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ABSTRACf

This paper presents a model for the hydraulic simulation of a drainage network using the storageconcept
This model is easier to use than the complete Barre de Saint Venant equations and gives better results than
the usual conceptual models. i.e. the Muskingum model. or than models obtained by the simplification of the
Saint Venant equations (kinematic wave model and diffusion wave model).Ci:l 1997 IAWQ. Published by
Elsevier Science Ltd
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INTRODUCTION

The hydraulic simulation of drainage networks is today very important for many purposes. Anyway, the
diversity of the problems to be solved, makes it impossible to reach all of the objectives with only one tool.
Infact two main families of models are available:

- The first family consists of physically based models. They use the Barre de Saint Venant equations. This
kind of model needs some important hypotheses which are not always verified in sewers systems. Anyway,
they are able, in most cases, to give a correct description of gradually varied flows. The main problems with
these models are the great number of data they require, the difficulty to build stable numerical schemes, their
slowness, and the difficulties in interpretation of results.

- Models of the second family can be called hydrological models. The prototype of this category is the
Muskingum model. These models are very simple to use, even for people who are not hydraulicians, need
very few data and are very quick to run. On the other hand, they are truly unable to represent the effects of
transitional flows due to problems of hydraulics or inconsistencies of networks.

In a previous ICUSD, Yen (1993), mentioned that"in majority ofcases the change offlow in ~ is small
such that the quasi (stepwise) steady flow routing model is sufficientfor solving problems". This idea is

57



58 H. MOTIEEet al.

shared by numerous researchers who think that the better quality of the Barre de Saint Venant model is often
counterbalanced by the difficulty of correct usage.

Several researchers, especially in the Method laboratory of INSA (Chocat, 1978), have considered that the
gap between these two categories of models was wide enough to give place to a new family of models,
easier to use than the Barre de Saint Venant equations, and able to take into account some of the most
important effects of the flow complexity and of the network reality. Such models need to present several
pragmatic qualities:

- be able to represent the actual functioning of the drainage system whatever the type of flow (free surface
or surcharged, infracritical or supercritical);
- be able to represent the functioning of the drainage system whatever the kind of network (branched or
looped) and whatever the nature of the special structures that can be found inside;
- be a lot quicker in running than the Barre de Saint Venant equations;
- be stable whatever the time step and the space step;
- furnish results easy to understand and to use, even for a non-hydraulician.

MODEL PRESENTATION

The proposed model (Motiee, 1996) uses the storage concept, developed by Chocat (1978) and further
developed by Blanpain (1991). It uses the continuityequation:

as(X,t) + aQ(x,t) = 0
at ax

where S(x,t) is the wetted cross section and Q(x,t) the flow rate at the position x and the timet.

This equation can be written between two points separated by a distance (space step)illas follows:

(1)

d V (t) = Q e (t) _ Q s (t) (2)
~t

In this equation, Qe(t) and Qs(t) are respectively the inflow and the outflow, upstream and downstreamof
the reach; V(t) is the total storage volume in the reach.

The second equation is the storage equation.It must link together the storage volume in the reach and the
flow rates upstream and downstream:

Vet) =f(t,Qe(t), Qs(t»

In fact, it is always possible to express the storage volume according to the wetted area in the reach:

xo+Ax

V(t) = JS(x,t)dx

Xo

(3)

(4)

If the evolution of the wetted cross section is always increasing or always decreasing along the reach, we
may write:

V(t) =(a Sam(t)+ (1-a) Sav(t» ~X (5)

Where Sam(t) is the wetted area upstream, Sav(t) the wetted area downstream and where the(X coefficient
depends on the flow characteristics.

Different discretizations can be made from equation (3) (Chow, 1959; Ponce, 1981). Blanpain (1993)
showed that second-rate schemes, like:
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Vet) - V(t· At) = Qe(t) +Qe(t· At). Qs(t) +Qs(t· At) (6)
At 2 2

were never stable. For this reason hesuggested using the simple implicit scheme, previously built by Chocat
(1978):

Vet)- Vet - At) = Qe(t) _ Qs(t)
At

(7)

We used the same scheme, because B1anpain (1993) showed that the results were good.In that case, the
outflow can be calculated as:

Qs(t)= Qe(t). V(t)-V(t-At)
At

To use relation (8), we must be able tocalculateVet). Several cases are possible.

Case of free surface flow. withoutbackwatereffect

(8)

Without any backwater effect the value a=l can be used in equation (5) (Blanpain, 1993);In these
conditions, it is easy to write an explicit equation:

Or:

Vet) = Samet) .AX

Vet) = Qe(t) . Ax = ~. Qe(t)
Ve(t) Ve(t)

(9)

(10)

In equation(10), Ve(t) is the flow velocity upstreamand Qe(t) the inflow rate. If the incominghydrographis
discretized, it is possible, to calculate the flow velocity corresponding to each time step, for example by
using the Manning-Stricklerformula. The main hypothesis is that the variations of thehydrographare slow
enoughto obtain a quasi steady flow at each time step.

Equation(10) can be written with atemporal parameter:

Ax
Tp(t) = Ve(t)

With this notation, we obtain:

Vet) = Qe(t). Tp(t)

(11)

(12)

Equation(12) shows that this model can be understood as aconceptual, non linear model. In this way it can
berelated to the Kalinin-Miljukov model. Compared with simplified hydrodynamic models, this formulation
of the storage model can be related to the kinematic wave model. The patterns of the surface profile
supposed by the two models are actually the same, even if the ways to carry out thecalculations are very
different.

Backwatereffects

In a drainage network backwater effects can be observed in a largenumberof cases: high level of water at
the outlet, due to a river or to the tide; increase of the flow ratedownstream; decrease of the discharge
capacity from one reach to the reachdownstream (decrease of the slope, increase of the roughness, etc.);
presence of a special structuredisturbing the flow, etc. Backwater effects can occur either if the network
operates in pressure flow or if itoperates with free surface flow. Whatever the case, the method is the same.
It supposes that the pattern of the surface profile, inside reachesaffected by the backwater curve, can be
described by the equation (13) :
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~H =J _ I (I=slope of the reach, J=head losses by unitof length)
tox

~ l--------

Figure I. Pattern assumed for the surface profile in case ofbackwatereffect.

(13)

For example, we can look at a simple case, consisting of two consecutive reaches (Fig. I), the second one
affecting the first one, due to asmaller capacity. The problem to be solved is to calculate the correct values
of VI and QsI so thatequations (14) and (15) are bothverified:

(VI(t) - VI(t - tot»
QsI = Qel- -"--....:...:.._~-t.:-.-_~

VI(t) = f(Qel)

(14)

(15)

Where Qe I is the inflow in the first reach; Qs I. theoutflow in the first reach; Qe2=Qs I the inflow in the
second reach; V I, thestorage volume in the first reach .

Equation (15) represents the fact that, on the first hand. the depth of water. h.calculated at the entrance of
the second reach. is directly dependent on the inflow Qe2 (hypothesis of a quasi steady flow). and, on the
other hand, that thestorage volume V1(t) in the upper reach is dependent on the depth. In factequation (15)
shows a continuously decreasing relation between V I and Qs I : The greater Qs I. the greater is h and the
greater is VI; if QsI = 0, then h = 0 and VsI = O.

Equation(14), shows a lineardecreasing relation between Qs I and V I (if V I(t) = 0, then, Qs I = Qe I+ V I(t­
~t)/~t and if Qs I =0 then V I(t) = VI(t-at) + Qe l .At).

Os

v

Figure 2. Graphic representat ion of theexistence and unicity ofequilibrium values of Qs I and V I.

There is only one equilibrium value and it always exists (Fig . 2). This equilibrium value can be found by an
iterative method.

Equation (13) shows that in the case of backwater effects, the storage model can berelated to the diffusion
wave model, which results from several simplifications of the Barre de Saint Venantequations.
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Anyway, even if the two models assume a similar pattern for the surface profile, they cannot be directly
assimilated because of the differences between the calculationmethods.

MODEL VALIDATION

The main objective of the validation step is to verify that the results of the model are consistent with the
reality it is supposed to represent. More precisely, the validation step must:
- define the validity field;
- estimate errorsand uncertainties;
- choose the best values to be assigned to the parameters.

This step can be carried out by several methods, based either on theoretical assumptions or on empirical
assessments. In this last case, the resultsfurnished by the model are compared with reference results. These
reference results either can be derived from measurementsor can be fumished by a reference model. For the
validation of the storage model, we used an empirical methodology, developed by Semsar (1995), which is
presented in anotherpaper (Chocat et al., 1996). The method consists in comparing the results given by the
model to be studied with the results given by the Saint Venant equations, for a set of 15 typical networks,
under 12 kinds of working conditions.

The discrepancies between the results given by two of the models are measured by the discrepancies
between the two hydrographs obtained at the outlet of the networks. Two differentcriteriaare used:

- the minimum total quadratic deviation between the two discretized hydrographs (the hydrograph of
reference:Ql and the hydrographto be compared: Q2), obtained at the outlet of the networks, called TQD:

n

L(Ql(i.f.t»
i-I

nL (Ql(L~t) - Q2(LM +S»2
i-ITQD=..:..:....:...--------

- the time lag between the two hydrographswhich minimises the TQD: a
In his thesis, Semsar(1995), showed that the quality of the results can be said to be excellent if both of the
criteria were less than 0.015, good if they were between 0.015 and 0.05, and acceptable if they were less
than 0.1. It is not possible to give here all the results. We summarise them by fig. 3, which shows, for each
of the 15 networks, the average global deviation, defined as :

Where TQD j and aj are respectively the total quadraticdeviation and the optimum time lag, obtained for the
working condition L

This figure shows that all the AGD values (except for thenetwork number 13) are below 0.1. That means
that both the TQD andaare below 0.1; i.e, that mostof the results are acceptable.

Ifwe compare these discrepancies with those between the Muskingummodel and the Barrede Saint Venant
equations, we can observe a significant improvement in the results: the average value of AGD is 0.1 for the
Muskingummodel, and 0.063 for thestorage model.
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Figure3. Averagediscrepancies betweenthe results given by the Muskingummodel and the storagemodel.
comparedwith the Barrede Saint Venantequations.

Anyway, this improvement is not as substantial as we were expecting, probably because the useof average
values smooths out the discrepancies.It is also interesting to notice that the results given by the two models
(Muskingum model and the storage model) are good for the same networks.In fact for both of them, the
more complex the networks (i.e. with a great number of reaches,junctions, special structures, etc.), the more
the results are similar to those given by the Saint Venant equations. This conclusion concurs with some
results obtained by Chocat (1978), Thibault (1981), Semsar (1995).
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Figure4. Comparisonofhydrographsgiven by the storagemodelwith those given by the Barrede SaintVenant
equationsand theMuskingummodel.

Figure 4 shows an example of the improvement due to the use of the storage model.In this case the
backwater curve is very important, and "blocks" the outflow between the 12th minute and the 42nd minute.
The result is a hydrograph with two maximums, separated by a period of lower flow. The storage model
gives a good idea of this kind of phenomenon, whereas the Muskingum model is unable to represent it.

Compared with the Muskingum model, another advantage of the storage model is that it is able to furnish a
realistic pattern of the surface profile, even in the case of important backwater effects. Compared with the
complete Saint Venant equations the main advantageof the storage model is that the calculation times are a
lot less important (the average calculation time is divided by ten in the studied cases), Moreover, it iseasier
to use and easier to understand the results, even for a non hydraulician, and the model presents no stability
problems. Compared with models obtained by simplifying the Saint Venant equations, the main advantage
of the storage model is that it uses the most appropriate simplification (diffusion wave model or kinematic
wave model), depending on the flow conditions.

Even if the storage model is not a panacea, able to replace all the pre-existing models, it seems to offer an
interestingnew possibility in a number of cases. It also confirms the previous idea (Yen, 1993), that it is not
always necessary to use the complete Barre de Saint Venant equations.
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