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SUMMARY

A new computational code for the numerical integration of the three-dimensional Navier–Stokes
equations in their non-dimensional velocity–pressure formulation is presented. The system of non-linear
partial differential equations governing the time-dependent flow of a viscous incompressible fluid in a
channel is managed by means of a mixed spectral–finite difference method, in which different numerical
techniques are applied: Fourier decomposition is used along the homogeneous directions, second-order
Crank–Nicolson algorithms are employed for the spatial derivatives in the direction orthogonal to the
solid walls and a fourth-order Runge–Kutta procedure is implemented for both the calculation of the
convective term and the time advancement. The pressure problem, cast in the Helmholtz form, is solved
with the use of a cyclic reduction procedure. No-slip boundary conditions are used at the walls of the
channel and cyclic conditions are imposed at the other boundaries of the computing domain.

Results are provided for different values of the Reynolds number at several time steps of integration
and are compared with results obtained by other authors. © 1998 John Wiley & Sons, Ltd.

KEY WORDS: Navier–Stokes equations; unsteady flow; three-dimensional channel; finite differences; spectral tech-
niques

1. INTRODUCTION

Advances in numerical modelling and computing hardware have provided the possibility of
solving complex problems in physics, particularly in fluid mechanics. The system of the
non-linear partial differential equations of viscous fluid flow is currently solved by means of
complex techniques, in which several different numerical methods are applied in order to
develop fast and accurate computational codes. Speed and accuracy are primary objectives to
pursue in order to have the possibility of performing numerical simulations at high values of
the Reynolds number and, as a consequence, in a framework of fully developed turbulent
regime.

The aim of this work is to present a new computational code in which the three-dimensional
time-dependent Navier–Stokes equations are solved by means of a mixed spectral–finite
difference method. The more general objective of the whole research is to address the problem
of turbulence simulation, but this will be a matter for future work: numerical simulation of
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turbulence may involve the use of simplified versions of the full Navier–Stokes equations
according to the more recent approaches that have been developed on the subject (direct
numerical simulation and large eddy simulation [1–3]).

In the following sections, the mathematical formulation and the computational techniques
characterizing the code are reported and numerical results are presented at different times and
values of the Reynolds number, and compared with results obtained by other authors. The
problem considered is the flow of a viscous incompressible fluid in a three-dimensional
channel, characterized by two solid walls at y=91 (non-dimensional), (Figure 1). No-slip
boundary conditions have been used at the walls, while cyclic conditions have been imposed in
the other directions.

The channel flow problem has already been a matter of numerical research for several
investigators. Moin and Kim [4] developed a semi-implicit scheme which, with the presence of
solid walls, circumvents a numerical difficulty related to the development of a fully explicit
pseudospectral method, and presented results at Re=100 (based on centerline velocity and
channel half-width). The research work was continued by various authors [5–8] by implement-
ing filtering techniques for the Navier–Stokes equations and perfecting the calculation
algorithms. Some of the results reported in this work, are compared with those of Moin and
Kim [4].

Direct numerical simulations have been performed by other authors. Orszag and Kells [9]
computed plane Poiseuille flows and plane Couette flows at Reynolds numbers up to 5000, by
investigating the evolution of finite-amplitude disturbances. Kerr [10] performed a study on the
small-scale structures in isotropic turbulence, Spalart [11] simulated the turbulent boundary
layer on a flat plate, and Gavrilakis [12] performed calculations of turbulent flow fields in a
square duct. More recently, Huser and Biringen [13] also executed a direct numerical
simulation of turbulent flow in a square duct at Re=600.

Among the aforementioned works, the results reported by the authors have been produced
by computational codes mainly based on finite difference algorithms [6,7,12], codes mainly
based on spectral Fourier [10], Fourier–Jacobi [11] or Fourier–Chebyshev formulations
[4,8,9], or codes in which mixed spectral–finite difference methods have been employed [13].

Filtering techniques for the Navier–Stokes equations and large eddy simulation approaches
have been followed by other researchers. Deardorff [14] performed calculations in the case of
the three-dimensional turbulent channel flow, Clark et al. [15] performed a study in which
subgrid-scale models of different types are compared, and Leslie and Quarini [16] performed
an analysis on different approaches for generating subgrid models. Antonopulos-Domis [17]
applied the large eddy simulation approach to the problem of mixing a passive scalar in a
turbulent flow, Mason and Callen [18] simulated the plane Poiseuille flow problem by using the

Figure 1. Computational domain.
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Smagorinsky model [19] for the subgrid-scale representation. Piomelli et al. [20,21] analyzed
model consistency and boundary conditions to be applied in large eddy simulations, and later,
Piomelli et al. [22], Germano et al. [23] and Moin et al. [24] investigated subgrid-scale models
in turbulent compressible and incompressible flow phenomena. Madabhushi and Vanka [25]
applied the large eddy simulation technique to the case of the turbulent flow in a square duct
and Kaltenbach et al. [26], in a recent work (the prosecution of a previous one [27]), used the
large eddy simulation approach in a stably stratified shear flow problem. In these works,
subgrid-scale models have been applied to the filtered Navier–Stokes equations, in order to
explicitly compute the large-scale turbulent flow structures and to model the small-scale ones.
The numerical simulations result from computational processes involving Navier–Stokes
codes. Finite difference techniques have been mainly used in some of these codes [14,15,17,18],
while other codes are built by using mixed spectral–finite difference schemes in their main
calculation structure [5,25,26]. Overall, approaches based on mixed techniques still constitute
a minority and due to the remarkable versatility characterizing mixed schemes, this approach
to the numerical integration of the Navier–Stokes equations is suitable to be followed and
further developed.

2. MATHEMATICAL FORMULATION

The system of non-linear partial differential equations in non-dimensional, divergence form
and index notation (i, k=1, 2, 3), which governs the flow of a viscous incompressible fluid, is
considered

(oVk+(i(VkVi)= −(kp+
1

Re
(i(iVk, (1a)

(iVi=0, (1b)

where the subscript ‘o ’ denotes the partial derivative with respect to time. Below, the
co-ordinates x1, x2, x3 and the velocity components V1, V2, V3 will be named x, y, z and u, 6,
w respectively. Variables and operators have been non-dimensionalized by using the channel
half-width (h) as the characteristic length and the steady state centreline velocity (umax) as the
characteristic velocity. With reference to Figure 1, the flow fields are admitted to be periodic
along the x- and z-directions. Fourier-transforming Equation (1) in those directions gives
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where the superscript ‘� ’ denotes the Fourier transformed variables and k2=kx
2 +kz

2. The
non-linear terms in Equation (2a,b,c) must be evaluated by anti-transforming the velocities
back to physical space and performing the products. To avoid aliasing errors in the results, the
‘2/3 rule’ has been implemented [28].

To reduce errors of a round-off nature [29], the component u of the physical velocity along
x is considered to be the sum of a mean component ū= ū(y, t) and a perturbation u %=
u %(x, y, z, t). The velocities along y and z do not have mean components because of the mean
flow moving with x. The decomposition of u into two parts becomes particularly relevant when
values of u2 with small u % have to be computed. The definition of ū is selected to obey the
following equation and boundary conditions.
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The convective terms (in x, y and z) and the partial derivatives of the diffusive terms along x
and z are then incorporated into the definition of the following expressions [29].
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Figure 2. The staggered mesh.

3. COMPUTATIONAL TECHNIQUES

A mixed, semi-implicit technique for the time advancement is devised: a fourth-order Runge–
Kutta scheme is used for the terms included in the Equation (6), while second-order centred
finite difference implicit schemes of Crank–Nicolson type are implemented on a staggered
mesh to handle the partial derivatives of the diffusive terms along y. The staggered mesh
allows the pressure to be collocated in the centre of the computational cell, while the three
components of the velocity are collocated in the centre of each side of the cell (Figure 2). The
following equations hold for each Fourier mode (the partial derivatives with respect to y are
still indicated in analytical form)
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where Cu 0,1,2,3
, C6 0,1,2,3

, Cw 0,1,2,3
are the forms of Cu, C6, Cw in the Runge–Kutta procedure, in

which the velocities assume intermediate (‘� ’) values (l=0, 1, 2, 3). The following assump-
tions hold.
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where f. l and f. are the Fourier transformed integrals of the pressure over Dtl and Dt,
respectively. Equation (11a,b,c) is manipulated using the procedure of the projection method,
as follows. Introducing the additional intermediate variables ul*, 6 l*, wl* and cl, and imposing
mass conservation, gives
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at each Runge–Kutta substep; the pressure terms are disconnected from the velocity terms and
ul*, 6 l*, wl* are determined. Then, it is possible to determine cl as a function of the starred
velocities, on the basis of the following expression, which is derived from the pressure equation
in the form of a Helmholtz equation

(2cl

(y2 −k2cl= ikxul*+
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+ ikzwl*, (13)

and the tilded values of the velocity, corrected with the pressure, can be calculated as

ũl=ul*− ikxcl, (14a)
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6̃l=6 l*−
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where f. and cl are related by the expression

f. =cl−
1
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1
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Equation (15) is obtained by solving any part of Equation (14) in a starred velocity, then
substituting the result into the corresponding part of Equation (12) and equating this to the
corresponding part of Equation (11a,b,c). Equations (12a,b,c) and (13) are solved numerically
using an extensively used algorithm for tridiagonal systems of equations [30].

No-slip boundary conditions at the solid walls and cyclic conditions in the streamwise and
spanwise directions have been imposed to the velocity, while boundary conditions of Neumann
type have been used for the pressure. In the choice of Dt, we have observed the criterion that
the larger value of the CFL number relative to the convective term, is 5
6 [29]. The choices
related to both the mathematical formulation of the problem and the numerical techniques are
based on the following considerations: (i) the spectral technique has been used in the
omogeneous directions (x and z) because of its widely recognized (Reference [31] among
others) superiority for the accuracy of the calculations; (ii) a spectral technique could also be
used in the direction orthogonal to the solid walls, but in that case it presents disadvantages
mainly related to increasing complexity in the resulting algebraic systems and, as a conse-
quence, an increase in the number of operations to be performed [31]; (iii) the use of a finite
difference scheme along the y-direction is mainly related to the possibility of locating the
collocations points in the more suitable manner (i.e. nearby the walls), according to the spatial
resolution that has to be achieved in the numerical simulations (the turbulent scales resolu-
tion); (iv) implicit numerical schemes for the time advancement offer the advantage of
unconditional stability and the possibility of running the simulations with relatively large time
steps; this circumstance is not so relevant in this case, if one considers the fact that the
resolution of the fine scales in a turbulent flow also requires a fine resolution in time [3]; for
this reason a semi-implicit scheme has been implemented.

4. RELIABILITY OF THE CODE

4.1. Mean 6elocity ū"0, perturbations=0

A first series of calculations has been performed under the conditions of absence of
perturbation components of the velocity. The algorithms have been advanced in time (Dt=
0.0025) with the following initial conditions

ū=C(1−y8), (16)

u %(x, y, z)=0, 6%(x, y, z)=0, w %(x, y, z)=0, (17)

where C=0.75 for mass conservation (Equation (16) is first given in Reference [4]). Figures 3
and 4 report the temporal evolution of the mean velocity profile along x at Re=100 and 1000,
respectively. The number of grid points is Nx=8, Ny=30 and Nz=8. In both cases the results
show a correct process of evolution in time toward the Poiseuille configuration. In Figure 5 the
errors DQ1 and DQ2 in the calculated mass fluxes with an increasing number Ny of
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collocation points along y, are reported at Re=100; DQ1 is normalized with the mass flux
corresponding to the initial velocity profile (16)

DQ1=

& +1

−1

ū(y) dy& +1

−1

C(1−y8) dy
. (18a)

DQ2 is normalized with the theoretical mass flux corresponding to the Poiseuille profile

DQ2=

& +1

−1

ū(y) dy& +1

−1

C(1−y2) dy
. (18b)

The values of DQ1 and DQ2 are those corresponding to the steady state condition with that
given number of grid points. In both cases, a decrease of the normalized errors in the
calculated mass fluxes with the increase of the resolution of the computational grid, is outlined.
In particular, the observed trend of the computed variables at different y-resolutions is in good
agreement with the results obtained by Le and Moin [7], and reflects the order of the numerical
scheme along y.

4.2. Mean 6elocity ū=0, perturbations "0

A second series of calculations has been performed in the condition of the zero mean
velocity component u) . The algorithms have been advanced in time (Dt=0.0025) up to t=6.25,
with the following initial conditions

u %(x, y, z)=e
Lx

2
sin py cos

4px
Lx

sin
2pz
Lz

, (19a)

Figure 3. Evolution with time (t=0, 4 and 20) of the mean velocity profile ū(y) (absence of perturbations, Re=100,
Nx=8, Ny=30, Nz=8).
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Figure 4. Evolution with time (t=0,20 and 80) of the mean velocity profile ū(y) (absence of perturbations, Re=1000,
Nx=8, Ny=30, Nz=8).

6%(x, y, z)= −e(1+cos py) sin
4px
Lx

sin
2pz
Lz

, (19b)

w %(x, y, z)= −e
Lz

2
sin

4px
Lx

sin py cos
2pz
Lz

, (19c)

where e=0.1 and Lx=2, Lz=2 represent the linear (dimensionless) dimensions of the
computing domain along x and z, respectively. Equation (19) obeys mass conservation and

Figure 5. Errors in the calculated mass fluxes DQ1 (Equation (18a)) and DQ2 (Equation (18b)) with increasing
number Ny of collocation points along y (absence of perturbations, Re=100).
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Figure 6. Evolution with time of the perturbation amplitudes �u %�, �6%�, �w %� at y=0 and Re=100 (absence of mean
flow, Nx=32, Ny=33, Nz=32, Dt=0.0025).

first appeared in Reference [4]. Figure 6 reports the evolution in time of the maximum
amplitude of each of the perturbations (19), normalized with respect to their initial value, at
y=0 and Re=100. In Figure 7 the evolution in time of the energy associated with the
perturbation components of the velocity (19), is reported

E(y, t)=
&&

LxLz

(u %2+6%2+w %2) dz dx. (20)

Figure 7. Evolution of the energy E(y, t) (Equation (20)) with time at y=0 and Re=100 (absence of mean flow,
Dt=0.0025).
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Figure 8. Evolution with time of the perturbation amplitudes �u %�, �6%�, �w %� at y=0, Re=100 and Ny=21 (presence
of mean flow, Nx=16, Nz=16, Dt=0.0025).

This is a case (presence of perturbation only) of unforced flow, in which the Reynolds number
only has the meaning of a diffusion coefficient. The results reported in Figures 6 and 7 show
a correct phenomenon of damping with time of the perturbation amplitudes and of the energy
associated with the perturbations, as expected in this type of flow [32].

4.3. Mean 6elocity ū"0 and perturbations "0

A third series of calculations was performed by considering both mean components and
perturbation components of the velocity. The algorithms have been advanced in time (Dt=
0.0025) up to t=30 and the spatial discretization has been tested along y in the process of
damping of the perturbation components. In Figure 8 the evolution with time of the maximum
value of each of the perturbation amplitudes, normalized with respect to their initial value, is
reported at y=0, Re=100 and Ny=21; further calculations at Ny=33 have shown that no
remarkable differences between the two tested values of y-discretizations exist. Figure 9 shows
the evolution with time of the energy (20) associated with the perturbation components of the
velocity at y=0, Re=100 and Ny=21, Ny=33, respectively. Directly after a few non-dimen-
sional times, the values of both perturbation amplitudes and energies drop to negligible
entities, for both values of collocation points Ny that have been tested.

This is a case of pressure driven flow in a channel with the presence of three-dimensional
disturbances of finite amplitude (e=0.1); there is not a theory of analytic nature for the
non-linear stability of viscous fluid flows. It is also known [33–35] that the existence of
disturbances of three-dimensional nature shifts the neutral stability curve toward lower values
of the Reynolds number. It is also demonstrated [36] that with Reynolds numbers lower than
1000, any kind of perturbation is damped, as shown in Figures 8 and 9.

In Figure 10, a comparison with the results obtained by Moin and Kim [4] is reported: the
temporal evolution of the calculated mean velocity profile shows a satisfactory agreement with
their results.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 129–142 (1998)
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Figure 9. Evolution of the energy E(y, t) (Equation (20)) with time at y=0, Re=100 and Ny=21, Ny=33 (presence
of mean flow, Nx=16, Nz=16, Dt=0.0025).

5. CONCLUDING REMARKS

A computational code for the numerical integration of the three-dimensional, incompressible
Navier–Stokes equations has been developed. The channel flow problem at different values of
the Reynolds number has been considered and a mixed spectral–finite difference technique has
been implemented, based on Fourier decomposition, second-order Crank–Nicolson algorithms
and fourth-order Runge–Kutta schemes. Calculations are performed in the cases of mean
flow, perturbation components of the velocity and presence of both mean and perturbation
velocities, and they are compared with the results obtained by other authors.

Figure 10. Evolution with time of the mean velocity profile ū(y). (a) present model (Nx=16, Ny=21, Nz=16,
Dt=0.0025); (b) results after Moin and Kim [4]. Re=100, based on the channel width.
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APPENDIX A. NOMENCLATURE

CFL (number) Courant–Friedrichs–Lewy (number)
DQ1, DQ2 normalized errors in the calculated mass flux
E energy associated to the perturbation components of the velocity

channel half-widthh
k, kx, kz wave numbers
l index for the Runge–Kutta procedure
Lx, Ly, Lz length of the computing domain along x, y, z (non-dimensional)
Nx, Ny, Nz number of grid points along x, y, z
p fluid pressure (non-dimensional)

Reynolds numberRe
t time (non-dimensional)
Dt time step (non-dimensional)

x, y, z components of the velocity (non-dimensional)u, 6, w
u %, 6%,w % perturbations of u, 6, w
�u %�, �6%�, �w %� maximum amplitudes of u %, 6%, w %
umax steady state centerline velocity
ū mean component of u

fluid velocity (non-dimensional)V
x, y, z co-ordinates (non-dimensional)

Greek letters

e multiplicative coefficient in the expressions of u %, 6% and w %
f, fl integral terms for the calculation of the pressure
cl pressure correction in the projection method
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