristic length R chosen is
the transverse dimension of the strips forming the
artifictal grass elements, R = 0.5 cm. For the Reynolds
number we have adopted the value Re = 2.3u,R/v
based on the mean streamwise velocity 2.3u, measured
at the top of the simulated blades [5] and D has been
calculated from equations 2, 3,4 and 5 of ref. [7]. It is
clear that all the data collapse into a single curve over
the wide range of parameters explored by Chamber-
lain: the data include six different particle sizes (32, 19,
5, 2, 1 and Q.08 pm diameter) at three values of the
friction velocity {140, 70, and 35cm s 1}, as well as six
more poinis with lycopodium spores {32 um dia. at six
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FiG. 2(a). Nondimensional particle deposition velocity to
artificial grass as a function of the deposition parameter. Data
from ref. [8], corrected (black symbols) and uncorrected
(white symbols) for gravitational settling. Two broken lines
(---) with slopes 3 and 1 (corresponding to the interception and
diffusion asymptotic regions) are drawn through the data,
The solid line (—} shows, as a reference, the single fiber
collection efficiency at the stagnation point of an infinite strip
normal to the unseparated potential flow. U, =234, R =
0.5 cm = strip width. The lycopodium experiments () were
carried out over a wider range of values of & than the other
particles.
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different friction velocities (146, 120, 84, 73, 44 and
28 cms ™). For comparison purposes, we have also
drawn the theoretical curve corresponding to the
deposition to a single fiber at the stagnation point
where the function K(X) is

K(X)=kX (327)

and X is close to zero. Then the function ¥ in equation
{3.22) can be obtained analytically [7] to yield

i exp(—u°)
D—p‘ =Y = 77—
n

(3.28)
¢ j exp(—p3¢*)de
1
The asymptotic behavior of W{u) is {in terms of the
gamma function T')

1= 0, ¥ - u/T(4/3) (diffusional limit) (3.29)

u— x, ¥ 3u® (interception limit) (3.30)

while in the region where g is of order unity, the
transition can be described very accurately by sum-
ming a series
¥(u) = uexp(-u’)[T(4/3) Y _,,(_;:@%} 1
moo B3m + )m!
(3.31)

The asymptotic behavior for large u requires a slope
of three in a log-log plot, which is accurately followed
by the data. The expected slope for lower values of pi is
unity ; this is also followed reasonably well, though we
cannot be certain because only three of Chamberlain’s
points fall in this region, all of them for a single particle
size, which was measured with less precision than the
remaining points in the data, A quantitative com-
parison requires relating the deceleration rate para-
meter o {(entering into the definition of u) with the
known variables U , (= 2.3u,)and R appearing in our
plot. For the potential flow around an obstacle one
generally has

w =bU /R (3.32)

where the constant b depends on the body geometry. A
number of values are reported by Fuchs [23]. We have
selected b = 2, corresponding to a flat strip normal to
the incident (unseparated) stream, though any other
value of order unity would be equally reasonable
because the flow is not potential, normal to the strip,
nor unseparated.

In spite of the considerable shift between the data
and the reference theoretical curve, this qualitative
agreement over more than nine orders of magnitude of
the deposition variable is impressive. Moreover, the
vertical shift between theory and data is significantly
less than shown in the figure if we consider that:

(1) The theoretical line represents the single blade
efficiency while the data refer to total surface de-
position. The former should therefore be increased by
a factor of 4.2, the surface area of the grass per unit
horizontal area. [Based on data for cylinders, where
the back separated face contributes roughly as much as

J. FERNANDEZ DE LA Mora and 8. K. FRIEDLANDER

the front laminar region for heat transfer (ref. [16], Fig.
12.18), we have assumed that the front and the back
sides of the strips are equally efficient mass sinks.]

{2} The theoretical line ignores free stream turbu-
lence effects, which are known to enhance diffusive
deposition rates [ 18]. This effect cannot be predicted in
the interception region because no data are available,
and no existing theory can explain the observed free
stream turbulence effects, not even in the relatively
simpler diffusion region [18]. Nonetheless, intercep-
tion deposition increases as the 3/2 power of the
instantaneous free stream velocity U, whose mean
value is certainly larger than U3 2. Therefore, this effect
alone should account for an increase by a factor of 2 or
3 in interception at the large turbulence levels present.
If these corrections for area and turbulence are taken
into account, the predicted deposition velocity based
on single element theory falls about one order of
magnitude below the data in Fig. 1(a).

Figure 2{b) expands Fig. 2(a) to include the vapor
deposition data of [ 5], previously shown in Figs. 1{a)
and (b). This extends the region of validity of the
correlation to fifteen orders of magnitude of the group
{vgr,/D), from relatively large particles to molecular
dimensions. We have used for r, the values 2.66 x 10™®
and 5.62 x 10~ % cm for H,O and Pb?*'? respectively,
based on the Chapman-Enskog expression for the
diffusion coefficients of perfectly reflecting hard
spheres. This form of representation is not the most
appropriate for the diffusion of vapors, as the data do
not strictly fall into a single curve for values of v r /D
less than 1077, but they nearly do so, and the figure
shows the gradual transition from vapor to particle
behavior.

As a reference, we also plot the data of Chamberlain
[8] in Fig. 3 in the more standard form, particle
deposition velocity v, vs particle diameter d,,. Only the
dataforu, = 70 cms ™' are shown, as the other behave
in a similar way. The characteristic minimum in the
submicron range is clear, though with only one point
in the diffusion region. Note that the deposition
velocities for lycopodium and ragweed particles are
very close to each other (for all three values of u ). This
anomaly is also visible in Fig. 2(a), where the three
ragweed data points fall systematically to the left of the
remaining points. Ragweed thus behaves as it it were
effectively larger than it really is, in qualitative agree-
ment with Chamberlain’s observation [8] that “the
pollen grains are spherical, but the surfaces are covered
with warts a few microns in height” These “warts”
would not affect inertial or diffusive effects signi-
ficantly, but would certainly modify the effective
diameter of the particles for interception. Therefore,
the “ragweed shift” is consistent with the interception
mechanism.

34. Inertial effects

Another interesting aspect of the proposed cor-
relation is that it works beyond the expected limits of
validity, as significant inertial effects would be expected
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for the two larger particle sizes. The critical Stokes
number marking the onset of inertia corresponds to wt
= 4, v being the particle relaxation time. But for the
case of lycopodium spores at u, = 140cms™*, we
obtain

U

T
=h—— =25
wr R

{again we havetaken b = 2, U, = 23u,, R = 0.5¢cm),
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FiG. 3. Particle deposition velocity v, as a function of particle

diameter d,. Data for artificial grass [8]; u, = 70ems™ %
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FiG. 4. Particle deposition velocity v, corrected (#) and
uncorrected (O} for the gravitational settling speed v, as a
function of the friction velocity u,. Data for lycopodium
particles [8]. The broken line drawn through the data shows
the 3/2 power dependence expected from interception.

which is well supercritical. Yet no inertial eflects are
seen from the data: Figure 4 shows a plot of the
particle deposition velocity (corrected and uncorrected
for the gravitational settling) against the friction
velocity, and it may be seen that the dependence is

32

By ~ U

as expected from interception. The inertial deposition
rates should depend more strongly on «,. This fact
may be due to bounce off, to the channeling of the
stream between the different strips, to the high in-
terception deposition rates which overshadow the
inertial contribution, or possibly to all these phenom-
ena acting together. In any case, it is unlikely that the
correlation will remain valid for higher particle sizes or
wind velocities.

4. CONCLUSIONS AND FURTHER WORK

Rates of transport of heat and mass to rough
surfaces are related to the transport rates to single
roughness elements. An exact relationship was not
found but an approximate analysis suggests that rough
wall deposition data might be successfully correlated
using parameters borrowed from single element de-
position theories, and we have shown that this is the
case for vapor and particle transport. For the case of
vapors, this can be demonstrated by noticing that the
group Pr?® p*12 ysed previously to correlate a
considerable number of heat transfer data, is directly
related to the high Reynolds number heat transfer
coefficient of single elements. For the case of particles,
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we have developed a theory of deposition by diffusion
and interception at high Reynolds numbers, consistent
with the correlation principle when compared with
data for particle capture by artificial grass: those data
fall into a single curve when plotted in terms of the
nondimensional variables suggested by the theory, and
also show the same asymptotic behavior expected from
single element capture in both the diffusion and the
interception range. Surprisingly, the correlation holds
beyond the expected limits of validity, in the region
where we would expect considerable inertial effects.
The observed capture rates are more than an order of
magnitude higher than calculated from single element
theory possibly due to the neglect of the high turbu-
lence intensities within the roughness region. The
dominant role played by the interception effect seems
nonetheless well established for particle sizes from
1 um to 20 or 30 um. This result, if confirmed more
generally, would permit approximate predictions of
particle deposition velocities over the wide intercep-
tion region in terms of a single constant C characteris-
tic of each type of surface
by = v+ Cug?rl. 4.1)

The mechanism of deposition of large (d, > 1 um)
particles to such rough surfaces differs significantly
from the mechanism for transport to smooth surfaces
[24]. For smooth surfaces, particle transport occurs by
turbulent diffusion from the gas mainstream ; the final
deposition occurs by an inertial mechanism. For rough
surfaces, particle transport from the gas mainstream
into the roughness elements also occurs by turbulent
diffusion. However, the final deposition takes place by
filtration in the roughness elements; for the range of
variables reported here, the interception mechanism
was dominant.

The present work has dealt only with fully rough
surfaces. A natural extension with promising engineer-
ing applications would be to study the hydrodynami-
cally smooth limit. In this case, the roughness elements
are small compared to the thickness of the viscous
sublayer and a significant increase in particle capture is
achieved at no cost in pressure drop [25]. Under these
circumstances, the filtration model should be expected
to work also, although the flow around the protrusions
would be characterized by a small value of the
Reynolds number.
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DEPOT D'AEROSOL ET DE GAZ SUR LES SURFACES PLEINEMENT RUGUEUSES:
MODELE DE FILTRATION POUR DES ELEMENTS EN FORME D'AILETTE

Résumé—Des flux de particules et de gaz transportés sur les surfaces rugueuses par des écoulements
turbulents peuvent étre reliés 4 des efficacités de collecte des éléments individuels de rugosité. Le transport sur
les surfaces pleinement rugueuses est si rapide que la concentration (moyenne) est proche d’une constante
entre le coeur de I'écoulement et la couche rugneuse et le caractére limitant le flux est le dépot sur les éléments
rugueux. Des expressions pour les flux déposés peuvent étre obtenues en utilisant la théorie de la filtration
modifiée pour tenir compte des grands nombres de Reynolds autour des éléments. Des données de la
littérature sur le transfert de particules et de gaz d des plaquettes de gazon artificiel peuvent étre représentées
en utilisant des variables adimensionnelles de la théorie de la filtration. La formule est satisfaisante sur plus
de neuf ordre de grandeur de la variable de dépot et elle montre des formes limites convenant aux domaines
des petites et des grandes dimensions de particules.

DIE ANLAGERUNG VON AEROSOLEN UND GASEN AN RAUHIGKEITSFLACHEN: EIN
FILTRATIONSMODELL FUR HALMFORMIGE ELEMENTE

Zusammenfassung— Die Geschwindigkeiten des Teilchen- und Gastransports aus turbulenten Strémungen
an Rauhigkeitsflichen lassen sich mit den Auffangwirkungsgraden der einzelnen Rauhigkeitselemente in
Verbindung bringen. Die Bewegung zur Rauhigkeitsoberfliche hin verliuft schnell, so daB die (mittlere)
Konzentration zwischen Hauptstrdmung und Rauhigkeitsschicht fast konstant ist und die
Bewegungsgeschwindigkeit durch die Anlagerung an die Rauhigkeitselemente begrenzt wird. Aus der
Filtrationstheorie kdunen Ausdriicke fiir die Anlagerungsgeschwindigkeit abgeleitet werden, die jedoch
modifiziert werden missen, um die hohe Reynolds-Zahl der Strémung an den Elementen zu
beriicksichtigen. Aus der Literatur kénnen Daten tber die Teilchen- und Gasbewegung an kiinstlichen
Grashalmen ausgewertet werden, wobei dimensionslose GraBen aus der Filtrationstheorie eingesetzt werden
kénnen. Die Korrelation ist {iber mehr als neun Gréfenordnungen der Variablen, die die Anlagerung
bestimmt, zufriedenstellend und zeigt richtige Grenzwerte in  den kleinen und  groflen
TeilchengroBenbereichen.

OCAXIAEHHE A3BPO30J14 U I'A3A HA IIEPOXOBATHIX NMOBEPXHOCTAX.
OUIBTPALHMOHHAA MOJEJNE A1 BJIEMEHTOB B ®OPME Y3KHX IJIACTHH

Annorauusi—CKOpPOCTh NEPEHOCA HacTHIL M rasa u3 TypOyneHTHOrO HOTOKA K  LIEPOXOBATHIM
MOBEPXHOCTAM MOKHO CBA3ATH € KOIPOHLUMEHTAMH HX 3aXBaTa OTE/LHBIMH 3JIEMEHTAMHU LUEPOXOBATO-
cti. TlepeHoc yacTHIL M rasa K IOJIHOCTLIO LIEPOXOBATHIM MOBEPXHOCTAM INIPOMCXOAMT HACTO/IbKO
GuicTpo, 4TO WX (CpedHss) KOHLEHTDAlMs OKa3bIBACTCH NONTH NOCTOsHHOR BO Beell obnacru ot
OCHOBHOTO MOTOKA [0 ¢J10s wepoxopatocTi. CKOPOCTL NEPEHOCA 3AMEANAETCA B CTALMM OCAKICHMS
YACTHH HA 3TEMEHTAX LICPOXOBATOCTH. MHTCHCHBHOCTD OCAXKICHHA MOXHO ONHCATh C HOMOMILIO
GUALTPAUMOHHON TEODHH, yuuThiBaroiielt Oonbuune wncna Peitnonpica npu oDTEKaHHM 3MEMEHTOB
noTokoM. Jauusie, onyGauKoBaHHBE B pafe paboT A HCKYCCTBEHHON Tpasbl, MOXHO o6o0muTth
¢ noMoIsie Oe3palMepHsix nepeMerHbix dunbrpaunousoffl teopuu. O0obmaromas 3aBHCHMOCTH
yAOBRETBOPHTENBHO, B AHANAI0HE liupunol Bosice ZEBATH NOPAJKOB, ONUCHIBACT BE/THYHKY OCRKIACHHUS,
Kpome toro, oHa npasuasso BedeT ce6s B npeaensHbiX Cliyyasx SORbIINK H MabIX YacTHIL
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